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We investigate the horizontal flow produced by source–sink forcing in a stably
stratified fluid. The forcing jets are kept laminar and are placed along the boundary
of a square domain. We find that the resultant flow patterns are extremely sensitive to
the forcing geometry. The single dominant vortex pattern, interpreted as the result of
inverse energy cascade of two-dimensional turbulence in our previous work (Boubnov,
Dalziel & Linden 1994), turns out to be a special case. We show that some of the
steady patterns resemble the eigenmodes of the Helmholtz equation as the inviscid
vorticity equation. Although there are significant discrepancies in the streamfunction
vs. vorticity relations between the observed flows and the analytical solutions, we
identify the differences as a result of viscous diffusion of vorticity from the source
flows. We also study the transition from forced to decaying flow. The flow assumes the
properties of Stokes flow at quite large Reynolds number, indicating transformation
into patterns with small advective acceleration.

1. Introduction
We investigate the horizontal regime of source–sink forced stratified flow. Hori-

zontal flows produced by source–sink forcing serve as a model of inland seas, the
stratosphere, or solar heat exchangers. These flows tend to form organized structures
which determine the transport of microorganisms, pullutants, or heat. In this paper,
we are mainly concerned with the dependence of the resultant velocity field on the
forcing geometry in a square domain. The horizontal flow is produced by the same
method as Boubnov, Dalziel & Linden (1994, hereinafter referred to as BDL); the
fluid at the same level in a stably stratified salt water is circulated by sources and
sinks. BDL used a square tank, fixed the positions of the sources and the sinks, and
studied the dependence on the forcing strength. The forcing strength was measured
by the Froude number F = V/Nd, where N is the buoyancy frequency of the stable
stratification, d is the diameter of the source–sink pipes, and V is the fluid velocity at
the orifices of the pipes. When F . 10, the induced vortices interacted irregularly for
a while, but after sufficient time, they merged into a single vortex. BDL attributed
this behaviour to the inverse energy cascade of two-dimensional turbulence. When
F & 10, the kinetic energy of the source flows was so large that mixing occurred
and reduced N so that the vertical momentum became comparable to the horizontal
momentum and the induced three-dimensional vortices kept interacting. Throughout
this paper, the forcing strength is F 6 5.7 and the velocity field is horizontal.

Considering the initial random vortex interaction shown in BDL, we expected little
dependence on the forcing geometry, and our primary interest was the property of
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the developed single vortex, e.g. the robustness against disturbances after it has been
established. However, we found that the resultant flow pattern is extremely sensitive
to the source–sink forcing geometry. With eight source–sink pairs as in BDL, the
resultant flow is either an unsteady irregular or a steady single-vortex pattern. As we
reduced the number of source–sink pairs from eight to four to simplify the problem,
we found other steady patterns, e.g. four-vortex and five-vortex patterns.

In order to understand the problem, we view it from two perspectives: two-
dimensional turbulence and laminar jet interaction. According to two-dimensional
turbulence theories, organized flow structure emerges from a random disordered flow
with large but finite Reynolds number Re. This is true if the flow is two-dimensional
down to the Kolmogorov scale and both the fine-scale motion and the forcing are
disordered. However, none of these conditions are strictly satisfied in our case. The
other viewpoint, laminar jet interaction, focuses on the individual forcing and tries to
determine the resultant flow. Since no significant instability is observed, the laminar
approximation is plausible. However, laminar jets in a confined geometry are known to
exhibit complicated bifurcation behaviour even with one or two jets (Sobey & Drazin
1986; Goodwin & Schowalter 1996). With four or eight source–sink forcing pairs,
the complexity is expected to be formidable and we postpone this approach to future
work. In this paper, we compare the general solutions to the inviscid two-dimensional
flows with observations, and show that some of the observed flow patterns are similar
to the large-scale organized structures expected for two-dimensional turbulence.

The organization of this paper is as follows. In § 2 we describe the experimental
method and show the results of eight-pair and four-pair forcing. In § 3 we show
that the steady patterns resemble some of the solutions to the steady Euler equa-
tion. Among the uncountably infinite solutions, we chose a linear relation between
the streamfunction and the vorticity, which is incidentally the same as the result
of Chavanis & Sommeria (1996) on two-dimensional turbulence. These solutions
are approximately equal to the eigenmodes in a square domain with homogeneous
boundary conditions. However, the measured relations between the streamfunction
and the vorticity are different from those of the eigenmodes. In § 4 we assume that
this discrepancy is caused by viscosity, and examine the viscous diffusion in the
initial stage of the pattern formation. We will also show the decay behaviour when
the forcing is stopped. The smooth transition to the low-Re eigenmodes, studied by
Konijnenberg, Flór & van Heijst (1998) gives partial support for the assumption that
the observed steady patterns are homogeneous eigenmodes modified by viscosity.

2. Flow patterns for various forcing configurations
2.1. Apparatus

The apparatus shown in figure 1 is essentially the same as the one used in BDL. The
fluid flow is made horizontal by the stable stratification of salt water in a square tank.
The inner dimension of the tank is 59.7× 59.7× 40.6 cm. Linear stable stratification
is established by the double-bucket method. For all the experiments, the buoyancy
frequency is N = 1.5 s−1. The value of N away from the top and bottom boundaries
decreases only 4% after a 10-day experiment. The depth of the fluid is 20 cm and the
top surface is free. For flow visualization, Pliolite VT particles (Goodyear chemicals,
mean density ∼ 1.022 g cm−3, size 600–850 µmφ) are seeded in the fluid. About 7 cm
below the surface, they form a double layer (about 7 mm layers separated by about
25 mm) due to the characteristic density variation of the particles. The flow is produced
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Figure 1. Apparatus. (a) Overall sketch. Only one forcing pipe is drawn here. (b) Plan view
showing the source–sink forcing configuration. The pipe intervals a-na-a will be used to represent
the configurations of four-pair experiments.

in the middle of this double layer where the seeding density is low by four or eight
source–sink pairs along the walls. The sources and sinks are made of 1/8 in. inner
diameter pipes bent at a right angle near the orifices so that the introduced flow is
horizontal. They are connected to individual channels of a peristaltic pump and fluid
of the same density is sucked into the sinks and re-introduced from the sources. The
variation of the flow rates between channels is at most 5%.

The peristaltic pump works by squeezing the transfer tubes by a cyclic motion of
rollers and create a pulsating motion with the pulse amplitude comparable to the
mean flow rate. Since the pulsation frequency is larger than N or the inverse of the
time scale of the observed motion, it has negligible effect on the resultant flow. In
BDL, the Reynolds number was defined as Re = Vd/ν where V is calculated from
the temporal mean volume flow rate, d is the inner diameter of the pipes, and ν
is the kinematic viscosity of the fluid. Although Re in BDL and in this article is
O(102), the effective Re is considerably larger at the maximum velocity in the pulse.
Hence the source and the sink flows have the following properties. At the source
orifice, a puff of fluid is ejected at the maximum velocity and forms a vortex ring. The
ring is pushed straight forward because the source flow retains the cylindrical shape
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Figure 2. Dyed image of the source flow. The conditions are N = 1.5 s−1, V = 2.3 cm s−1.
The seeding particles and their relation to the forcing level may be seen.

due to the vorticity gained inside the pipe. By the induced velocity field, the vortex
ring of the next pulse catches up with the one ahead. The successive collision of vortex
rings may lead to a turbulent flow, but if the Froude number is sufficiently small,
the vertical motion is suppressed and a laminar horizontal flow results. However,
small-scale vertical motions are admitted in a layer of thickness comparable to the
pipe inner diameter. A dye image is shown in figure 2 for V = 2.3 cm s−1. The source
flow is not much different for other values of V . The sink flow is quite different
since the velocity profile across the orifice diameter is almost flat. Without significant
vorticity, the sink flow is virtually a potential flow and the momentum is distributed
in much wider angles than the source flow. As will be shown by the streak images in
the following subsections, the source flow appears as a narrow jet and the sink flow
is hard to recognize.

The source–sink pairs are positioned in configurations such that they do not impart
any significant net thrust or angular momentum. The seeded particles are illuminated
by slide projectors from two facing sides. The light goes through slits of about 5 mm.
To avoid the shadow cast by the pipes, the slits are about 5 mm below the source–sink
pipe orifice level and the lower part of the Pliolite double layer is illuminated, but
the flow field at the illuminated level is almost the same as that at the forced level.
The plan view of the particle motion is recorded by a CCD camera from above and
the velocity field is analysed by DigImage, a particle tracking system developed at
DAMTP, Cambridge (Dalziel 1993).

2.2. Eight-pair forcing

We first present the case of eight-pair forcing as in BDL which motivated this problem.
We find that the interpretation of the formation of a single dominant vortex as the
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V=2.4 cm s–1 V=2.6 cm s–1

Figure 3. Source–sink configurations and streak images of two sets of eight-pair forcing experiments.
(a) BDL type, (b) equi-spaced, (c) opposite shift to BDL, (d) sources at the corners and at the
mid-points of the sides.

result of inverse energy cascade is faulty, and the resultant flow is highly affected by
the forcing geometry. Four source–sink configurations shown in figure 3 are tested.
For all the configurations, no significant net thrust or angular momentum is imparted
by the forcing. The configuration (a) has source–sink arrays on the sidewalls shifted
toward two corners so that sinks at the ends of arrays are closer to the corners than
the sources. This configuration is geometrically identical to the one used in BDL.
The configuration (b) has sources and sinks at equal intervals on the sides and the
configuration (c) is like (a) but shifted in the opposite direction. The configuration (d)
is different from others and has sources at the corners and the mid-points of the sides.
Two sets of experiments are carried out: (b) and (c) in set 1, and all the configurations
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Figure 4. (a) The corner-source configuration of the four-pair forcing experiment. (b) Evolution
into the steady single-vortex pattern with V = 2.3 cm s−1.

in set 2. The mean velocity at the orifice is V = 2.4 cm s−1 except for one of the results
of set 2, (b), for which V = 2.6 cm s−1. The Froude number is F = 5.0 or 5.5, well
within the regime where BDL observed the formation of a single-vortex pattern.

In set 1, we initially expected the same single-vortex pattern as a result of an
inverse energy cascade for any configuration which does not impart any significant
net thrust or angular momentum. However, with the configuration (b), the velocity
field continued to change irregularly without increase in the vortex size. With the
configuration (c), though we did not observe the initial development, the single-vortex
pattern formed within 2 hours. The sparse streaks are due to the poor lighting.

In set 2, the results of set 1 were not exactly reproduced. Both configurations (c)
and (b) resulted in the single-vortex pattern. However, the central vortex with the
configuration (b) fluctuates more than with the configuration (c). The fluctuation
is enhanced by increasing V from 2.4 to 2.6 cm s−1. Though neither of them is
strictly steady, we call a flow pattern with small fluctuation, such as the one with
V = 2.4 cm s−1, a steady pattern. This convention is used throughout this paper. The
BDL configuration (a) resulted in an unsteady irregular pattern and we could not
reproduce their result. The difference in the source positions between (a) and (b) is
17 mm, only 3% of the side length. Hence the inverse cascade scenario, which should
not be affected by the forcing geometry, does not apply to this flow.

Rather than identifying the cause of poor reproducibility, we interpret the results by
considering a threshold which is sensitive to small experimental errors. The threshold
is defined by the positions of the sources next to the lower-left and the upper-right
corners. If these sources are closer to the corners than the threshold positions, a
single-vortex pattern appears. Otherwise, the flow changes irregularly. In BDL, the
threshold source position may have been to the right of their configuration, while in
our first set it is between (b) and (c), and in our second set it is between (a) and (b)
but very close to (b). The plausibility of this interpretation is to be confirmed in the
four-pair forcing experiments in the next subsection.

2.3. Four-pair forcing

In order to simplify the problem, we reduce the number of source–sink pairs from
eight to four. Several configurations are tested and the dependence on the forcing
strength is also examined.

When the sources are at the corners and directed toward the domain centre (figure
4a), a large vortex occupies most of the domain. This pattern was confirmed to form
for V = 1.7, 2.3, 3.1 cm s−1 and, although the velocity of the large vortex changes, its
shape is independent of the source strength. The initial evolution is shown in figure
4(b). The source flows meet at the centre and then they deflect each other to form a
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Figure 5. (a) The side-source configuration of the four-pair forcing experiment. (b) Evolution into
the steady five-vortex pattern (V = 2.3 cm s−1) which occurs in one in five trials. (c) Unsteady pattern
which continues to change irregularly even after leaving overnight.

central vortex. This vortex grows until it occupies the whole domain. Typically, this
process takes about 20 min.

When the sources are at the mid-points of the sides (figure 5a), a five-vortex pattern
forms with about 20% probability (5 out of 25 trials). The major component of this
pattern is the central vortex and the four peripheral vortices (the last image of figure
5b). The central vortex looks like a square pivoted at the source flows which extend
to the square vertices. Most of the momentum is confined in this path connecting the
sources and the central vortex. When this steady pattern appears, it does so within
an hour. However, the formation is not as straightforward as with the corner-source
configuration. As shown in figure 5(b), the flow field initially changes irregularly. It
comes close to the five-vortex pattern a couple of times and one out of five times
it stays steady. Otherwise, large irregular fluctuation about the five-vortex pattern
continues (figure 5c). The extreme sensitivity of this pattern is exhibited well by the
fact that we could not retrieve the steady pattern just by turning off and on the
forcing.

To obtain similar configurations to BDL, we put the sources and the sinks at
symmetric positions about the mid-points of the sidewalls. We label the configurations
by the interval ratios of pipes along a sidewall (see figure 1b). For example, when
a source and a sink are placed at equal intervals, we call it the a-a-a configuration.
The symbol a is also used for the distance between a corner and the source closest
to the corner. The distance between sources and sinks is systematically changed and
the dependence on the forcing strength is examined for V = 1.9, 2.3, 2.7 cm s−1.

The flow pattern regimes for three sets of experiments are shown in figure 6. The
three sets were done on different occasions and the differences in the results reflect
small errors of the set-up. The flow patterns are classified according to the symmetry
property and the steadiness. The correspondence between the flow patterns and the
figurative signs in figure 6 is explained in figure 7. The time evolution into these
patterns is straightforward except for the four-vortex pattern of set 2 which took 2.5
hours to stabilize. The symmetry of the flow pattern can be classified roughly into three
types: (i) diagonal ellipse pivoted at the impinging points of the two neighbouring
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Figure 6. Flow pattern regimes for three sets of four-pair forcing experiments. The explanation of
the figurative signs is given in figure 7.

sources (a–c), (ii) four-vortex pattern (d–h), (iii) diagonal rectangle pivoted at the four
sources (i, j). As the length a increases and the flow rate V increases, the pattern
changes from (i) to (ii) and then to (iii). Near the transitions, the flow pattern
loses steadiness and fluctuates irregularly between the patterns. Regular oscillation
as shown in figure 7(g) can be found depending on the setup condition. As is clearly
seen in the three sets, the transition point between the patterns changes significantly
between experiments. This is due to the small errors in the experimental setup as
we have shown with the eight-pair case. Since the overall dependence on the forcing
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geometry is clear and there are many causes of error, such as the flow rate variation,
source orifice position and direction, and the source flow pulsation, we did not try to
reduce the experimental errors at this stage.

3. Inviscid two-dimensional analysis
In this section, we assume that the flow can be described as a two-dimensional in-

viscid flow and compare the analytical solutions with observations. We deal only with
steady flows. First, we justify the assumption that steady flows can be approximated
as two-dimensional and inviscid. Since the observed flow is horizontal, the velocity
field may be represented by a streamfunction Ψ of the form

Ψ (x, y, z) = ψ̂(z)ψ(x, y), (3.1)

where ψ̂(z) is a non-dimensional function with 0 6 ψ̂(z) 6 1. Then the vertical
vorticity ω is

ω = −ψ̂∇2
Hψ, (3.2)

where ∇2
H = ∂2/∂x2 + ∂2/∂y2. We substitute (3.2) into the vertical component of the

vorticity equation

(u · ∇)ω = ν∇2ω. (3.3)

Then we obtain

ψ̂J(∇2
Hψ, ψ) = ν

(
∇2
H∇2

Hψ +
1

ψ̂

∂2ψ̂

∂z2
∇2
Hψ

)
, (3.4)

where J is the Jacobian. In order to evaluate the magnitude of each term, we need
the horizontal and the vertical length scales. From the observed steady motion, the
horizontal length scale is the vortex radius, i.e. 100–300 mm. The vertical velocity
profile is determined by the viscous diffusion and the top and the bottom boundaries.
Hence the vertical length scale is about half the total fluid depth, i.e. 100 mm. Although
there is vertical asymmetry in that the top boundary is shear-free and the bottom
boundary is non-slip, the point here is that the vertical and the horizontal scales are
of the same order. If we consider the region where ψ̂ is O(1), the two terms on the
right-hand side are comparable. As we will show later, the typical velocity of the
steady pattern is 2 mm s−1. Using the kinematic viscosity of water ν = 10−6 m2 s−1,
the ratio of the right-hand side to the left-hand side is about 0.0025. Neglecting the
right-hand side, the vorticity equation is reduced to

J(∇2
Hψ, ψ) = 0, (3.5)

which is the two-dimensional steady Euler equation. For simplicity, we will drop the
subscript H hereinafter.

We will consider the BDL type source–sink configurations: symmetrical about one
of the diagonals. Other configurations tested in the previous section are included as
higher symmetry cases. We employ the Cartesian coordinates with x and y parallel to
the sidewalls and the origin at the centre of the domain; x and y are scaled by the
sidewall length L, and ψ by LU where U is the typical velocity magnitude. Then, if
the boundary condition on y = −1/2 is given by

ψ(x,− 1
2
) = f(x), (3.6)

the other boundary conditions are

ψ(x, 1
2
) = f(−x), ψ(− 1

2
, y) = −f(y), ψ( 1

2
, y) = −f(−y). (3.7)
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Figure 7 (a–f). For caption see facing page.
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Figure 7. Explanation of the figurative signs in figure 6.

The boundary function f(x) represents the source–sink mass flux through the forcing
pipes. Since the solution must reflect the symmetry of the boundary condition, it
satisfies the following relations:

ψ(x, y) = ψ(−x,−y)

= −ψ(y, x). (3.8)

The equation J(∇2ψ, ψ) = 0 is satisfied if ∇2ψ = h(ψ) for an arbitrary continuous
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Figure 8. Some of the inviscid homogeneous eigenmodes. The real solutions are approximated
with these eigenmodes. The eigenmodes (a, d, e) are similar to the observed steady flow patterns.

function h(ψ). We assume a linear relation,

h(ψ) = −λ2ψ,

i.e.

ω = λ2ψ. (3.9)

Although this assumption cannot be justified, it is equivalent to considering the
maximum-entropy state of a two-dimensional turbulent flow (Chavanis & Sommeria
1996). If the resultant flow obeys the symmetry of (3.8) completely, we will not obtain
solutions like the single-vortex or the five-vortex patterns. In order to accommodate
symmetry-breaking solutions, we allow small deviations from the boundary condition
(3.6), (3.7) and separate the solutions into two parts: ψ0 and ψ1. The first part ψ0

satisfies ∇2ψ0 = −λ2
0ψ0 with the boundary condition (3.6), (3.7), and the second part ψ1

satisfies ∇2ψ1 = −λ2
1ψ1 with the boundary condition representing the deviation from

(3.6), (3.7). If λ2
1 = λ2

0 (= λ2), the simple addition ψ = ψ0 + ψ1 satisfies J(∇2ψ, ψ) = 0
with the boundary condition including the deviations from perfect symmetry. As λ2

approaches an eigenvalue of the Helmholtz equation for a homogeneous boundary
condition (f ≡ 0 in (3.6)), the solution ψ becomes dominated by the corresponding
eigenmode.

Some of the solutions ψ for the common eigenvalues λ2 = λ2
1 = λ2

0 are shown in
figure 8. We see the similarity between the solutions and the observed flow patterns
as indicated in the figure. The solution (a) corresponds to the single-vortex pattern of
the corner-source configuration (figure 4b), the solution (d) to the four-vortex pattern
of the a-a-a configuration (figure 7d), and the solution (e) to the five-vortex pattern
of the side-source configuration (figure 5b).
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Figure 9. The contour maps of streamfunction ψ and vorticity ω for three steady patterns: (a)
the single-vortex pattern by the corner-source configuration with V = 2.3 cm s−1, (b) the four-vortex
pattern by the a-a-a configuration with V = 1.9 cm s−1, (c) the five-vortex pattern by the side-source
configuration with V = 2.1 cm s−1.
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Figure 10. ψ–ω relations for the three steady patterns; (a–c) correspond to the same conditions as
figure 9. The four regions A–D in (c) correspond to the sketches beside the figure.

When λ2 is close to 2π2, ψ0 tends to zero but the dominant term of ψ1,
i.e. cos πx cos πy has a large amplitude. When λ2 is close to 10π2, either ψ0 ∼
cos 3πx cos πy − cos πx cos 3πy or a linear combination of the dominant terms of ψ1,
i.e. cos 3πx cos πy and cos πx cos 3πy have a large amplitude. The form cos 3πx cos πy+
cos πx cos 3πy is just one possibility.

Now we compare these possible solutions with the observations more closely. The
velocity field obtained by the particle tracking function of DigImage and the contour
maps of ψ and ω are shown in figure 9 and ψ–ω relations are shown in figure 10
for the three steady patterns which have similar shapes to the eigensolutions (figure
8a, d, e). The arbitrary constant of the streamfunction is chosen such that the mean
value is zero. The lines in figure 10 are the linear relations (3.9) of the analytical
solutions with similar spatial structures. For the single-vortex pattern (figure 10a), the
discrepancy is obvious. The magnitude of ω near the centre of the vortex (maximum
ψ) is close to the line ω = 2π2ψ, but it deviates from the line with a negative slope. The
large positive slope in −150 < ψ < 0 is due to the source flows along the sidewalls. For
the four-vortex pattern (figure 10b), the data points lie parallel to the line ω = 10π2ψ,
but with considerable scatter. This is considered to be due to the asymmetry of the
pattern as seen in the vorticity contour (figure 9b). For the five-vortex pattern (figure
10c), there are distinctly different regions. The correspondence between the ψ–ω plot
and the regions in the flow field is shown beside the plot. The regions B, C, D have
overlapping ψ–ω regions, and the division in the ψ–ω plot should be regarded as a
coarse one. In the central vortex region A, the relation exhibits a similar character to
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the single-vortex pattern: negative slope toward the centre. In the peripheral region
B of the central vortex, the vorticity is distributed in a wide negative range for a
relatively small range of ψ. This distribution represents a large spatial fluctuation of
vorticity in this region where the source flows are contained in a narrow path. In the
narrow elongated region C, the ψ–ω relation has a much steeper slope than other
regions. The only region in which the ψ–ω relation lies close to the line ω = 10π2ψ
is the region D of the outer four vortices.

From the above analysis, we speculate that the discrepancy is caused by the source
flows. Their effect is pronounced when they form enclosed regions as with the single-
vortex pattern and the region A of the five-vortex pattern. In an ideal case where the
Reynolds number tends to infinity and there is no flux into or out of the domain, the
Prandtl–Batchelor theorem predicts a uniform vorticity field as time tends to infinity.
A typical application of this theorem is a cavity flow driven by a shearing motion at
the cavity opening. The flows associated with the single vortex and region A of the
five-vortex pattern deflect the source flows to be tangential to their outer boundaries
so the net flux into the region is zero, and we may consider the enclosed regions
as isolated. The Reynolds number is too small (O(102)) for the Prandtl–Batchelor
theorem to be valid, but we expect that the vorticity field is affected by the viscous
diffusion from the source flows. Hence the negative slope of the ψ–ω relation can be
interpreted as a diffusion profile from the large vorticity of the source flows to some
constant near the centre. The vorticity diffusion behaviour will be examined in the
next section.

4. Effect of viscosity
As we have seen in the previous sections, the effect of viscosity is not negligible.

We will examine two aspects of the effect: (i) initial vorticity diffusion, (ii) decay
behaviour.

4.1. Initial vorticity diffusion

As noted in § 3, vorticity diffusion from the source flows is expected to be responsible
for the discrepancy of the ψ–ω relations of the steady patterns from those of the
steady inviscid two-dimensional eigenmodes. Here we make use of the measurements
of the single-vortex pattern above the forcing level to examine the initial diffusion
behaviour. We expect that, at least initially, the flow above the forcing level is similar
to a weakly forced case and the region away from the boundary walls is less affected
by the source flows. An alternative method would be to use a weak forcing and
measure the initial evolution at the forcing level, but then it takes longer to establish
the single-vortex pattern and the initial diffusion behaviour is easily missed.

With V = 2.3 cm s−1, the single-vortex pattern established after 20 min, and the
evolutions of the ψ–ω relation at the forcing level and at 4.3 cm above the forcing
level are shown in figure 11. We can recognize the vorticity diffusion from the source
flows to the domain centre. After 20 min, two-thirds of the positive-ψ part is close to
the line ω = 2π2ψ line with a positive slope, but after 240 min, less than half of the
positive-ψ part is close to the line and the slope is negative. The diffusion behaviour
is much clearer above the forcing level as can be seen in figure 11(b). After 20 min,
the positive-ψ data are parallel to ω = 2π2ψ. The origin is shifted because ψ = 0 is
defined as the mean value in the analysed region, which is smaller than the whole
domain. As time progresses, the slope turns negative and most of the positive-ψ part
deviates from the line.
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Figure 11. Evolution of ψ–ω relations of the single-vortex pattern by the corner-source configuration
with V = 2.3 cm s−1 at two different heights: (a) at the forcing level and (b) at 4.3 cm above the
forcing level.

From the above results, we can interpret the single-vortex pattern as an eigenmode
of the Helmholtz equation modified by the vorticity diffusion from the source flows.
The same is probably true for the four- and the five-vortex pattern. However, for the
four-vortex pattern, the establishment time is longer since the flow rate has to be set
at V = 1.9 cm s−1, and also the vorticity diffusion is completed much earlier because
the vortex radius is half of the single-vortex pattern. For the five-vortex pattern,
in addition to the early completion of diffusion, we need to find a straightforward
evolution into it. Therefore, it is very difficult to measure the initial diffusion behaviour
for these patterns.

4.2. Decay behaviour

We showed that the source flows alter the vorticity distribution of the steady patterns
but the appearance of the velocity field is almost unchanged. In order to see how
much the flow field is altered as the relative magnitude of the viscous force increases,
we investigate the decay behaviour after the forcing is stopped. The decaying flow
was studied by Konijnenberg, Flór & van Heijst (1998) in relation to two-dimensional
turbulence. We briefly recapitulate their calculation with our notations in § 3.

We start with the dimensional vorticity equation,

∂ω∗
∂t∗

+ (u∗ · ∇∗)ω∗ = ν∇2
∗ω∗. (4.1)

There are two cases where the second term on the left-hand side is negligible compared
to the others. The first case is when Re = UL/ν � 1 and the decay time scale
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is ReL/U. Then by introducing non-dimensional variables: t∗ = (ReL/U)t, x∗ =
Lx,ω∗ = (U/L)ω, we obtain

∂ω

∂t
= ∇2ω. (4.2)

This case is valid for any type of flow. The second case happens for particular flows
for which |∂ω∗/∂t∗|, ν|∇2∗ω∗| � |(u∗ · ∇∗)ω∗| irrespective of the magnitude of Re. This
is possible if the flow is a pure shear flow, e.g. a parallel shear flow or a circular
shear flow, as long as no instability sets in. By introducing the same non-dimensional
variables as the first case, we obtain the same equation (4.2). We note that the time
scale ReU/L = L2/ν is independent of the velocity scale U. We solve (4.2) in the
domain − 1

2
6 x 6 1

2
, − 1

2
6 y 6 1

2
. We try a separable solution of the form

ω =
∑
λ

Cλωλ(x, y) exp (−λ2t/Re). (4.3)

Substituting into (4.2), we obtain a Helmholtz equation for ω,

∇2ωλ + λ2ωλ = 0. (4.4)

Dropping the subscript λ and using ω = −∇2ψ, we get

∇4ψ + λ2∇2ψ = 0. (4.5)

The boundary condition is impermeable and non-slip walls. We set ψ = 0,
∂ψ/∂n = 0 on the walls. We recall that the problem we solved for inviscid steady
flows in § 3 was

∇2ψ + λ2ψ = 0, (4.6)

with a given fuctional form of ψ along the walls (source–sink forcing) and no
restriction on ∂ψ/∂n (free-slip walls). The details of the solution procedure are omitted
here. There are non-trivial solutions only for special values of λ2 (eigenvalues). This
is different from the inviscid problem for which the value of λ2 is arbitrary. The
streamfunction contours and the ψ–ω relations are shown in figure 12 for the three
lowest eigenmodes with the symmetry ψ(x, y) = ψ(−x, y) = ψ(x,−y) and the lowest
eigenmode with the symmetry ψ(x, y) = ψ(−x, y) = −ψ(x, y). The streamfunctions of
the former symmetry eigenmodes are similar to the three steady patterns observed
and the inviscid eigenmodes calculated in § 3. The eigenvalues are larger than the
corresponding inviscid eigenmodes. The ψ–ω relations are almost linear and the slope
is approximately λ2. For short, we call these eigenmodes Stokes modes. For a flow
consisting of a single eigenmode, the kinetic energy can be approximated as

E =
1

2
ρ

∫∫
D

|∇ψ|2 dx dy

=
1

2
ρλ2

∫∫
D

ψ2 dx dy

∝ exp
(
−2λ2 ν

L2
t∗
)
. (4.7)

We define the decay rate α = 2λ2ν/L2.
In order to estimate the relative magnitude of the viscous force in the forced

flow, we measured the transition to the decaying eigenmodes after the forcing
is stopped. Four initial conditions are chosen: (a) the single-vortex pattern by
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Figure 12. Streamfunction contours and ψ–ω relations of the Stokes modes.
Each mode is a solution to ∇4ψ + λ2∇2ψ = 0.

the corner-source configuration with V = 1.9 cm s−1, (b) the four-vortex pattern by
the a-a-a configuration with V = 1.9 cm s−1, (c) the five-vortex pattern by the side-
source configuration with V = 1.9 and 2.1 cm s−1, (d) the irregular pattern by the
side-source configuration with V = 1.9 cm s−1.

Figure 13(a) shows the velocity and the streamfunction mappings and the ψ–ω
relations by the corner-source configuration with V = 1.9 cm s−1. The initially near-
square vortex becomes circular as the decay progresses. The two lines in the ψ–ω plots
are ω = 2π2ψ = 19.74ψ for the lowest inviscid homogeneous eigenmode cos πx cos πy,
and ω = 52.35ψ for the lowest Stokes mode. By 80 min, the data points lie along
ω = 52.35ψ. The deviation from the straight line near the left-hand end is quite
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Figure 13. Streamfunction contours and ψ–ω relations during decay from four initial con-
ditions. The scales are omitted and different for each figure: (a) corner-source, V = 1.9 cm s−1;
(b) a-a-a, V = 1.9 cm s−1; (c) side-source, steady, V = 1.9 cm s−1; (d) side-source, irregular,
V = 1.9 cm s−1. The lines in the ψ–ω plots are (a) ω = 2π2ψ, 52.35ψ, (b) ω = 10π2ψ, 154.13ψ,
(c) ω = 52.35ψ, 10π2ψ, 167.03ψ, (d) ω = 52.35ψ.
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similar to the calculation result in figure 12(a) with the right and the left reversed.
The typical velocity at 80 min is 0.2 mm s−1 and hence Re ∼ 120. The validity of the
Stokes flow calculation for this large value of Re relies on the fact that the velocity
field is almost a circular shear flow. If the streamlines are not circular, as they are at
the initial time of the decay, the inertia is not negligible.

Figure 13(b) shows the velocity and the streamfunction mappings and the ψ–ω
relations by the a-a-a configuration with V = 1.9 cm s−1. The initially four-fold-
symmetric vortices separate into two dipoles. At 80 min, there is significant asymmetry
within the dipoles and it is expected that the flow pattern ends up as a single
dominant vortex. The two lines in the ψ–ω plots are ω = 10π2ψ = 98.70ψ for the
inviscid homogeneous eigenmode cos 3πx cos πy − cos πx cos 3πy, and ω = 154.13ψ
for the second lowest even-symmetry Stokes mode. Initially, the data points are closer
to ω = 98.70ψ, but by 15 min they lie along ω = 154.13ψ. The deviation from the
straight line is quite similar to the calculation result in figure 12(b). The large scatter
at 80 min is due to the larger relative error. The Reynolds number at 15 min is about
240.

Figure 13(c) shows the velocity and the streamfunction mappings and the ψ–ω re-
lations for the five-vortex pattern by the side-source configuration with V = 1.9 cm s−1.
The result for V = 2.1 cm s−1 is similar and not shown here. As mentioned in § 2,
there is only a probability of about 20% of obtaining the steady five-vortex pattern.
When the steady pattern was not achieved, the decay measurement was nonetheless
included as an irregular initial pattern. If we can apply the Stokes mode calculation
result, though the Reynolds number is considerably larger than unity, the decay
rate of the five-vortex pattern should be almost the same as the four-vortex pattern.
Hence we expected the five-vortex pattern to persist for about an hour and that
one of the vortices would survive due to asymmetry. However, after 10 min the
central vortex overshadowed the outer four vortices and the flow turned into a
single-vortex pattern. We see at 2 min that the outer four vortices are skewed in
the direction of the central vortex rotation. The elliptically deformed vortices decay
with increased shear, leading to the quick domination of the central vortex. The
lines in the ψ–ω plots are ω = 10π2ψ = 98.70ψ for the inviscid homogeneous
eigenmode cos 3πx cos πy + cos πx cos 3πy, ω = 52.35ψ for the lowest Stokes mode,
and ω = 167.03ψ for the third lowest even-symmetry Stokes mode. The data points
get closer to ω = 52.35ψ as the central vortex occupies the domain. Re is about 100
at 80 min.

Figure 13(d) shows the velocity and the streamfunction mappings and the ψ–ω
relations for one of the two runs of the irregular pattern by the side-source con-
figuration with V = 1.9 cm s−1. The vortices merge into three by 15 min. After 15 min,
the two like-sign vortices merge into a larger vortex and by 80 min occupy the whole
domain. In the other case, the vortices merge into a dipole by 20 min and one of the
pair dominates the other and occupies the domain by 100 min. The line in the ψ–ω
plots is ω = 52.35ψ for the lowest Stokes mode. We see the gradual approach to this
line as the number of vortices decreases. For both the cases, Re ∼ 20 at 80 min.

We next compare the observed decay rates with the Stokes mode calculation result.
The kinetic energy is represented by the mean-square velocity magnitude in the region
−225.0 6 x 6 218.2 mm, −221.0 6 y 6 217.0 mm. The peripheral grid points shown
in the previous figures are excluded since they are close to the source–sink forcing
and the values of the velocity are often erroneous due to the three-dimensionality of
the flow. Figure 14 shows the kinetic energy against time. The inserted lines have the
slopes corresponding to the decaying Stokes modes. For the corner-source and the
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Figure 14. Kinetic energy decay behaviour. ∗, corner-source, V = 1.9 cm s−1; e, a-a-a,
V = 1.9 cm s−1; �, side-source, steady, V = 1.9 cm s−1; 4, side-source, steady, V = 2.1 cm s−1;
×�, side-source, irregular, V = 1.9 cm s−1. The lines from the top-right corner represent the decay
rate of the Stokes modes in figure 12; (a) solid line, (b) dotted line, (c) broken line.

Experiment V (cm s−1) Calculation period (s) α (s−1)

Corner-source 1.9 2400–7200 4.25× 10−4

Side-source

Irregular 1.9 4200–6000 4.31× 10−4

1.9 3000–4800 5.12× 10−4

Steady 2.1 1800–3600 5.17× 10−4

4800–7200 1.82× 10−4

8400–10800 3.97× 10−4

1.9 2400–10800 4.15× 10−4

a-a-a 1.9 1800–4800 1.33× 10−3

Table 1. Decay rate α in the linear part of figure 14.

a-a-a configurations, the kinetic energy decays exponentially except at early times.
The decay rate of the latter is considerably larger than the former. For the side-source
configuration, the initial decay rate is comparable to that of the a-a-a configuration,
but as the flow field is occupied by a single vortex, the decay rate becomes almost the
same as that of the corner-source configuration.

We write the kinetic energy as proportional to exp (−αt∗), and the values of α
calculated by the least-square method in the final linear part of the decay plot are
shown in table 1. The values of α for the lowest and the second lowest even-symmetry
Stokes modes are 2.91× 10−4 and 8.56× 10−4, respectively. The experimental values
are larger because of the dissipation due to the vertical shear. We do not have a
satisfactory explanation for the slow decay at 4800–7200 s of the side-source, steady
experiment at 2.1 cm s−1. One possible explanation is that the velocity field changed
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from the five-vortex pattern to the single-vortex pattern across this time range and
the slow decay is due to the smaller horizontal shear during the expansion of the
central vortex. However, we do not see any significant change in the shape or slope of
the ψ–ω plots during this period. Hence, this explanation should be discarded. If we
neglect this anomaly, the decay rate for the single-vortex pattern is 3.97 ∼ 5.12×10−4

and that for the four-vortex pattern is 1.33 × 10−3. Suppose we can separate the
dissipation into horizontal and vertical contributions, then the contribution from the
vertical shear is 1.06 ∼ 2.21 × 10−4 for the single-vortex pattern and 4.7 × 10−4 for
the four-vortex pattern. This large difference shows that we need a three-dimensional
analysis to evaluate the decay rate quantitatively.

We have seen that the transition from a forced flow to a Stokes mode is completed
at quite large values of Re. This is realized by rearranging the velocity field into an
almost inertialess one, rather than by the reduction of the velocity magnitude. The
change in the appearance of the velocity field is slight, just as the modification of the
forced flow by the vorticity diffusion was small.

5. Discussion
We first summarize our results and then restate three problems.
In the horizontal flow produced by the source–sink forcing method, we revealed

the sensitivity of the flow patterns to the forcing geometry. For particular source–sink
configurations, the flow evolves into steady patterns which resemble the eigenmodes
of the Helmholtz equation in a square domain. The thresholds between patterns are
sensitive to small errors in the experimental setup. We showed that such eigenmodes
are possible solutions for the given boundary conditions including small deviations
from the intended symmetry. However, there is significant discrepancy in the stream-
function vs. vorticity relations between the analytical solutions and the observed flows.
We attribute it to the viscous diffusion of vorticity from the source flows. In order
to see how much the flow field is changed when the viscous force dominates over
the inertia force, we studied the transition to a low-Re decaying flow which has a
narrower spectrum of solutions (Stokes modes). The Stokes modes are quite similar
in appearance to the steady patterns we observed in the forced flow. The decay
experiment revealed transitions to Stokes modes at unexpectedly large Re.

The first problem is the reproducibility. As we have seen, the reproducibility is
poorer for steady patterns resembling higher eigenmodes. We can explain this from
two viewpoints. First, if we consider the interaction of laminar source flows, a steady
pattern requires balance among impinging source flows. Since a higher mode has
more impingement points, it would require more accurate symmetry for steadiness.
Second, if we neglect the individual source flow and employ the idea of § 3, i.e. an
eigenmode is somehow selected for the given forcing, then the controlling parameter is
the eigenvalue λ2. Since λ2 represents the kinetic energy of the horizontal motion, the
eigenmodes with the same value of λ2 are equivalent. For the Helmholtz equation in
a square domain, the degeneracy of eigenmodes increases with λ2. Hence, for higher
modes, the pattern can change among equivalent eigenmodes without significant
change of energy. The favourable pattern, of course, depends on the symmetry of the
source–sink configuration, but the fluctuation about it becomes easier as λ2 increases.
This viewpoint, however, leaves the selection of λ2 an open question.

The next problem is whether the approach of § 3 is appropriate or not. We first
derived possible solutions for arbitrary boundary conditions and explained the dis-
crepancy as the effect of viscosity. However, this is an approach suitable for many
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source–sink pairs for which the resultant flow pattern is only weakly affected by the
source–sink configuration. An alternative approach is to focus on individual source
flows and analyse the interaction among them. This approach is appropriate when
there are a few source–sink pairs and the resultant flow pattern is determined by
the source–sink configuration. As a one-pair case, A. L. Kurapov (personal com-
munication) used a similar source–sink system in a rectangular domain and observed
asymmetric or oscillatory patterns. Related works report symmetry-breaking bifur-
cations of the flow into a channel through a sudden expansion (see for example Sobey
1985; Sobey & Drazin 1986). The rich bifurcation behaviour of these one-pair cases
indicates much more complicated behaviour for many-pair cases. The sensitivity to
small errors of our four- or eight-pair cases represents this character. In order to
evaluate the complexity of the dynamics of four- or eight-pair cases, further study
with one- or two-pair forcing is in progress. It is also of interest whether the sen-
sitivity to the forcing configuration is lost for source–sink forcing with more pairs.
Then two-dimensional turbulence theories may be applicable to the central region of
irregular jet interaction.

Finally, we discuss the transition to the Stokes modes at relatively large Re. As we
mentioned in § 4, such a transition is possible if the inertia term is small, owing to the
flow field structure. The nearly circular streamfunction contours suggest this is the
case. Also, even in the forced state, the stability of the observed steady patterns which
are not strictly steady in our convention suggests that the relative magnitude of the
inertia force can be easily diminished by deformation. In order to analyse the stability
of the flow patterns, computational solution of the full Navier–Stokes equation may
be necessary because the ratio of the inertia to the viscous force can vary spatially
from much less than unity to the nominal Re.
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