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In many geophysical, environmental and industrial situations, a finite volume of fluid
with a density different to the ambient is released on a sloping boundary. This leads
to the formation of a gravity current travelling up, down and across the slope. We
present novel laboratory experiments in which the dense fluid spreads both down-
slope (and initially up-slope) and laterally across the slope. The position, shape and
dilution of the current are determined through video and conductivity measurements
for moderate slopes (5◦ to 20◦). The entrainment coefficient for different slopes
is calculated from the experimental results and is found to depend very little on
the slope. The value agrees well with previously published values for entrainment
into gravity currents on a horizontal surface. The experimental measurements are
compared with previous shallow-water models and with a new wedge integral model
developed and presented here. It is concluded that these simplified models do not
capture all the significant features of the flow. In the models, the current takes
the form of a wedge which travels down the slope, but the experiments show the
formation of a more complicated current. It is found that the wedge integral model
over-predicts the length and width of the gravity current but gives fair agreement
with the measured densities in the head. The initial stages of the flow, during which
time the wedge shape develops, are studied. It is found that although the influence of
the slope is seen relatively quickly for moderate slopes, the time taken for the wedge
to develop is much longer. The implications of these findings for safety analysis are
briefly discussed.

1. Introduction
The spreading of fluids due to horizontal density gradients is important for many

geophysical, environmental and industrial applications. One practical example is the
dispersion of a dense gas cloud following a chemical spillage. This could be an
instantaneous release of gas from the catastrophic failure of a containment vessel or
a continuous release from a leaking tank. The rate of spreading, distances covered
and dilution of the cloud are all important in assessing the consequence of such an
accident and the risk to those living or working nearby. Other industrial applications
include the movement of smoke and heat in buildings and the spreading of effluent
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or cooling water from an outlet pipe. Gravity currents also occur widely in nature
and include cold water running off glaciers flowing into warmer lake water, turbidity
currents in the ocean and snow avalanches. Simpson (1997) describes these and other
examples of gravity currents, as well as giving a good overview of the work carried
out on the subject.

Gravity currents are conceptually simple but exhibit complex behaviour. In most
environmental and industrial cases the flow is turbulent. Small-scale mixing processes
between the ambient fluid and the current fluid, due to the turbulence, are important
to the dynamics of the flow and cannot be ignored. This makes it hard to obtain
simple analytic, or even numerical, solutions for the problem, even in the case of
simple geometries.

Much theoretical, numerical and experimental work has been carried out on gravity
currents on a horizontal surface. Experimental work by Huppert & Simpson (1980)
showed that the motion could be considered as an initial slumping phase during which
the current developed, followed by a self-similar phase. During the self-similar phase,
the front Froude number was found to be constant. An integral model was developed
to describe the stages of the flow and, considering its simplicity, provides a very
good description of the bulk properties of the flow. Hallworth et al. (1996) carried
out experiments to measure the entrainment into gravity currents and extended the
integral model to include the effects of the entrainment.

However, in many real situations, the effects of topography can play an important
role. Previous work by Ellison & Turner (1959) considered the motion of a continuous
release in a sloping channel, forming a steady-state dense layer. They carried out
laboratory experiments and found that entrainment was a function of the layer
Richardson number. Britter & Linden (1980) considered the motion of a gravity
current head, from a continuous source, flowing down a sloping channel. Over a large
range of angles, they found that the Froude number of the head did not depend on
the slope. The head increases in size through entrainment of fluid from the ambient
and from flow into the head from the dense layer behind. Which of these factors is
most important is found to depend on the angle of the slope.

Beghin, Hopfinger & Britter (1981) considered the motion following an instan-
taneous release of dense fluid in a sloping channel. By considering the gravity
current as a ‘thermal’ they developed a model for the motion and made comparisons
with experiments to determine the entrainment rate. Dade, Lister & Huppert (1994)
extended the model of Beghin et al. (1981) for particle-laden gravity currents where
the density difference is generated by small suspended particles which slowly sediment
out of the current, reducing the density difference.

In a channel, the large-scale motion of the flow remains essentially two-dimensional.
In contrast, for an initially circular release on a slope with no lateral boundaries,
the presence of the slope means the problem loses its symmetry and is no longer
axisymmetric. Previous experiments and scaling by Alavian (1986) and Tsihrintzis
& Alavian (1996) have looked at the flow far from a continuous source on a
slope. Bonnecaze & Lister (1999) present a shallow-water model for particle-laden
currents on a slope, but no experiments have been carried out to confirm the model’s
assumptions or predictions. For instantaneous releases on gentle slopes, Webber, Jones
& Martin (1993) and Tickle (1996) have found similarity solutions of the shallow-
water equations, but there is little experimental evidence to verify these solutions. All
these models are for high Reynolds numbers where the effects of viscosity are small.
Lister (1992) carried out experiments on viscous gravity currents from continuous
point and line sources, and presented similarity solutions for the results.
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In this paper, we investigate the high-Reynolds-number flow resulting from an
instantaneous release of a gravity current on an unconfined uniform slope. This
situation models, for example, a catastrophic failure of a storage tank of dense gas,
leading to a sudden release of a large amount of the gas. The aim of this work is to
understand and predict the motion and dilution of such gravity currents. This aim
is achieved through a combination of simplified theoretical models and laboratory
experiments. The experiments provide data to validate both existing and new models
for dense gas dispersion. They also provide insight into the detailed structure of the
flow and the relative importance of different physical processes.

Catastrophic failure of a storage tank may result in the release of tens of tonnes
of dense gas, corresponding to several thousand cubic metres of gas at atmospheric
temperature and pressure. Many gases of interest have densities much greater than air,
especially where they are stored liquefied or under pressure. The rapid expansion and
change of temperature on release of the gas means that initially the thermodynamics
of the gas are important. Including these thermodynamic effects adds a great deal of
complexity to the problem. Assuming that these effects will only play a significant
role near the source, they are neglected here. Liquefied natural gas (LNG) and
chlorine have densities of 1.75 kg m−3 and 3.61 kg m−3, respectively, at atmospheric
pressure and temperature, so are considerably denser than air (which has a density
of 1.2 kg m−3), even once the initial expansion and cooling have taken place.

Only slopes with a fixed gradient are considered in this work. This is the simplest
case to study first, although many situations involve far more complicated topogra-
phies. In most industrial situations, the gradient of the slope will be relatively small,
perhaps no more than 10◦. The slope is also likely to vary slowly compared to the
depth of the gravity current. These two factors mean that in many cases the results
from the present experiments are relevant.

2. Theoretical model
2.1. The importance of a slope

The behaviour of axisymmetric gravity currents on a horizontal surface has been well
studied (see Huppert & Simpson 1980; Hallworth et al. 1996). When considering a
current on a sloping lower boundary, it is useful to know when the slope is important.
It is anticipated that it will take some time for the effect of the slope to influence the
gravity current and, initially, the current will behave like a current on a horizontal
surface. The position at which the effect of the slope becomes important can be
estimated by looking for the stage at which the slope becomes equal to the aspect
ratio of the gravity current, indicating that the change in height due to the slope is
no longer insignificant compared to the height of the current. The time at which this
occurs may be estimated from a integral model for an axisymmetric gravity current
on a flat surface, such as that of Huppert & Simpson (1980). This model assumes
that the current takes the form of a flat cylinder with radius r and height h. No
entrainment occurs so the volume V = πr2h is constant. The difference between the
density, ρ, of the gravity current and the density, ρ0, of the ambient fluid is included
through the reduced gravity, g′ = g(ρ−ρ0)/ρ0. The speed at which the front moves is
controlled by the Froude number condition ṙ = Fr

√
g′h. Experimentally, it is found

that the Froude number, Fr, is a constant of the flow provided the fractional depth
of the gravity current head, φ, is less than 0.075, with a value for the constant of
approximately 1.19 (see Huppert & Simpson 1980). For larger fractional depths, the
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Froude number varies with φ. Huppert & Simpson (1980) give an empirical formula,

Fr =

{ 1
2
φ−1/3, φ > 0.075

1.19, φ 6 0.075,
(2.1)

to describe the Froude number.
Taking this axisymmetric integral model and using it to find the position at which

the aspect ratio of the current becomes equal to the gradient of the slope gives an
estimate of when slope effects become significant. This gives a radius,

rθ = r0

(
h0/r0

tan θ

)1/3

, (2.2)

which does not depend on the value of the Froude number. For a release of small
fractional depth, so the Froude number is constant, (2.2) corresponds to a time,

tθ =
r0

2Fr
√
h0g′

[(
h0/r0

tan θ

)2/3

− 1

]
, (2.3)

whereas assuming a full depth release gives a time

tθ =
3r0

2
√
h0g′

[(
h0/r0

tan θ

)4/9

− 1

]
. (2.4)

Here, the constants r0 and h0 refer to the initial radius and height of the release. The
angle θ gives the inclination of the slope to the horizontal. The radius rθ also gives an
estimate of the maximum up-slope extent of the gravity current. In practice, the time
for which the slope is unimportant is relatively small, so the variation of the Froude
number in the initial stages of the flow make only a small difference to the integral
model predictions and can be neglected.

This model suggests that for any non-zero angle θ, the slope will become important
after a sufficiently long time. In practice, other factors, such as viscosity, may well
come into play first, meaning that the assumptions of the model break down. The
time at which viscous effects become important can be estimated as

t ∼
(
r2

0h0

νg′

)1/3

, (2.5)

which is obtained by balancing the viscous and inertial terms in the Navier–Stokes
equations. Here, ν is the kinematic viscosity of the fluid. This balance suggests that
for θ < θc, where

tan θc =
h0/r0(

2Fr
[
h5

0g
′/
(
ν2r2

0

)]1/6
+ 1
)3/2

, (2.6)

viscous forces dominate before there is time for the slope to become important.
For the apparatus used in the laboratory experiments discussed in § 3, (2.6) gives

a critical angle of about 0.2◦. If the angle of the slope is greater than θc, then slope
effects will be significant provided r > rθ .

2.2. A wedge integral model

The shallow-water models of Webber et al. (1993) and Tickle (1996) predict a wedge-
shaped similarity solution for a gravity current on a slope. In the experiments
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Figure 1. Similarity solution of the shallow water equations for a gravity current on a slope.

described in § 3, the current is observed to form a wedge moving down the slope,
although the shape of the wedge is different to that predicted. Assuming that the
slope is sufficiently steep and that there is time for such a wedge-shaped similarity
solution to be reached, we can develop a new integral model for the motion of a
gravity current on a slope. Such models are useful in clarifying the important physics
in the problem and in helping to understand the experimental results. The approach
is similar to that of Beghin et al. (1981) and Dade et al. (1994) for a gravity current
in a sloping channel. We suppose that the current has a prescribed self-similar wedge
geometry. An example of such a geometry is that predicted by Webber et al. (1993)
and shown in figure 1 which has the front of the wedge given by the parametric
equation

x = l cos2 ω
y = l(ω + cosω sinω)

}
(− 1

2
π 6 ω 6 1

2
π), (2.7)

where x and y are the down-slope and across-slope coordinates and l is the length of
the wedge. The overall width and height are given by b = πl and h = l tan θ.

The top and front areas can be written as

AT = S1l
2, (2.8)

AF = S2l
2 tan θ, (2.9)

respectively, and the volume by

V = S3l
3 tan θ. (2.10)

The back of the wedge, where the top of the wedge meets the slope, has zero height.
The values S1, S2 and S3 are shape parameters describing the geometric form of the
wedge. For the shape given by (2.7)

S1 = 3
4
π, S2 = 8

3
, S3 = 5

16
π. (2.11)

The integral model developed here is not restricted to the shape prescribed by
the shallow-water model of Webber et al. (1993), but can be used for any self-



244 A. N. Ross, P. F. Linden and S. B. Dalziel

similar shaped wedge. Selecting different shapes leads to different values for the shape
parameters (2.11).

To illustrate the differences that arise, an alternative shape with a triangular top
was also used to compare with the experiments. For this shape, the shape parameters
were given by

S1 = 1, S2 =
√

2, S3 = 1
3
. (2.12)

We make the Boussinesq approximation in deriving the new wedge integral model,
i.e. the density difference is assumed to be small and can be neglected except where
it multiplies the acceleration due to gravity, g. This is a good approximation for
most laboratory experiments, where the density difference is created by dissolving
salt in water. For dispersion of dense gases, where the density of the release may be
several times greater than the density of the air, this assumption may not be valid.
It does, however, lead to a significant simplification in the problem and provides a
useful insight into the likely solutions. Even for initially non-Boussinesq releases, the
dilution of the current by entrainment will mean that the flow will become increasingly
Boussinesq. It is likely that non-Boussinesq flows will have qualitative similarities with
Boussinesq flows, as was found to be the case by Gröbelbauer, Fanneløp & Britter
(1993) for gravity currents on a horizontal surface.

There is also an implicit assumption that the slope is gentle enough that the flow
is behaving like a gravity current and being driven by horizontal pressure differences.
The shallow-water model from which the assumption of the wedge shape is made is
also only valid for small slopes.

The volume of the current increases as it spreads, owing to the entrainment of
ambient fluid into the denser fluid in the current. The rate of entrainment is taken as
being proportional to the area over which the current is entraining multiplied by the
current speed. The constant of proportionality is the entrainment coefficient, α, which
is a function of the stability of the interface as measured by the layer Richardson
number. From the experiments it appears that the entrainment is mainly confined
to the front region of the current. We assume that the entrainment takes place over
an area, AE , near the front, of width comparable to the depth of the current, so
AE = S4l

2 tan θ, for some shape parameter, S4. For the cylindrical wedge shape given
by (2.7), then S4 = π

√
2, and for the triangular wedge shape, S4 = 2

√
2. An assumption

like this, about the form of the entrainment, is common when modelling stratified
flows, such as gravity currents and plumes.

As a result of this entrainment, the bulk mass conservation equation can be written
as

d

dt
(V ) = αuAE. (2.13)

The change in linear momentum in the down-slope direction is due to two main
forces. First, there is the component of the buoyancy force acting down-slope and
secondly there is a drag force associated with the motion of the current. The drag
is made up of two components, the bottom drag and the form drag. The bottom
drag term is given by a standard parameterization of the Reynolds stress terms for a
turbulent current, CTu|u|AT , where CT is the drag coefficient and u is the speed of the
centre of mass of the gravity current. The form drag on the current takes the form
CFu|u|AF . Since both AT and AF scale like l2 then both of these drag terms have the
same form. The likely numerical values of the drag coefficients are discussed later.
It should be noted that adding a form drag of this type is equivalent to imposing a
Froude number condition on the front, as done by Webber et al. (1993) and Tickle
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(1996). We neglect variations in the speed of the current over its top resulting from
the current expanding through entrainment in addition to moving down the slope.
For a self-similar shape, any such variations will, at worst, make a small correction
to the value of the entrainment and drag coefficients.

To take into account the ambient fluid carried along with the dense current, the
mass of the current used in the momentum equation (2.14) is increased by a constant
factor, (1 +CA), to give an effective ‘added mass’. This is an inviscid result. The extra
force is only felt while the current is accelerating. The entrained ambient fluid is at
rest before it is entrained, so it imparts no momentum to the gravity current. The
momentum conservation equation is therefore

d

dt
((1 + CA)Vu) = B sin θ − (CTAT + CFAF )u2. (2.14)

As a result of the Boussinesq approximation, the density only appears in (2.13)–(2.14)
via the buoyancy B = g′V , and this is conserved during the flow.

The added mass coefficient, CA, cannot easily be calculated for this wedge shape.
The values for a circular cylinder and a sphere translating in irrotational potential
flow are given as 1 and 0.5, respectively, by Batchelor (1967, p. 431). For a slender
body of width, b, and length, l, the value is proportional to (b/l)2. From this, it seems
likely that the value for the wedge will be of order 1 or less.

We can look for special solutions to (2.13) and (2.14) which have a constant speed,
u, corresponding to the solution of Webber et al. (1993). For such a solution to exist,
the wedge volume must be constant, so the wedge length, l, is also constant. This
means there is no entrainment. In this case, the buoyancy force is entirely balanced
by the drag on the current.

To find a more general solution, we note that, provided the entrainment α is
non-zero, (2.13) gives dl/dt ∝ u = dx/dt, where x is the horizontal position of the
centre of mass of the wedge shape. By a suitable choice of origin, a new horizontal
coordinate x′ can be defined so that l ∝ x′. In equations (2.13) and (2.14), x′ can
be substituted directly for x. Using the initial conditions that u = u0 and x′ = x′0 at
t = t0, and the fact that d/dt = ud/dx′, (2.13) and (2.14) can be integrated to give

l =
S4α

3S3

x′ (2.15)

and

u2 = u2
∞

(
x′0
x′

)2

+ (u2
0 − u2

∞)

(
x′0
x′

)γ
, (2.16)

where

u2
∞ =

54B S2
3 cos θ

x2
0α

3S3
4 (1 + CA)(γ − 2)

(2.17)

and

γ = 6

(
1 +

CTS1 + CFS2 tan θ

αS4 tan θ(1 + CA)

)
. (2.18)

The parameter γ controls the rate at which the speed of the current decays. Increasing
the drag increases γ, causing the current to slow down more rapidly. The speed u∞
gives the scale for the speed for large x so u/u∞ ∼ x′0/x′. Both u∞ and γ increase with
increasing entrainment and added mass so the overall effect of different values of α
and CA is not immediately obvious. In the limit α → 0 then x′0 → ∞ in such a way
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that (2.16) does not become singular, since the product S4αx
′
0/(3S3) = l0 is constant.

The solution is not valid in this limit. Putting α = 0 into (2.13) and (2.14) gives an
exponential form for u as a function of x′.

Writing u = dx′/dt and substituting in (2.16) gives a differential equation for x′(t).
This equation cannot be integrated exactly for arbitrary values of CT and CF , but the
solution for x can be obtained numerically.

For the no-drag case where CT = 0 and CF = 0, an exact solution for the centre of
mass position is possible, yielding

xc =

(
(2u∞x′0t)

2 −
(
u2

0 − u2∞
)
x′60

u2∞x′20

)1/4

. (2.19)

This predicts that for large times xc ∼ t1/2. The same scaling is seen for large times
in the entraining similarity solution of Tickle (1996).

The entrainment coefficient is found to be of order 0.1 in a variety of similar
experiments (see Ellison & Turner 1959; Hallworth et al. 1996). Here, it is retained as
a parameter to be determined experimentally to give a best fit to the data. Britter &
Linden (1980) found a value of about 0.003 for the drag, CT , for a gravity current in a
smooth sloping channel. It will be greater for a rougher surface, but no experimental
data is available. The form drag coefficient, CF , is generally between 1.0 and 0.1
for most bodies. The wedge-shaped gravity current is fairly streamlined so the value
is likely to be close to 0.1. Using these values for the drag coefficients and taking
slopes between 5◦ and 20◦ gives values for the exponent γ between 6 and about
6.3. This is a 5% change and means that neglecting the second term in (2.18) is
a reasonable approximation, i.e. drag effects are small compared to the effects of
entrainment and the added mass. The exponent γ increases with decreasing slope, so
for very small slopes then the drag term is relatively more important. Comparison of
numerical results from this model, with and without the drag terms, shows there is
little difference for the parameter values considered here. The difference between the
predicted front position for CT = 0.01 and CT = 0.0 is less than 0.05%.

As θ → 0◦ then, provided the volume of the current is constant, AT →∞, AF → 0,
u∞ → 0 and γ → ∞. The solution is no longer physically realistic in this limit as the
current will not have an infinite top and no height. This is not a contradiction as
tθ → ∞ and rθ → ∞ as θ → 0◦ so the wedge-shaped solution is never reached in this
limit and the current spreads axisymmetrically for all time.

As θ increases, an angle will be reached, depending on the aspect ratio of the
release, where the slope will always be important according to (2.3). As θ → 90◦,
then the current will become a dense thermal against a vertical wall. In this limit, the
wedge shape would become very large and flat which is not appropriate. The thermal
will be a more bluff shape, as discussed by Morton, Taylor & Turner (1956).

The distance, xc, in (2.19) is the position of the centre of mass of the current. The
front position is needed in order to compare with the experimental results in § 4. For
the circular wedge shape given by (2.7), the centre of mass is a distance 5l/12 from
the front of the wedge so

xc = xf − 5

12
l = xf

(
1− 5

12

dl

dxf

)
, (2.20)

since xf ∝ l. If (2.20) is substituted into (2.13) and (2.14) to change from measuring
the centre of mass position, to measuring the front position, then (2.13) and (2.14)
remain unchanged provided that u∞ is divided by the factor (1− 5

12
(dl/dxf)) and α is
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multiplied by the same factor. The effect of measuring the positions and speeds of the
front rather than the centre of mass is only to alter the experimental constants and
not the form of the solution. For the triangular wedge shape, the centre of mass is a
distance 1

2
l from the front of the wedge. For any other self-similar shape, a similar

transformation will apply.
The equations of the wedge integral model were numerically integrated. As this

model is only valid once sufficient time has passed for the similarity solution to
develop, the simple box integral model for a gravity current on a horizontal surface,
described in § 2.1, was used for the initial stages of the release. Once the current had
spread out enough for front effects to be important, the circular-shaped current was
transformed into a wedge-shaped current, preserving the front position, concentration
and volume. Various types of integral model were used for the initial stage, both
entraining and non-entraining. The results were found not to be particularly sensitive
to the exact model used, since the initial stage was quite short and the spatial
position at which the changeover was assumed to occur was determined by the slope,
independent of the integral model used. The numerical code allowed the effect of the
parameters to be studied and predictions compared with experimental results. These
are discussed further in § 4.

3. Experimental set-up
Experiments were undertaken to validate the assumptions incorporated in the

model described in the previous section, and test the predictions. The majority
of the experiments were carried out in a tank of dimensions 2.0 m × 2.5 m × 0.85 m
(width×length×depth). The tank was fitted with a false bottom that could be adjusted
to give a range of slopes. Slopes in the range 5◦–20◦ were used. A small number
of experiments were also carried out in a shallower tank of internal dimensions
1.18 m× 1.49 m× 0.10 m. In this tank, slopes of up to 2.5◦ were possible.

A cylinder with an angled base was placed on the slope so that the top was above
the water level. Salt was dissolved in the water within the cylinder to provide a
density difference and red food colouring was added to aid visualization. The initial
densities measured with a refractometer were from about 1.012 g cm−3 to 1.025 g cm−3.
The gravity current was released by rapidly removing the cylinder from the water.
Care was taken to ensure the cylinder was lifted cleanly and with as little mixing as
possible. Details of the experiments carried out are given in table 1.

The experiments were all recorded on S-VHS video using a monochrome CCD
camera. This allowed later analysis with the DigImage image processing software (see
Dalziel 1992). The analysis included measurements of the gravity current position,
length and width as a function of time.

For some of the experiments a conductivity probe mounted on a traverse was placed
in the flow. The probe was calibrated to give a reading of the salt concentration at
the probe tip. The probe was connected to a PC via an analogue-to-digital converter,
allowing the measurements to be logged automatically at regular intervals. This
provided a means of measuring the profile and dilution of the current. A sample rate
of 10 Hz was used for the experiments described here.

Previous work, such as that of Huq (1996), has shown that the fractional depth of
a gravity current can be important, provided the fractional depth is not too small.
Some surface current experiments were carried out in the smaller tank to confirm
whether the fact the current was flowing down-slope was more important than the
fact it was flowing into a deepening layer of fluid. A fresh water and dye mixture was
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θ Distance to Length scale Time scale
Exp. (deg.) g′(cm s−2) V (cm3) probe (cm) V 1/3(cm) (V 1/3/g′)1/2 (s)

1 5 27.2 1686 — 11.9 0.66
2 5 26.85 1686 — 11.9 0.67
3 10 23.6 1847 — 12.3 0.72
4 10 23.25 1847 — 12.3 0.73
5 15 23.95 1879 — 12.3 0.72
6 15 23.95 1879 — 12.3 0.72
7 15 38.35 1686 — 11.9 0.56
8 15 10.7 1686 — 11.9 1.05
9 20 27.2 1686 — 11.9 0.66

10 20 23.25 1702 — 11.9 0.72
11 20 22.5 1718 — 12.0 0.73
12 5 25.0–29.3 1686 37.0, 54.5, 74.5, 101.0 11.9 0.64–0.69
13 10 22.1–27.2 1959 23.5, 49.5, 67.0 12.5 0.68–0.75
14 10 22.9–23.6 1767 128.5 12.1 0.72–0.73
15 10 23.25–25.0 1879 107.5 12.3 0.70–0.73
16 15 20.35–25.35 2168 49.5, 65.5 12.9 0.71–0.80
17 15 19.65–25.7 1767 51.0, 83.5 12.1 0.69–0.78
18 20 20.35–24.3 1767 37.5, 70.0, 95.0 12.1 0.71–0.77

Table 1. Details of initial conditions for instantaneous release gravity current experiments.
The experiments were carried out in the large tank with a sloping bottom.

released into a salty ambient, causing a gravity current to flow along the surface of the
water. In this case, the current was only subject to the change in fractional depth. No
discernible deviation from the circular spreading shape expected for a current over a
flat bottom was seen. This suggests that the slope rather than the change in fractional
depth is of overriding importance. The rapid thinning of the current ensures that the
fractional depth remains small, and therefore variations in the fractional depth do
not significantly affect the current.

4. Experimental results
Initially, the gravity current spread in a symmetric manner similar to a current on

a flat surface. The gravity current looks like a vortex ring spreading out radially from
the point of release. After a short time the back (up-slope) edge became noticeably
lighter than the front (down-slope) edge, showing that the back edge was thinner than
the front edge. The back edge then began to move more slowly. The fluid drained
from the back to the front, forming a wedge-shaped current with a thin viscous
draining layer behind. This was a gradual process, making it hard to specify an exact
time at which the transition to the wedge-shaped similarity solution occured.

The pictures in figure 2 were taken at times 0.5 s, 1.5 s, 2.5 s and 3.5 s after the
release. The predictions of the axisymmetric integral model are superimposed. After
0.5 s, the current is still nearly axisymmetric. By 1.5 s, the effects of the slope are
beginning to be seen. The current is still close to circular, but is no longer centred on
the release point. The down-slope edge is also noticeably darker than the up-slope
edge. The wedge shape is still not fully developed, even after 3.5 s. The actual motion
in the initial stages was not as simple as the integral model suggests. The up-slope part
of the current remained deeper for longer as the current did not have a horizontal top
surface, as assumed, but was more nearly parallel to the bottom. It was found that
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(a) (b)

(c) (d )

Figure 2. Formation of a wedge shape during experiment 5. The top of the slope is to the right-hand
side of the picture and the bottom of the slope to the left. The release point shows up as the dark
circle on the right of the picture. The black outline curve is the integral model prediction for this
experiment. The slope is 15◦. The images are at time (a) 0.5 s, (b) 1.5 s, (c) 2.5 s and (d ) 3.5 s after
release. The scale mark in image (a) is 30 cm long.

the current took longer than the estimated time to reach the wedge-shaped solution.
The predicted time for the slope to become important for the experiment shown in
figure 2 was 0.5 s. The current did not appear to have developed into a wedge shape
until 3.5 s after the release.

For later times, the development is shown in figure 3. These pictures are at times
1.5 s, 6.5 s, 11.5 s and 16.5 s. They show the wedge shape moving down the slope. The
predictions of the wedge integral model are superimposed on the figures for both the
cylindrical and the triangular-shaped wedges. It can be seen that the shape of the
wedge formed is more triangular than the circular shape predicted by Webber et al.
(1993).

As light passes through the dye it is attenuated. The amount of attenuation depends
on the dye concentration, which is proportional to the concentration of salt, assuming
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(a) (b)

(c) (d )

Figure 3. Formation of a wedge shape during experiment 5. The top of the slope is to the right-hand
side of the picture and the bottom of the slope to the left. The release point shows up as the dark
circle on the right of the picture. The black outline curves are the integral model predictions for
this experiment with the two different assumed shapes for the wedge. The slope is 15◦. The images
are at time (a) 1.5 s, (b) 6.5 s, (c) 11.5 s and (d ) 16.5 s after release. The scale mark in image (a) is
30 cm long.

the salt and dye are transported in the same way. The light intensity measured by the
DigImage system therefore gave a measure of the depth integrated density,

∫
g′ dz.

This can be seen qualitatively from the darkness of the current in figures 2 and 3.
As the slope was increased from 5◦ to 20◦, it was observed that the wedge shape

developed more quickly after release, as predicted by (2.3). The shape of the wedge
altered to become slightly deeper and thinner as the slope increased. This is also in
keeping with the integral model predictions. Only slopes up to 20◦ could be studied
experimentally. The behaviour may be altered for larger slopes near 90◦.

The data from the experiments were all non-dimensionalized with respect to the

relevant length scale (V
1/3
0 ) and time scale (V0/g

′3
0 )1/6. V0 is the initial volume of

the release and g′0 is the initial reduced gravity of the release. The reduced gravity,
calculated from the conductivity probe measurements, was non-dimensionalized with
respect to its initial value, g′0. Figure 4 shows that the experimental data collapses
well for a range of initial densities. All the densities were sufficiently small that the
flow is still Boussinesq.

In order to calculate derived quantities, such as the Reynolds number and Froude
number, it is necessary to know the front speed, uf , of the gravity current. The front



Three-dimensional gravity currents on slopes 251

0 4 8 12 16 20 24 28

Time

2

4

6

8

10

12

Fr
on

t p
os

it
io

n

Effective gravity (cms–2)

10.7
23.95
23.95
38.35

Figure 4. Non-dimensional down-slope position of the gravity current front against time for
densities in the range 10–40 cm s−2. The slope is 15◦ and the initial volume is constant for all the
experiments (see experiments 5–8 in table 1). The solid line is the prediction from the wedge integral
model. The entrainment has been chosen to provide a best fit for the data.

speed was calculated by using a least-squares method to fit a polynomial to the front
position as a function of time, and then taking the first derivative of this fit to yield
the speed.

From figure 5, it can be seen that the gravity current decelerates as it moves down
the slope. The non-entraining shallow-water model of Webber et al. (1993) gives
a constant speed for the current, which over-predicts the speed and front position
compared to the experimental results. The entraining model of Tickle (1996) provides
a slightly better fit to the front position data. The model requires the front Froude
number and entrainment coefficient to be specified. The values used were those from
Tickle (1996), based on experiments with dense gas. The values obtained (0.59 for
the Froude number and 0.034 for the entrainment) are low compared to other values
obtained for laboratory experiments with salt/fresh-water gravity currents. This may
explain some of the discrepancy. The experiments were compared with the predictions
of the wedge integral model using either the arc-shaped wedge given by (2.7) or the
triangular-shaped wedge. This set the shape parameters S1, S2, S3 and S4 to the values
given in (2.11) and (2.12), respectively. For the comparisons, the drag coefficients CF
and CT were set to zero and the added mass coefficient was set to 1. The entrainment
coefficient for each slope was determined by performing a best fit of the model
predictions to the experimental front position data. The entrainment coefficient is the
only free parameter varied in the model. The predictions of the two integral models
for the front position are indistinguishable. This is perhaps not surprising since the
entrainment coefficient was chosen to best fit the experimental front position data.
The best fit values for each slope angle are given in table 2.

The variation between the lines in figure 5(d ) illustrates the difficulty in making
the experiments reproducible. Any residual motion in the dense fluid or the ambient
fluid, or any slight leakage from the cylinder before release can have a significant
effect on the motion of the gravity current. Great care was taken to minimize such
effects.

The length and width of the gravity current are shown in figures 6 and 7. These
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Slope Entrainment coefficient Entrainment coefficient
(deg.) cylindrical shape triangular shape

5 0.3047 0.3498
10 0.1437 0.1649
15 0.1240 0.1423
20 0.1343 0.1541

Table 2. Details of ‘best fit’ entrainment coefficients for the integral model using both the
cylindrical shaped wedge and the triangular-shaped wedge.

4 8 12 16 20 24 280

2

4

6

8

10

12

4 8 12 16 20 24 280

2

4

6

8

10

12

4 8 12 16 20 24 280

2

4

6

8

10

12

4 8 12 16 20 24 280

2

4

6

8

10

12

(a)

Time Time

Fr
on

t p
os

it
io

n
Fr

on
t p

os
it

io
n

(b)

(c) (d )

Figure 5. Front position of a gravity current on slopes of (a) 5◦, (b) 10◦, (c) 15◦ and (d ) 20◦.
Each symbol represents a different experiment. —, wedge integral model developed here for the
cylindrical and the triangular shapes. These are indistinguishable. - - -, non-entraining shallow-water
model of Webber et al. (1993), – · –, entraining shallow-water model of Tickle (1996) (using the
values obtained in the paper for the front Froude number and entrainment).

measurements are somewhat more subjective than the front position as the current
has a thin viscous draining layer behind it, making it difficult to judge the edge. The
length was measured from the front of the current to the back of the thicker front
layer. The predictions of the wedge integral model for the cylindrical wedge are also
shown on the graph. The wedge integral model generally seems to over-predict the
current length and width. The width in particular is over-predicted. This can be seen
more clearly in figure 3 where experimental images are overlaid with the outline of the
model predictions. The back position is generally consistent with the experimental
results, but the width is significantly less at all stages of the flow. This calls into
doubt the cylindrical wedge shape in (2.7), as predicted by Webber et al. (1993). The
triangular wedge shape gives much better agreement with the experiments. Plotting
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Figure 6. Length of the gravity current against time for slopes of (a) 5◦, (b) 10◦, (c) 15◦ and
(d ) 20◦. +, �, experimental measurements; —, theoretical prediction of the wedge integral model
in § 2 assuming the cylindrical wedge; – · –, predictions assuming the triangular wedge.

the width/length against time shows that the ratio remains nearly constant over the
flow, although the value varies slightly with slope. Between 10◦ and 20◦, the ratio is in
the range of 1.5–2.0. For the slope of 5◦, the ratio is significantly less than 2.0. This is
due to the fact that the current did not have time to form a significant wedge shape
in the tank available. The value of about 0.5 signifies that the current remained nearly
circular in shape. One explanation for the wedge integral model over-predicting the
size of the gravity current is that it does not take into account the fluid which is
left behind the current in a thin draining layer. When the current has travelled some
distance, then this may account for a significant fraction of the initial fluid. The
experimental results, such as those in figure 3, suggest that the wedge shape was more
pointed than rounded. The wedge with a triangular top and a width to length ratio
of 2.0 was chosen to predict this shape better and also to give a better value for the
width to length ratio. The results from this were compared with the results using the
shape in (2.7) and with the experimental results. It was found that the two shapes
gave similar predictions for the dilution of the current, however, the triangular top
gave a better prediction for the gravity current plan shape. The aspect ratio for the
triangle was chosen with that in mind. The predictions for both wedge shapes are
shown in figures 2 and 3.

The conductivity probe measurements allowed the depth of the current to be
inferred at various points down the slope. Figure 8 shows that the height of the
current varies little as the current develops. Both the new wedge integral model and
the model of Tickle (1996) over-predict the height of the current. A steady increase
in the height is predicted, as the current entrains fluid. This does not appear to
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Figure 7. Width of the gravity current against time for slopes of (a) 5◦, (b) 10◦, (c) 15◦ and
(d ) 20◦. +, �, experimental measurements; —, theoretical prediction of the wedge integral model
in § 2 assuming the cylindrical wedge shape; – · –, prediction assuming the triangular wedge shape.

occur, possibly owing to the fact that vertical spreading is inhibited by the density
difference between the current and the ambient. There is a relatively large error in
the measurements of the height of the current owing to the fact that conductivity
measurements were only taken at a discrete set of heights.

Figure 9 shows the maximum reduced gravity at the front of the current as a
function of time. As can be seen in figures 10 and 11, the value fluctuates greatly
within the head of the current. This fluctuation, combined with the discrete sampling
time, means that there is a large fluctuation in the measured maximum value. The
values do give some indication of the rate of dilution of the current. The wedge
integral model assumes a uniform density distribution in the current rather than
the value at the peak value at the front of the current, which explains why the
experimental values are slightly higher than the integral model predictions. A better
comparison would be using an experimentally determined, depth-integrated average
density, rather than a peak density.

The reduced gravity profiles in figure 10 show that the current is divided into a
relatively narrow but deep (≈ 4–6 cm) head region, with a much wider and shallower
(≈ 1 cm) region behind where the fluid is slowly draining away. Viscous forces are
likely to play a significant role in the shallower region. This is verified by the visual
images of the flow in figure 3. The thicker crescent-shaped band of fluid which makes
up the head is visible in the picture as a darker region, with a lighter thinner draining
region behind it. The wedge integral model predicts a linear decrease in height from
the maximum at the front to zero height at the back of the current. This does not
agree precisely with the experiments.
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Figure 8. Height of the gravity current front against time for slopes of 5◦ to 20◦. The symbols
are measurements from experiments 12–18 made using the conductivity probe and the lines are the
theoretical prediction of the wedge integral model in § 2.
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Figure 9. Reduced gravity of the gravity current front against time for slopes of 5◦–20◦. The points
are experimental measurements and the lines are the theoretical prediction of the wedge integral
model in § 2.

The intensity profile in figure 11 gives an indication of how the depth of the current
changes as the current develops. The light intensity, I , is proportional to exp(− ∫ g′ dz)
as described by Cenedese & Dalziel (1998). The vertically integrated g′ is the pressure
difference or head which is driving the gravity current forward. The values plotted
are arbitrary units so that an increase in the plotted value corresponds to an increase
in the head. It can be seen that as the current moves down the slope, the head is
reduced slightly, which explains why the current slows down. The width of the head
region can also be seen to increase as the current develops.
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The slope is 15◦.
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Figure 11. Centreline profiles of the light intensity at 3 s intervals showing the progress of the
current down-slope and the development of the head. The intensity scale gives a measure of the
vertical integral of g′. The experiment was on a slope of 15◦.

The values for the entrainment coefficient, α, were obtained by doing a least-squares
fit to the front position for each slope angle (see table 2). The values are averaged
over all the experiments for each slope and are plotted in figure 12 as a function
of slope angle and compared with other published values for similar situations. The
entrainment is assumed to occur over a region at the front of the wedge with width
comparable to the current height. This is the region where the majority of the fluid is
and where it would be expected that the most mixing would occur. This is confirmed
by the experiments described in § 4. In addition to the coefficients calculated from the
experiments reported here, the graph includes the results from Beghin et al. (1981)
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Figure 12. Comparison of entrainment coefficients as a function of slope from different experiments.
+, best fit of current data to wedge integral model (cylindrical wedge); �, values from Beghin et
al. (1981); �, values from Tickle (1996).

for a saline gravity current in a sloping channel and from Tickle (1996) for a three-
dimensional release of dense gas on a slope. The values from Tickle (1996) agree well
with the results here. The values from Beghin et al. (1981) also agree well, although
they are on the whole slightly lower than the values for the three-dimensional gravity
currents. In Beghin et al. (1981), the entrainment is assumed to occur over the whole
head, so the slight difference in entrainment coefficient may be due to a difference
in the area over which the entrainment is occurring. The entrainment coefficient is
seen to be an approximately constant function of the slope. The work of Hallworth
et al. (1996) for both two-dimensional and three-dimensional currents on a smooth
horizontal surface, entraining over the whole head, gave values of between 0.08 and
0.09 for the entrainment coefficient, which agree with the results here for a gravity
current on a slope. The results from Tickle (1996) were made assuming entrainment
over the whole of the top of the wedge. Here, they are recalculated assuming the
entrainment is limited to the head region. This assumption, which agrees with the
experimental observations, removes most of the slope dependence seen by Tickle
(1996) and Ellison & Turner (1959) in previous experiments. This suggests that for
moderate slopes the fundamental entrainment processes may not be siginificantly
different from those in a gravity current on a horizontal surface. Note that the value
for 5◦ is significantly larger than the others (approximately 0.3). Study of the results
for this experiment shows that the current is not reaching the assumed self-similar
shape before reaching the edge of the tank, so it is not strictly appropriate to try and
use this model to estimate the entrainment coefficient.

The Froude number of the gravity current front, Fr = uf/(g
′
fhf)

1/2, was calculated
for the experiments. The subscript f denotes the value of the variable at the front of
the current. Figure 13 shows the results. One of the assumptions found in most models
for gravity currents, including those of Webber et al. (1993) and Tickle (1996), is the
assumption that the front Froude number is a constant. The wedge integral model
does not include the constant-Froude-number assumption as an explicit condition.
Instead, the drag on the current is included through the bottom drag coefficient, the
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Figure 13. Froude numbers against down-slope distance for slopes of 5◦ to 20◦. The symbols are
experimental measurements and the lines are the theoretical predictions of the wedge integral model
in § 2 assuming the cylindrical wedge shape.

added mass and the entrainment. The wedge integral model also predicts that the
Froude number will tend to a constant value of

Fr →
(

6S3 cos θ

αS4(1 + CA)(γ − 2)

)1/2

. (4.1)

This value is a function of the slope as well as the parameters CA, CT , CF and α.
The dependence on the slope is very weak for moderate angles, θ, since cos θ ≈ 1 for
small θ and γ − 2 ≈ 4 provided θ & 5◦. Figure 13 shows that for a given experiment
the Froude number remained constant to within about 20%, once the current was
established. This is reasonable given that both the experimental front height and
speed values are subject to an error of about 10%. The measured experimental
values for the Froude number are in the range of 0.75–1.2, with a slight trend for
the Froude number to increase with slope. This is comparable to the values for a
gravity current on a flat bottom. Although the actual values predicted by the wedge
integral model differ slightly, the general trends are the same. This all suggests that
the assumption of constant Froude number used by Tickle (1996) may be reasonable.
Experimental uncertainty in the measurements of the entrainment coefficient means
that the ordering of the lines in figure 13 is not monotonic with slope.

The constant Froude number implies a constant Richardson number, Ri = 1/Fr2.
Work by Ellison & Turner (1959) showed that, provided the entrainment is through
the top of the current head, the entrainment is a function of the Richardson number,
so a constant Richardson number leads to a constant entrainment coefficient, as is
assumed in the model and found from the experiments.

Viscous forces must be negligible for the models described here to be valid, i.e. the
Reynolds number of the flow must be sufficiently large. The Reynolds number of the
gravity current head is given by

Re =
ufhf

ν
(4.2)

where uf and hf are the front speed and height and ν is the kinematic viscosity. The



Three-dimensional gravity currents on slopes 259

U
p-

sl
op

e 
po

si
ti

on

0 4 8 12 16 20 24

0.2

0.4

0.6

0.8

Angle of slope (deg.)

Figure 14. Maximum up-slope extent of the gravity current as a function of slope. The height is
non-dimensionalized with respect to the initial height of the release.

Reynolds number varied slightly with the distance from the source. The minimum
value for the experiments increased from around 1000 for the slope of 5◦ to about
7000 for the slope of 20◦. In all cases, this is sufficient to allow the viscous effects
to be neglected at the head. In the region behind the head, the Reynolds number is
lower as the height is much less and the speed is also less. In the laboratory, viscous
effects will always be important towards the rear of the wedge, but this does not
appear to be important for driving the flow, at least until the viscous layer represents
a significant fraction of the volume of the current. Eventually, the layer will have an
effect, simply because there is much less fluid in the head.

The extent to which the current spreads up-slope is likely to be influenced by
viscous forces, since the up-slope layer becomes thin and slow moving. Figure 14
shows the maximum up-slope extent as a function of the slope. The height to which
the current rises is non-dimensionalized with the initial height of the release. It can
be seen that the current rises to about half the initial height.

5. Conclusions
The experimental work reported here demonstrates that even for relatively gentle

slopes, the presence of a sloping boundary can have a significant effect on a gravity
current. Further, the role of entrainment is significant in slowing down the current as
it flows down the slope.

Using the scaling in § 2.1, the time tθ , given by (2.3), for the slope to become
important is found.

Once the slope has become important, the gravity current develops into a wedge
shape which moves down the slope. The similarity solution from the shallow-water
model of Webber et al. (1993) does not accurately predict the motion of the gravity
current, as it fails to take into account the entrainment of the ambient fluid into the
current. The model of Tickle (1996) includes the entrainment in a simple manner,
which leads to better prediction of the front position, but does not accurately capture
the shape of the gravity current. In particular, the width is over-predicted and the



260 A. N. Ross, P. F. Linden and S. B. Dalziel

wedge is seen to have more of a triangular shape than the circular shape predicted
by the shallow-water models.

The wedge integral model developed here is more successful than the non-entraining
shallow-water model in predicting front position where slope effects are important.
Neither type of model is valid for the initial stages of the flow where the slope can be
neglected. For a suitable choice of the shape parameters in the integral model, a good
fit to the current shape, width and length can be obtained. The model also provides a
reasonable prediction of the reduced gravity of the current. The entrainment coefficient
is found to be approximately constant, provided the entrainment is taken to occur
in a region near the front of the gravity current of width comparable to the wedge
height. Experimentally, this is the region where the most vigorous mixing is observed
and where the bulk of the fluid is located. The values for the entrainment coefficient
agree well with previous work in similar situations.

Both the experiments and the integral model suggest that, once the wedge-shaped
gravity current has developed, the front Froude number is a constant of the flow,
independent of time and slope. For an axisymmetric gravity current on a horizontal
surface, this result is well known, but has not been reported previously for a sloping
bottom.

The entraining wedge integral model does not predict all of the remaining details
of the flow accurately. The shape of the gravity current observed in the laboratory is
more complicated than the simple wedge shapes assumed by the models. In fact, it
is more of a crescent shape and behind the crescent is a thin layer of draining fluid.
Within this thin layer, viscous forces are likely to be important. This region is not
included in any of the models discussed here. This may explain the tendency of both
the entraining shallow-water model of Tickle (1996) and the wedge integral model to
over-predict the width and length of the current when compared with the experiments.
It appears that the bulk motion of the current is controlled by the front of the current,
as for an axisymmetric current on a horizontal surface. Any integral model which
predicts this part of the flow reasonably accurately with give a fair prediction for the
bulk motion of the current. This helps to explain why the integral model does so
well, despite not including many of the more complicated aspects of the flow.

For dense gas dispersion in the atmosphere, the draining region may be different as
the dominant effect is likely to be turbulent diffusion rather than viscous diffusion. In
addition, any wind will be important, but that is neglected here. We have shown that
for smooth surfaces the bottom drag is not significant in determining the bulk motion
of the current; however, for a rough surface, such as tall vegetation or buildings, the
results may be affected by the bottom drag term. Nonetheless, the experimental data
and wedge integral model presented here provide a useful check for more complicated
existing and future dense gas dispersion models. The experiments demonstrate that
the presence of a relatively gentle slope may have a large influence on the area
affected by a spillage of dense gas and also on the dose received at a given point.

ANR was supported in this work by an EPSRC CASE studentship in conjunction
with the HSE.
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