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Laboratory experiments are performed to measure the amplitude of internal waves generated by an
elliptical cylinder oscillating vertically with different frequencies and amplitudes in a uniformly
stratified fluid. The experimental results are compared with the theoretical predictions of Hurley and
Keady(1997. Though in qualitatively good agreement with experiments, the theory underestimates
the amplitude of low-frequency waves and overestimates the amplitude of high-frequency waves.
The measured beam width is underestimated by theory, which neglects the dynamics of viscous
boundary layers surrounding the cylinder. When the cylinder oscillates at a frequency less than half
the buoyancy frequency, experiments reveal that two sets of waves beams are generated. The
secondary set of waves have double the frequency of the primary waves and are excited due to
nonlinear processes. @002 American Institute of Physic§DOI: 10.1063/1.14304338

I. INTRODUCTION layers. The relative effect of boundary layers is modified by
changing the aspect ratio of major and minor axes of the
Internal waves propagate horizontally and verticallyellipse as well as the amplitude of oscillation. The results are
through density stratified fluids. In the atmosphere and oceagompared with a recently developed theory that predicts the
the waves transport momentum and energy vertically andtructure of small amplitude waves generated by an oscillat-
accelerate the flow at levels where they brédkDespite ing ellipse in inviscid and viscoufluid with no-slip bound-
their non-negligible impact upon large-scale geophysicahries.
flows, the processes by which internal waves are generated, The experiments themselves are similar to the classic
propagate, interact and break are not well understood beyonskcillating circular cylinder experiments of Mowbray and
linear theory. Rarity? In those experiments, a standard schlieren visualiza-
One of the most significant sources of internal waves iniion system was used to measure the spatial extent and phase
the atmosphere is topographic forciigs wind blows over  of the waves, but wave amplitudes could not be measured.
a mountain range, the air is forced vertically and, under suitwe employ a new “synthetic schlieren” technique that non-
able conditions, may generate internal waves. Linear theorjntrusively measures the amplitude of internal waves every-
assumes the height of the hills is small compared with theivhere in space and timé.This technique has been used to
horizontal extent. Often free-slip boundary conditions are asmeasure the amplitude of waves generated from a circular
sumed, meaning that boundary layénghether turbulent or cylinder oscillating verticalll? and at an angle to the
laminap are taken to be negligibly thite.g., see Gilf, Sec.  verticall®
6). In agreement with linear theoH);**~1¢ the synthetic
If the heights of the hills are a significant fraction of schlieren circular cylinder experiments showed internal
their horizontal extent, linear theory breaks down for twowaves emanate from the cylinder as four beams that form a
reasons: The amplitude of the generated waves is not neglist. Andrew’s Cross” pattern with the cylinder at the center
gibly small, and turbulence may cause boundary layers tef the cross. This pattern formed if the frequency of oscilla-
thicken to non-negligible sizé. tion of the cylinder was less than the natural frequency of
To examine the characteristics of strongly forced internalertical oscillation of the fluidthe “buoyancy frequencyy.
waves and their interaction with boundary layers, we haverhe measured amplitude of the waves agreed well with the
performed laboratory experiments of the generation of wavesgiscous theory of Hurley and KeadWonetheless, some dis-
from a vertically oscillating elliptical cylinder in uniformly crepancies were observ&d!® The theory predicted the
density stratified fluid. Although the experiments model awaves should have attenuated over a longer distance than
process quite different from that of uniform flow over topog- was in fact observed; the observed width of the wave beam
raphy, the experiments provide a useful starting point foiwas ~10% larger than predicted by theory; and the ampli-
analyzing interactions between internal waves and boundanyide of low-frequency waves was underpredicted. The reason
for the discrepancies was that the theory did not account for
3Author to whom correspondence should be addressed. Electronic maifl€ development of a viscous boundary layer that surrounded
bruce.sutherland@ualberta.ca the cylinder: The layer effectively increased the cylinder size
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and weakened the coupling of waves with the source.

By examining the dynamics of an oscillating elliptical a)
cylinder, the relative effects of horizontal and vertical scales
as well as amplitude can be examined. Furthermore, nonlin-
ear interactions between internal waves are more easily ane
lyzed. In the study of a vertically oscillating circular
cylinder?? it was found that, contrary to theoretical predic-
tions, the superposition of upward and downward propagat-
ing wave beams did not destructively cancel perfectly at their
midpoint. Instead the local wave field exhibited oscillatory
motion at double the cylinder oscillation frequency. In ex-
periments where low-frequency waves were generated
waves with double the frequency of the cylinder were found
to emanate from the source region forming a second St. An-
drew’s Cross pattern superimposed on the primary cross. |
was hypothesized that these secondary waves were create b)
due to nonlinear interactions between the primary upward
and downward propagating waves. Experiments with ellipti-
cal cylinders give stronger signals from the secondary wave
and so provides the means to examine the nonlinear
interaction hypothesis in quantitative detail.

In Sec. ll, we summarize the development and results of
the inviscid and viscous theories of wave generation by an
oscillating elliptical cylinder. The experiments and the use of
“synthetic schlieren” to visualize waves and measure theirf!G. 1. (@ Geometry of the ellipse and the wave beams it generés.
amplitudes is described in Sec. Iil. In Sec. IV we Cc)rm:)ar(::Coordlnate system used to model the right- and upward-propagating beam.
theory with experiments. Specifically, we analyze the beam
structure and amplitude as a function of the ellipticity, am-
plitude, and oscillation frequency of the cylinder. We also  The amplitude of the cylindghalf the peak-to-peak ver-
analyze the amplitude-dependence of the secondary wawal displacementis denoted by A, and it§angulaj fre-
beams with forcing amplitude. Results are summarized ifjuency is denoted by. In all the experiments reported upon
Sec. V. here, we setw<<N, corresponding to the circumstance in

which waves propagate away from the cylinder.
Assuming the wave structure is uniform along the length
Il. THEORY of the cylinder and assuming the fluid is incompressible, the
wave motion is described by the streamfunctingx,z,t)

Approximate theoretical solutions have been derived for= (x,z)exp(—iwt), in which (x,z) is the streamfunction
inviscid® and viscously attenuatifignternal waves generated amplitude. Once) is determined, the horizontalif and ver-
by oscillating elliptical cylinders. Summaries of relevant as-tical (w) components of the velocity field are given by
pects of the theory have been provided for the special case of

w= a—lpe*"”t.

a vertically oscillating circular cylindéf and of a circular U= — &—lpe*"”t
cylinder oscillating at an angle to the vertical. 9z ’ ax
Below we review the theory as it is applied specifically
to the case of a vertically oscillating elliptical cylinder with
its two axes, of half-length andb, aligned in the horizontal
and vertical directions, respectively, as shown in Fig).1
The notation we use is modified slightly from that originally 52
employed by Hurley and Keady. N2 — — 0?V2y+10vV*)=0, (1)
We assume the cylinder is oscillating in a uniformly X
stratified fluid with (constant buoyancy frequencyN. The i, \which » (=0.01 cn?/s for watej is the kinematic viscos-
fluid is assumed to be Boussinesq, meaning that densitigy.
variations are negligible except for their effect upon buoy- = viscosity is neglectedi.e., »=0) and assumingo
ancy forces. Practically, this reflects the fact that in experi—<N, the equation is simplified through a transformation,
ments the total density of stratified saline water increases bynich amounts to re-writing the equations in a co-ordinate
less than 10 percent from the top to the bottom of the tanksystem with one axis,, directed along the right and upward

Under this approximatiomzz —(9/po)dpldz, whereg is  propagating beam and the other axis,perpendicular to it,
the acceleration of gravityy, (=1.0 g/cn? for wated is @ 45 shown in Fig. (). Explicitly

characteristic value of density, apqz) is the background
density as a function of height, o=—XCc0s®+zsin®, r=xsin®+zcosO.

For small amplitude waves, the Navier—Stokes and con-
tinuity equations may be simplified to give a single, fourth-
order partial differential equation ig:
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Here ® =cos Y(w/N) is the angle between the andr-axes
(i.e., between the vertical axis and the wave beafrhe so-
lution of the resulting equation for the right and upward
propagating wave beam®is

b) r=20cm
L TR L

_ Ca
W)= e (P —1) - @

The structure of the other four beams may be found ft@m
by symmetry. The resul) involves the geometric constant,
c, defined by

c’=a’cog O +b?sif 0, ®)
and the amplitude-dependent constant
1 a?[b 15
a==AN—|=sin®—1cosO |cosO. (4)
2 c‘la

3

Analysis of (2) reveals four qualitative features that are =10
relevant here. First, the amplitude of the beam is constant ir
the along-beam direction. Variations along the beam occut
only because of the superposition of the other two beams tha ot ! )
cross it near the source. Second, the width of the wave bear -3-2-10 1 2 -3-2-10 1 2 3
is determined byc. For an elliptical cylinder, this is a func- /e a/e
tion Of. the beam ang_k@' '”‘?'eed' a simple geometrical FIG. 2. Theoretical values df(r,o)/A evaluated at along-beam distances
analysis showsthat 2 is the distance between the two par- () r=3 cm and(b) 20 cm for a cylinder with. = 3 oscillating with relative
allel lines that are tangent to the ellipse and form an afigle frequencyw/N=0.54. The plots show both the enveloftiick solid line3
to the vertical, as illustrated in Fig.(d. Third, there is a a_md the instantaneous_ amplitude of the waves at_ pldas® (thin solid
discontinuous phase change in the wave abest=*c. L'I”e)* ¢=m/4 (dotted ling, ¢=/2 (short-dashed ling ¢=3m/4 (long-

. . ashed ling The thin vertical lines in both plots illustrates the values

Fourth, the along-beam velocity is infinite along the lineS_ . contours ofé/A at phasep=0 are shown in(c), and (d) shows
whereo=c. contours of the envelope GfA.

The last two unphysical results are remedied by includ-
ing the effects of viscosity. An explicit solution dfl) in
(r,o) co-ordinates is found by assuming that across-beam
variations are more significant than along-beam variations ) _ .
(the boundary-layer approximatifh Thus, second- and malized by the vertical displacemeAtof the cylinder. The

fourth-order derivatives with respect toare neglected and Plots of amplitude at different phases, of oscillation are
the equation becomes shown in Figs. Pa) and 2b). As expected for waves with

upward group velocity, the phase lines move downw@od

P v oty _0 5 decreasingr) as ¢ increases. The amplitude of the envelope
 daar * 2wtan® got ®) near the cylinder exhibits two peaks nea+ *=c. Further
from the cylinder, these peaks merge as the wave beam
spreads due to viscosity. At=20 cm, the peak amplitude
occurs along the centerline of the be@awherec=0).

= Jy(k) T o The continuous change from the near-cylinder to far-

(,//=—|acf0 K ex;{—k )‘E_'kg) dk, (6)  cylinder structure is shown in Figs(@ and 2d), which
illustrate the normalized amplitude of the wave beam using

L1
3

Enforcing no-slip boundary conditions on the cylinder sur-
face, the solution t@5), for r >0, is’

in which the gray-scale shown. Both diagrams show rapidly decreas-
v ing wave amplitudes near the cylinder about = c. Farther
N= o, (7)  from the cylinder the beam widens and the centerline ampli-
2c“Nsin® L
tude decreases at a significantly slower rate.
andJ; is the first-order Bessel function of the first kind. For comparison with experiments, we find the amplitude
The result is used to find the amplitude of the verticalof the time derivative of the perturbation squared buoyancy
displacement field(x,z) given by frequency:N?(x,z). Explicitly, using linear theory
J(X,z dY(r,o
&=(1lw) W ):(—llw)cosM,
IX Jdo 2
2 g &p 2 . (9 lrb(r!o-)
N N%=—lw| — — —|=N“c0s0 sin® ———.
where the boundary layer approximation has been used. po 02

Figure 2 shows the predicted structure of up and right-
ward propagating waves generated by an oscillating elliptical
cylinder. The calculated vertical displacement field is nor-Hence
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of the right-hand side of10) after it is divided by the nor-
malizing factorsN® and the relative vertical displacement
A/[(a+b)/2]. The frequency is given implicitly as a func-
tion of ® =cos (w/N), and the eccentricity is given in terms
of u=alb. For fixed amplitudeA and fixed @+ b)/2, the
amplitude of the wave beam is larger if the cylinder is more
eccentric. Foru fixed, the peak amplitude occurs for values
of ® between 0° and 90°, and this critical value ®fin-
creases ag increases. This plot demonstrates why we ob-
serve a stronger signal from waves generated by oscillating
elliptical cylinders withu>1.

The theoretical envelopes of th, field in six cases are
shown in Fig. 4. The diagrams show the superposition of the
upward and downward propagating beams to the right of the
cylinder. Note that the beams interfere destructivelyzat
=0, so the amplitude of the superimposed beams is zero
. along thex axis.

NZ?,=N2 cos® Siﬂ@(l—a) j kJ, (K) The approximations leading (&) are applicable for de-

C/Jo scribing internal waves far from the source. Near the source,
. o however, the amplitude of the internal waves is sufficiently
Xex;{ —k3)\——|k—) dk. (8) large that linear theory does not necessarily apply. Even in-
¢ ¢ cluding viscous effects, the theory predicts unphysically
For fixed values ofr, this integral is solved using a fast large velocities close to the source, specifically fof=c

FIG. 3. The normalized amplitudey: /N*(A/(a+b)/2)~* for different®
and u=a/b. Contours are shown by intervals of 0.05, as indicated.

Fourier transform algorithnt’ and r<c/(\(27)3). For experiments discussed here, this
In particular, along the centerline of the beam the magoccurs ifr <0.5c, which is sufficiently large compared with
nitude of theN?, field is given by the cylinder size that we expect the theory does not accu-

. rately model the coupling between waves and the cylinder.
N2 ,—o=Anz f Jy(K)k exp( —k3hr/c)dk, (9) In reality, a viscous boundary layer encompasses the cyl-
tJo inder as it oscillates and the approximationdr <d/do
where breaks down for smali. For small-amplitude oscillations

(A<c) and neglecting the effects of density variations across
the diameter of the cylinder, it can be shown that the bound-

a
— N3 i -
Anz,=N?cos 0 sm@( 2c2) A, (10) ary thickness ¥

is a characteristic measure of the wave beam’s amplitude for 5 NS
o=0 andr=0.

Figure 3 shows howAy2 depends upon the frequency which is independent of the amplitude and size of the cylin-
and eccentricity of the cylinder. The diagram shows contoursler. For experiments discussed here, 0.1sv<0.6 s 1,

11)

FIG. 4. Theoretical values c(ﬂ\IZQIANzI evaluated for
waves generated by an elliptical cylinder with)
=1, (b) 2, and(c) 3, and oscillating with relative fre-
quencyw/N=0.26. The corresponding fields are shown
in (d)—(f) for the cylinder oscillating with relative fre-
quencyw/N=0.55.

4

V.
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0 12 24 (V] 12 24 0 12 24
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Downloaded 26 Sep 2005 to 128.54.61.182. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 2, February 2002 Internal wave excitation 725

a) motor La osdillating cases the buoyancy frequency is set with=0.97
m—arm +0.05 s ! over 32 cm depth. Each cylinder is suspended
it #hin.ge with its center 11.9 cm above the bottom of the tank. An
ghguide angled barrier spanning the width of the tank is positioned
sufficiently close to it to block upward propagating waves
£ L} that reflect from the bottom. The barrier is not so close that it
A B : \ interferes with the waves generated near the cylinder.

% 2b, -’. i reﬂt?:rt;ic:ar: \\\ A synthetic schlieren systefis used to visualize the
SHoqis Y internal waves. This technique is preferred over other

Il schlieren and interferometric methdti&because of its abil-
b ity to measure very small wave amplitudes nonintrusively. In

) tank screen

the set-up employed here, a translucent screen of evenly
catnerE ight spaced 2 mm thick horizontal black lines is positioried
source =34.2 cm behind the tank and is illuminated by fluorescent
? bulbs, as shown in Fig.(b).
: A CCD camera is positioned.= 350 cm from the front

r-— L "‘r"‘r" of the tank centered so that the elliptical cylinder is near the
c t s bottom left-hand side of the image and the screen of hori-
FIG. 5. (a) Front view of experimental set-up showing the oscillating cyl- zontal Imes_entlrEIy fills the field of _VIeW' The signal from
inder mechanism(b) Cross-sectional side view of the tank showing set-up the camera is fed to a computer running the software package
for visualization of internal waves by synthetic schlieren. DIGIMAGE,*! which digitizes, enhances and manipulates the
images.

Synthetic schlieren, as with classical schlieren methods,
and hence 0.4 cm5=0.2 cm. Thus we expect the bound- works by monitoring how light is deflected as it passes
ary layer to be a significant fraction of the cylinder sizee  through a stratified medium. If the fluid is strongly stratified,
Sec. Ill) and as large as the amplitude of oscillation itself. the light is deflected more than if it weakly stratified. Be-
cause internal waves stretch and compress constant density
surfaces they locally change the stratification and, hence, the
degree to which light is deflected. Synthetic schlieren thus

The experiments are performed in the test section of aneasures the amplitude of the internal waves by measuring
long (over 200 cm Perspex tank with widthL;=20.0 cm  the distortion of the image of horizontal lines.
and height 50 cm. One of three 19.8 cm long cylinders is  Synthetic schlieren directly measures changes in the
suspended in the tank with its axis spanning the tank widthdensity gradient, from which vertical displacement and ve-
The cross-section of each cylinder is elliptical with major locity fields can be deduced. £z is the vertical displace-
and minor axes aligned in the horizontal and vertical direciment from its initial position of a point on the image of
tions, respectively. The eccentricity is characterized by thénorizontal lines, then with our experimental set-up the corre-
ratio Z,u(jza)llb. If a=b, the eccentricity itself ise=(1  sponding local change in the buoyancy frequency is
—u~9)H9 Explicitly, the dimensions of the ellipses aae _ _
=b=1.67cm (u=1, e=0: a circular cylinder a AN?=—(47 s %em HAz, (12
=2.19cm and b=1.12cm (u=2, e=0.86; and a The constant on the right-hand side is determined ftgm
=2.52 cm andb=0.86 cm (u=3, €=0.94. In all three andLg as well as physical constants including gravity, the
cases, the cylinder size is set so that the averageb(/2 is  indices of refraction of air and water, and the rate of change
approximately the same. The cylinders are composed of PVGf index of refraction with salinity{see Sutherlanet al,*?
and the circular cylinder is hollow with removable endsEq. (2.11)].
which allow it to be filled partially with water in order to Under ideal conditions, deflections as small as 0.001 cm
reduce its effective weight when suspended underwater. can be detected so that changesAdi?=0.005N? can be
Each cylinder is suspended from its center by a long thirmeasured. In practice, thermal variations in the laboratory
metal rod, the other end of which is attached along a sinuand electronic noise make it necessary to filter and enhance
soidally oscillating arm. To ensure purely vertical motion, the image.
the top of the rod is hinged and the rod itself is confined to A second directly measurable dynamical field is the time
pass between two guides, as shown in Fig).5 derivative of theAN? field, N%,. This is measured by deter-
When attached at a position 45 cm along the anear  mining the displacemeniz of the corresponding pixels in
its end the cylinder undergoes a peak to peak displacemerttvo images taken a short tim#&t apart during an experi-
of 2A=0.64 cm. The resulting flow surrounding the cylin- ment. TheN? field is found by calculatingAN? in (12) and
ders is laminar for all circumstances examined, although théividing the result byAt. Typically, we useAt=0.2's, a
fluid on either side of the cylinder with =3 is on the verge small fraction of the wave period.
of overturning when it oscillates at large amplitude. An example of the use of synthetic schlieren is shown in
The tank is filled with an approximately uniform strati- Fig. 6. The unenhanced image taken by the CCD camera is
fied salt solution using a “double bucket” systérhin all shown in Fig. 6a). This shows the side view of the elliptical

IIl. EXPERIMENTAL SET-UP
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. a) Raw Image
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FIG. 7. Time seriesNzt(z,t;xo)/ANzt, for an elliptical cylinder with

=2, oscillating with relative frequencyw/N=0.25 and amplitudeA

=0.32 cm. The time series are taken at horizontal positiaghg=2.5 cm

c) N2t -0.1 0 0.1 (2.1c) gnd (b) 12.5 cm (10.3)_ from the center of the cylinder. Time is
; ’ normalized by the forcing perio@l=2m/w.

Fig. 6(b). This occurs due to diffusive mixing which is in-
evitable in a stratified fluid near the sloping boundaries of the
cylinder?®?® The signal from theAN? field is further con-
taminated by the slowly evolving temperature variations in
the laboratory.

For this reason, th&l?, field is analyzed in detail here:
Taking the time-derivative of thAN? field effectively filters
slowly evolving processes. This analysis is described in the

FIG. 6. (a) Snapshot of an elliptical cylinder with =3 and the illuminated ~ next section.
screen of horizontal lines behind the tank. The cylinder oscillates with rela-
tive frequencyw/N=0.54, and the image is taken as it moves downward
through the origin. Theb) AN? and (c) N?, fields computed from the IV. RESULTS

measured distortion of the image of lines due to internal waves. Theory agrees qualitatively with the experimental results
shown in plots like those in Figs.(l6) and &c). Four wave
beams emanate from the oscillating cylinder each oriented at
a fixed angle from the vertical. Energy is transported radially
long the beams while phase lines propagate across the

x [em]

cylinder (with w=3) centered at the origin. The vertical
black line above the cylinder is the thin rod from which the

cylinder is suspended. The end of the reflecting barrier 10 ¢ . . .
eams. In particular, for the right- and upward-propagating

to the right of the cylinder can be seen. The image of line b the ph i d d "
behind the tank dominates the field of view. This image jgivave beam, the phase lines move downward over ime.
Using synthetic schlieren, the amplitude of the waves

taken during the course of an experiment in which the cyl- . . . -
inder has been oscillating for many periods. As predicted,may also be compared directly with theoretical predictions.
internal waves emanate from the cylinder along four beam
Indeed, close to the cylinder, distortions in the backgroun
image can be seen with the naked eye. Computer enhance- The temporal behavior of the wave beams is analyzed
ment helps visualize the distortions further from the cylinderusing time series images of the experiments. For example,
and measurements of theN? andN?, fields can be made, as Fig. 7 shows two time series determined from an experiment
shown in Figs. &) and Gc), respectively. in which a cylinder withu=2 oscillates at frequencw
Both fields show the up- and rightward-propagating=0.25 s * (period T=25.1 9. In both the cylinder starts
wave beam. Consistent with linear thedfythe N, field is  oscillating at timet=0. Figure 7a) shows the evolution over
90° out of phase with thaN? field. 99.6 seconds of th&l? field along a vertical cross section
The AN? field generally gives a stronger signal. How- taken 2.5 cm to the right of the cylinder. At this proximity,
ever, it is contaminated by slowly evolving density variationsthe upward- and downward-propagating wave beams over-
in the tank evident as the horizontal gray bands zea® in lap. The field varies periodically with dominant period equal

S, . , .
(ﬁ. Time-series analysis
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to that of the oscillating cylinder. However, whereas theory a) b)
predicts perfect destructive interference between the twc @=81c ' 9="75°
wave beams, the experiment shows tN&f is not exactly 15 - ., B T

zero wherez=0. Instead the field varies between positive
and negative values with frequency double that of the cylin-
der’s oscillation.

Figure 1b) shows the evolution of thal?, field along a &
vertical cross section taken 12.5 cm to the right of the cylin-
der. The field grows to non-negligible values a short time
after the cylinder begins to oscillate, consistent with the time
for energy to propagate at the horizontal group velocity from
the cylinder to this position. Afterwards the field evolves in
steady state, oscillating between positive and negative val
ues. At this distance from the cylinder, the upward propagat-__
ing beam does not interfere significantly with the downward £
propagating beam. The peak amplitudes occur ferz£5, =
consistent with the range expected for the upward propagat
ing beam. For 5:z=<12, theN?, field oscillates with double
the frequency of oscillation of the cylinder. In Fig(ay (at
x=2.5), the frequency-doubled signal is apparent fox 3
=<5. In Sec. IVD it will be shown that this results from a
secondary wave beam generated as a result of wave—wav
interactions in the overlap region.

To compare theN?, field directly with theory, time-
averaged signals are constructed from time series, such @fs. 8. contours ofN2)/Ay: determined from four experiments of an
those shown in Fig. 7. Specifically, time series of & elliptical cylinder with =3, os‘cillating with amplitude\=0.32 cm at rela-
field are taken simultaneously over an integer number ofive frequenciesa) »/N=0.15, (b) 0.26,(c) 0.35, and(d) 0.44. The corre-
oscillation periods. There are 24 time series in all taken a#Ponding values o =cos }(w/N) are indicated. Superimposed are plots of
horizontal positionsc=0.5, 1.5, ..., 23.5 cm, with respect to 2~ X ¢°t® (diagonal solid fines
the cylinder which is centered at the origik=0). The
phase and amplitude of the oscillating cylinder itself is de-
termined from the time series at=0.5 cm. Fourier analysis Nnear the cylinder the theoretical amplitude envelopes, such as
of the vertical position of the cylinder confirms that the mo- those shown in Fig. 4, are predicted to be largest on either
tion is purely sinusoidal. The root-mean-square average ifank of the beam’s centerline, the experiment shows that the
computed from theN?, field of each time series, and the amplitu_de of the wave peams is in fact Iar_gest along the
result is multiplied by 2”2 Finally, the envelope of th&l%, cgnterlme only a short distance from the cylinderg., see
field along the length of the wave beam is reconstructed b9 8- _ _
splicing together the 24 profiles of tN% root-mean-square _ Figure 9 compares the amplitude of the normaliz&d
amplitude. This averaging procedure helps reduce randofie!d along the centerline of the beam determined from four
signal noise while enhancing the persistent signal from th&Xperiments. Figure (8 shows the amplitude functions,
steadily oscillating wave beam. which are de_ter_mmed from_cross sections of N:hé field

Figure 8 shows the envelopes of i field determined glon.g the solid lines shown in each of the four fields shown
from experiments of a cylinder wit=3 oscillating with N Fig. 8. The plots are shown for<8r<24 cm. The peaks
four different frequencies. The field is normalized Ayg,, for smallr (i.e., 3=r=10), occur in part due to the super-
given by (10). At low forcing frequenciede.q., Fig. 8a)], position of upward and downward propagating waves. For

. . . largerr the curves are representative of the centerline ampli-
the upward-propagating beam is close to the horizontal an .
) : ude of a single beam.
overlaps with the downward propagating beam over a long

distance. At faster frequenci¢s.g., Fig. &d)], the upward- . The rescaled_ plots are shown in F'gbp To _account for
: . : viscous attenuation, the along-beam distam¢éas thus res-
propagating beam is more vertical.

In all four experiments the angle to the vertical of the qale|d b)ﬁ\/c wher(;(_: andhk are g|venh_by(3) antlj_(7), LeS]EeC'
wave beam is close t® =cos Y(w/N), as predicted by tively. T eltl)ry dpre Icts t dat unaer th's rlzscalllngt € five e);]'
theory. This is illustrated by the plots @& x cot(®) super- perimentally determined curves should collapse onto the

. i . : : theoretical curvdsolid line), which is given by the integral
”T‘p"sed on the\? field in eagh diagram of F.|g. 8. The in (9). When plotted on log—log axes, the curves for large
diagonal lines follow the centerline of the beam in each Case, /N are close to the theoretical prediction. However, the
theory significantly underpredicts the amplitude of waves
generated with low-frequency forcing.

Consistent with theory, the amplitude of the wave beam  The curves appear to exhibit power law scaling tbr

is larger if the forcing frequency is faster. However, whereas=\r/c=0.05. The best fit line to IN|,—o) versus Ind) for

10

—_
=
o

A
N

B. Along-beam amplitude
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0.1

0.01
d=ar/c

FIG. 9. (a) Normalized amplitudQNzl)/ANzI versus radial distance from
the center of an oscillating elliptical cylinder with=3, oscillating with
amplitudeA=0.32 cm at relative frequencies’N=0.15(dotted ling, 0.26
(short-dashed line 0.35 (long-dashed ling 0.44 (short-dash—dotted ling
and 0.53(long-dash—dotted lineln (b) the respective data are shown on a
log—log plot withr scaled byn/c. The thin solid curve shows the predicted
amplitude. The diagonal solid line is tifeertically offsej best fit line to the
experimental data witw/N=0.15 (dotted ling.

7<r<24 cm has been determined for the slow frequency

oscillation experiment withw/N=0.15. This (light solid)
line is shown vertically offset from the corresponding raw
data(dotted ling in Fig. 9(b). Its slope is—0.69+0.04.

As shown in the Appendix, theory predicts that as
d—oe, N?|,_oxd™ 1. This exponenent is less than the mea-

sured slope and is an indication that the experimentally gen-

erated wave beam in the field of view is not yet in the
asymptotic regime wherd>1.

C. Across-beam amplitude and structure

The experimentally measured across-beam amplitude is
compared with theory in Fig. 10. The theoretical amplitude-
envelope of the beam far from the cylinder moderately over-

predicts the observed amplitude.

The beam widths, is measured by the standard devia-
tion of the amplitude-envelope. The experimentally deter-
mined width as a function of along-beam distamde com-
pared with theory in Fig. 1®). The graph shows that the

B. R. Sutherland and P. F. Linden

a) across—beam amplitude

5
o [em]
b) beam width
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FIG. 10. Comparison between theasolid line) and experimentdashed
line) of (a) across-beam amplitude 20 cm as a function ofr, and(b)
beam width as a function of along-beam distancdor a cylinder with w.
=2 oscillating with relative frequencyw/N=0.55 and amplitudeA
=0.32 cm.

ancy is attributed, in part, to the presence of a superimposed
secondary set of wave beams with double the frequency of
the primary waves. The superimposed waves effectively
broaden the width of the upper flank of the primary wave

a

08 2L, —
06 X

o
o L -
0.4 |- —
< | = a 4
0.2 - . —
L LS w -

. I . I ,
50 80 70 80

O[degrees]
b)

I
K B ]
205 .
oy ® ]
| 4
ol t v v 1y ]
0.2 0.25 0.3

6~(2v/w)1/2)

theoretical beam width consistently underestimates the ob-
served width even quite far from the cylinder. WhereasFIG. 11. (a) Relative difference\s/c between experimental and theoretical

theory predicts an increase in the beam width withthis
behavior is not as evident in the experimental data over th
range ofr shown.

beam widths as a function @ =cos Y(w/N) and cylinder eccentricity cor-

Eesponding tqu=1 (solid squarg u=2 (open squane and u=3 (cross.
rrors inAs/c are +0.1. For the same experimen(b) plots theAs versus

the predicted boundary layer thicknegs,The amplitude of oscillation is

In experiments with low-frequency waves, the discrep-A=0.32 cm in all cases.
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beam. However, in experiments with high-frequency waves
(as Fig. 10, no secondary wave beams occur and, nonethe-
less, the beam width is underpredicted. 15

Figure 11 further quantifies the dependence of beam
width upon experimental parameters. Figuréalplots the
normalized difference in beam widths/c, versus®, where
As is the average difference between the experimental anc 8 [
theoretical beam widtlithe standard deviatiohsneasured
for 18<r=<20 cm. The vertical error bars associated with
each point extend between10% of As/c. In all experi-
ments, the discrepancy increases with increasthgand
hence with decreasing=N cos0. In the cased =75°, the
discrepancy is attributed, in part, to the superposition of the
secondary wave beams. Because the signal from the secon_,, |
ary wave beams is strongest in experiments with more ec- &
centric cylinders, the discrepancy increasesdscreases. N

In experiments with higher-frequency waves, the ampli-
tude of the secondary waves, if they occur at all, is negligibly
small near the primary beam for $8 <20 cm [e.g., see
Figs. 8c) and 8d)]. Thus, other dynamics are responsible for
the discrepancy. Indeed, it seems reasonable to attribute th
discrepancy to viscous boundary layers, which are neglecte:
in theory.

To examine this hypothesis, the rescaled data are plotteu
in Fig. 11(b), which shows values aks versus the predicted FiG. 12. Contours of the normalized envelope of t field for four
boundary layer widths given by (11). The plot shows an experiments of an elliptical cylinder wit~2, oscillating at relative fre-
approximately linear relationship betwedis and 8. Indeed, — quencyw/N=0.25 with amplitude@) A=0.18, (b) 0.21, () 0.25, and(d)
for the experiment withu=1, the best fit line through the °-28 °™
data (plotted by the four solid squaregives As=3.85
(+0.03)6—0.5(x=0.1).

The line’s intercept is sufficiently different than zero,

H — —1
that the anticipated dependensso § is brought into ques- ffrmos an af‘g'e® fo the vertical, where@)—cos_ (@/N)
tion. Indeed, the best fit line through a plot of |dgx) versus =76°. The line passes z_;\Iong the center of _the primary wave
log(w) givesA oo™ 1102 beams in all four experiments. Also superimposed on each

Why the exponent differs significantly from 1/2 is un- diagram of Fig. 12 is a dashed line which forms an artje

B _ 71 — o . -
clear, though not unexpected. The scaling theory assum 0 the vertical, where®,=cos(20/N)=60°. This line
tions leading to (11) are valid only in the limit passes through the center of the secondary wave beam, con-

|u-Vul/|aulat|~ O(A/R)<1. However, the oscillation am- sistent with the observation that the beam is composed of

plitude A=0.32 is as large as 20% of the characteristic cyI—WaVes with double t_he cylinder ospﬂlaﬂon frequency.

inder sizeR=(a+b)/2. Indeed, if the amplitud&=0.32, it In all four experiments, the primary wave beam has ap-

is comparable with the boundéry layer thickness ' proximately the same structure and normalized amplitude.
However, the amplitude of the secondary wave beam is evi-

dently not proportional toA, but increases faster thah.

This nonlinear amplitude dependence is examined in more
In experiments with a slowly oscillating cylinder, in ad- detail in Fig. 13, which shows the amplitude of tN&, field
dition to the dominant pattern of four wave beams, a secondlong the centerline of the primary and secondary wave
set of four wave beams are also observed. Time series of thgeams in the four experiments shown in Fig. 12, as well as a
waves, such as those shown in Fig. 7 reveal that the seconfifth corresponding experiment in which the amplitude of

ary waves have double the frequency of the primary wavespscillation of the cylinder isA=0.32 cm.

and hence double the frequency of oscillation of the cylinder  The results from the five experiments are shown collec-

itself. tively in Fig. 13. The five curves with larger amplitudes are
The waves are generated due to nonlinear effects, aaken along the center of the primary wave be@., the

demonstrated by Fig. 12. This shows the envelope of tha&olid lines in Fig. 12 These amplitude-dependent functions,

right- and upward-propagating wave beams in four experiafter normalization b)ANzt, collapse approximately onto a

ments of a cylinder withu=2 oscillating at different ampli- single curve.

tudes but with the same frequency. Each diagram shows the The five curves with smaller amplitudes in Fig.(aBare

N? field normalized by the amplitud@ya , which is propor-  taken along the center of the secondary wave bée.,

tional to the amplitudeA, of oscillation of the cylinder. along the dashed lines in Fig. 1Although similar in form,
Superimposed on all four diagrams is a solid line whichthe curves corresponding to experiments with smaller forc-

10

—
£
3

—
N

0}

15

D. Frequency-doubled waves
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the secondary beams appear to radiate along rays emanating
from the cylinder and not from the overlap region. Further-
more, the amplitude of the secondary beams near the cylin-
der appears peaked on either side of the centerline of the
beam[e.qg., see Figs. 18) and 12b)]. This structure is simi-
lar to that of the primary beams near the cylinder. Finally, in
fully nonlinear numerical simulations of large amplitude in-
ternal waves excited by an oscillating elliptical patch of
fluid, secondary wave beams are not generated. It is believed
this is because viscous boundary layers are absent in the
simulations.
0 5 10 15 20 25 These observations motivate a theoretical and numerical
r [em] investigation of internal waves generated by a solid oscillat-
b) ing cylinder that include the development of viscous bound-
[ T ary layers. Such research, however, is beyond the scope of
I - the present work.

[ V. CONCLUSIONS

Using time series analyses of synthetic schlieren images,
we have made accurate measurements of the envelope of
| * i internal wave beams generated by a vertically oscillating el-

liptical cylinder and we have compared the results with ex-

isting theoretical predictions. The theory includes viscous at-

0.002 L+—L tenuation effects but ignores viscous boundary layers

0.008 0.01 0.02 . . . .

A, [59] surrounding th_e cylinder and ignores Iarge-ampllt_ude effects.

h The experiments show that theory underpredicts the am-

FIG. 13. (a) Normalized amplitudéN%)/ANz‘ versus radial distanaefrom plitude Of_ low-frequency waves and overpredicts the a_mpll_—
the center of an elliptical cylinder, with =2, oscillating with relative fre-  tude of high-frequency waves. In all cases the beam width is
quencyw/N=0.25 and with amplitudé=0.178(dotted ling, 0.213(short-  underpredicted, and the discrepancy increases with increas-
e o 2170 OUNCIY sy tickness. inly, the appearance of sec
Slzslfn)el Iog—lég pI%t in(b) shows the correspor?ding unnor)r/nalized amplitgu.des.Ondary Wave beams with dO_UbIe the frequency of oscillation

averaged over 26r=25 cm and plotted versusy,. of the cylln'der have conclusively peen shown to rgsult from
large-amplitude effects. Observations and negative results

from fully nonlinear simulations that neglect boundary layers

ing, generally have smaller amplitude, even after normalizaimply that the nonlinear dynamics involve interactions be-
tion by Anz,. tween waves and boundary layers. However, more research

To examine the dependence of secondary wave amplis necessary to test this hypothesis.
tudes upon forcing amplitude, the average valueNéf is
computed for 26r<25 cm for each of the five secondary ppeNDIX: ASYMPTOTIC ANALYSIS
wave beam amplitudes. The resulting five points are plotted
VersusANzt on a log—log graph in Fig. 1B). The error bars Here the far-field power law behavior of the wave

indicate the standard deviation of the averaged data. beam’s amplitude along its centerline is diagnosed.
Computing the best fit line through the five points, we | From (6), the streamfunptlon along the genterlme of the
find that(NZt)oc(ANzt)(l-SiO-S). This power law exponent is right- and upward-propagating wave beam is
consistent with the expected value of 2 that would arise, for * J1(K)
example, from nonlinear wave—wave interactions between ‘MU:OOCJ
the upward and downward propagating primary wave beams.
Indeed, there is evidence for nonlinear interactions bewhered=A\r/c.
tween these two wave beams in the overlap region near the Through differentiation of(6) with respect too, the
cylinder. As shown in Fig. (&), along thex axis, theN?, field asymptotic behavior of dynamical fields of interest can be
varies with double the frequency of oscillation of the cylin- deduced. For convenience, we define
der. This occurs contrary to linear theory, which predicts per- o
f(d;p)= J

exp —k3d) dk, (A1)

fect destructive interference. J1(k)kP~texp(—k3d) dk. (A2)
Other than wave—wave interactions, another nonlinear

mechanism presents itself: the source of the secondary waviéhen, for larged, the along-beam velocity is proportional to

beams may be due to interactions between the primary wavid,1) andN?|,_,>=f(d,2).

beam and théoscillating viscous boundary layer surround- Standard asymptotic analysés., Watson's Lemnt4)

ing the cylinder. In support of this hypothesis, we note thatgive, forp>—1,

0
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