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The formation of an axisymmetric vortex ring by forcing fluid impulsively through a
pipe is examined. An idealized model of the circulation, impulse and energy provided
by the injected plug is developed, and these quantities are equated to the corresponding
properties of the class of rings with finite cores described by Norbury (1973). It is
shown that, as the length-to-diameter aspect ratio L/D of the plug increases, the size
of the core increases in comparison with all the fluid carried along with the ring, until
the limiting case of Hill’s spherical vortex is reached. For aspect ratios larger than a
certain value it is not possible to produce a single ring while conserving circulation,
impulse, volume and energy. This implies that the limiting vortex is ‘optimal’ in
the sense that it has maximum impulse, circulation and volume for a given energy
input. While this matching calculation makes the physical mechanism clear, the L/D
ratio that can be achieved in practice is more appropriately taken from the direct
experimental measurements of Gharib et al. (1998) who concluded that the limiting
value is L/D = 4. This is close to the value found in our calculation.

1. Introduction
For at least a hundred years there has been a great deal of interest in calculations

of the properties of vortex rings, such as their propagation speed and stability, and
the relation of these to the vorticity distribution. Many eminent mathematicians
and physicists contributed to the inviscid theory at the end of the 19th century, and
identified simple limiting cases such as the thin-core vortex and Hill’s spherical vortex.
Some of them also conducted experiments in air or water, and the ease with which
smoke rings can be produced by forcing fluid through a sharp-edged opening or
through a nozzle was (and still is) common knowledge.

Particularly during the past twenty years there have been numerous, increasingly
sophisticated analytical, experimental and numerical studies of the generation and
evolution of vortex rings. Shariff & Leonard (1992) give a helpful and accessible
review. In the laboratory, Baird, Wairegi & Loo (1977) attempted to relate the prop-
erties of rings to the formation parameters, and Maxworthy (1972, 1977), Didden
(1979), Glezer (1988) and Glezer & Coles (1990) have reported extensive experiments
on ring formation and development. Applications of various kinds have been sug-
gested; Turner (1960) and Fohl (1967) proposed that vortex rings might be used to
project smoke or other effluents to great heights in the atmosphere, thus reducing
the need for tall chimneys. The properties of buoyant vortex rings (Turner 1957)
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are such that, once these can be formed with a tight buoyant core, there is a great
height advantage to be gained compared with forcing material continuously from a
chimney. Preliminary attempts to apply this idea in practice have shown, however,
that in addition to instabilities of the rings themselves, there is significant shedding
near the generator, for reasons that were not clearly understood.

Another intriguing question concerns the use of vortex rings by fish as a means of
propulsion. Vortex rings are shed from the tail of a swimming fish and it is observed
that fish over a wide range of sizes produce vortices at a Strouhal number, based on
the speed of the fish, of about 0.3. This observation raises the question of whether this
choice is optimal and if so, why. A related question concerns the size of the vortex
ring and, therefore, the amplitude of a single flap, used to accelerate the fish for a
short distance or to change direction.

Most of the more recent experiments cited above used the ejection of fluid from a
cylinder with a piston, but concentrated on small ratios L/D of the stroke, or length
L of the ejected cylinder of fluid, to the diameter D of the opening. This deficiency
has recently been addressed by Gharib, Rambod & Shariff (1998) whose experiments
in water concentrated on the large L/D case. They posed the question: what is the
largest circulation that a vortex ring can achieve by increasing L/D, keeping the
average piston velocity fixed? The vorticity flux provided by the separated shear layer
at the edge of the orifice is fed into the vortex ring, and the circulation should be
proportional to L; but is there an upper limit as L/D becomes large? We concentrate
for simplicity on the experiments using a single nozzle diameter in which the piston
was brought impulsively up to a constant speed and held there during the fluid
ejection, though they also used other acceleration and nozzle conditions. Briefly, their
technique and results are as follows. They visualized the flows by marking the input
fluid with fluorescent dye, and used digital particle image velocimetry to map the
velocity and vorticity distributions.

The measured flow fields generated by small stroke ratio (L/D = 2) showed only a
single vortex ring. Almost all the discharged fluid was entrained into the ring, and the
vorticity was contained in a region approximately the same size as the dyed core. For
a much larger L/D = 14.5 there was a leading vortex ring followed by a trailing jet of
dyed fluid with further vortex-like disturbances on it. The front vortex ring was clearly
separated from the fluid behind it, showing that the formation had been completed
and no more vorticity was being entrained into the ring. In this case the region of dyed
fluid carried along by the front ring was wider, and larger than the vortex core. The
transition between these two distinct states was observed to occur at a mean stroke
ratio of approximately 4, with a range of 3.6 to 4.5 in other experiments. Gharib et
al. (1998) refer to this as the ‘formation number’, which can also be interpreted as
non-dimensional time, scaled with the piston velocity and the nozzle diameter. They
conclude that at this value of L/D the maximum circulation a vortex ring can attain
during its formation is reached. We note here that a similar vortex-like behaviour
has been recorded in experiments by Crow & Champagne (1971) on the instability of
a steady jet forced through a circular orifice. This phenomenon and its implications
will be discussed further in § 4.

Gharib et al. (1998) interpreted their results using an analytical model based on a
variational principle proposed by Kelvin and later by Benjamin (1976). This states
that a steadily translating vortex ring must have maximum energy with respect to
perturbations that preserve the impulse and vorticity. They suggest that at a certain
stage in the formation process, near L/D = 4, the piston apparatus is no longer able
to supply energy at a rate compatible with this energy requirement. This model will
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not be discussed in detail: it is the purpose of the present paper to give a different,
but complementary, description of the formation process. We believe this approach
will shed further light on the physical constraints in a form that will be useful in
certain potential applications to vortex ring generators.

2. Matching the properties of the input fluid and the vortex ring
The basic idea behind our theoretical model is that the properties of a vortex ring

can be predicted by equating the values of the circulation, impulse, volume and kinetic
energy of the injected plug of length L, diameter D to the corresponding values for a
class of rings with finite cores. The calculation is in the spirit of G. I. Taylor’s (1953)
paper, in which he considered the relation between the impulsive motion of a circular
disc moved normal to its plane in a fluid, and the thin-core vortex ring resulting if
the disc were then ‘dissolved away’. He showed that the properties of such a ring
could be uniquely determined in this way. In a similar manner, Fohl (1968) calculated
the parameters of the thin-core vortex ring that is created by abruptly accelerating
a sphere of fluid to a uniform velocity throughout its volume. The properties of the
flow around the sphere, regarded as a solid body moving in an inviscid fluid, can be
determined, and equated to those of the resulting vortex ring. Saffman (1975) used
related ideas to calculate the properties of the vortex ring produced by the roll-up
of a cylindrical vortex sheet formed by forcing fluid through a circular orifice. He
evaluated explicitly the energy and impulse of the sheet, and again matched these and
the circulation to the corresponding properties of a thin-core vortex ring, but he did
not explore a range of length-to-diameter ratios.

The following results are based on the particular family of finite-core vortex rings
computed by Norbury (1973), of which the classical thin-core vortices and Hill’s
spherical vortex are end members. It is convenient for the present purpose to have
a definite class of vortices on which to base the calculations, but now that results
such as those of Gharib et al. (1998) are available, they could readily be repeated
for more realistic vorticity distributions, as measured in a viscous fluid. The purpose
of the present paper is to establish the validity and value of the matching idea in
principle, not to make detailed numerical predictions. Thus we have concentrated on
the simplest case of a plug input with a constant velocity profile across it, and mention
only in passing the changes to be expected by varying other parameters (such as the
velocity profile) that we have obtained in further calculations not reported in detail
here.

After the present manuscript had been completed, the paper by Mohseni & Gharib
(1998) was brought to our attention. These authors have used a similar matching
procedure, but there are significant differences of emphasis between their treatment
and ours.

2.1. The properties of the injected fluid plug

Using the notation introduced above, and the velocity UP of the input fluid (taken
to be constant), the volume VP , the circulation KP , the impulse PP and the kinetic
energy TP of the plug fluid (the last two quantities are per unit mass, but we have
set the density to unity here) can be written as

VP = 1
4
πD2L, (1a)

KP = 1
2
UPL, (1b)
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PP = UPVP = 1
4
πUPD

2L, (1c)

TP = 1
2
cU2

PVP = 1
8
cπU2

PD
2L. (1d)

Note that these forms imply that we have omitted any contributions to the impulse
and energy associated with the interior fluid set into motion by the plug fluid. These
interior motions were basic to the calculations of Taylor (1953) and Fohl (1968)
referred to above. Here we assume, as argued by Gharib et al. (1998), that they are
negligible compared to the direct effects of injecting a long plug of fluid.

Some further comments about the constant multipliers in (1b) and (1d) are needed.
A simplistic estimate of the circulation based on the velocity integrated round a
circuit passing through the centre of the injected plug of fluid leads to the form (1b),
but without the factor 1/2. The correct form above is obtained by integrating the
vorticity flux from a thin boundary layer with edge velocity equal to the piston speed.
(See Shariff & Leonard (1992), equation (2.5) and the accompanying discussion. This
factor could be increased or decreased a little from 1/2 by more subtle effects that
will not be considered here – see also Didden (1979).) The factor c(< 1) in (1d) is
the fraction of the nominal kinetic energy of the plug of fluid actually injected into
the ring. While it seems reasonable to assume that K and P are strictly conserved
during the formation of a ring, the possible loss of mean and rotational kinetic
energy, due to turbulence for example, should be considered. If a parabolic velocity
profile is assumed, rather than a uniform plug injection, then the following ‘profile
constants’ must be introduced: (1a) is multiplied by 1/2, (1c) by 2/3 and (1d) by 1/2.
The constant in front of (1b) will also increase when the vorticity is evaluated by
integrating across the parabolic profile, but this calculation will not be considered in
detail here.

2.2. The family of vortex rings

As noted above, we restrict attention here to the class of axisymmetric inviscid vortex
rings discussed by Norbury (1973). These rings have vorticity ω proportional to the
distance r from the axis of symmetry and propagate steadily through an unbounded
ideal fluid. He classified these rings in terms of a parameter ε, a non-dimensional
mean core radius, defined by the equation

ε =
area of core

πX2
, (2)

where X is the length shown in the sketch of figure 1, i.e. X = 1
2
(OB + OC). (The

notation used by Norbury, α and L instead of ε and X, has been changed to avoid
conflict with the symbols we have used for other quantities, following Gharib et
al. (1998).) As ε increases, the core cross-sectional area increases, and the limiting
members of this family are rings of small cross-section as ε tends to zero, and Hill’s
spherical vortex at ε =

√
2. In figures 2(a) and 2(b) we show the calculated shape

of the core for various values of ε and also the corresponding dividing streamlines,
separating fluid with circulation from the external potential flow, i.e. outlining the
fluid carried along with the ring. For the Hill’s vortex these two boundaries are on
the same sphere.

In addition to the two boundaries reproduced in figure 2 (which define the volume
of core fluid and the total volume of fluid carried along with the ring) Norbury
(1973) calculated many other properties of the rings for discrete values of ε, including
non-dimensional values of the propagation velocity WR , the circulation KR , the fluid
impulse PR and the kinetic energy TR . He presented these properties in tabular form
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Figure 1. A definition sketch of a finite-core vortex ring, from Norbury (1973). The ring is
specified by the radius X = 1

2
(OB + OC), and the core A has area πX2ε2.

(his tables 1 and 2) and his values will be used in matching them to those of the
injected plug.

We will not reproduce the details of Norbury’s method of calculation, but it is
necessary to outline the scaling used to make the equations non-dimensional. All
lengths have been scaled with X, defined in figure 1, and velocities with a reference
velocity U defined by

U = ΩX2ε2, (3)

where Ω, the vorticity constant defined by ω = Ωr, is a measure of the magnitude
of the vorticity in the core. The propagation velocity W is related to U, and its
non-dimensional value WR is given by Norbury as a function of ε.

2.3. Matching

Having described the properties of the injected plug of fluid and of Norbury’s class of
vortex rings we now consider the consequences of matching the two, i.e. equating the
expressions in (1) to the corresponding scaled relations in Norbury’s analysis, using
the constants tabulated by him. We emphasize again that no attempt has been made
to describe the mechanism by which the plug rolls up to become a ring – we consider
only the ‘before’ and ‘after’ stages of the process.

The three matched equations corresponding to (1b), (1c) and (1d) are

UXKR = 1
2
UPL, (4b)

UX3PR = 1
4
πUPD

2L, (4c)

U2X3TR = 1
8
πcU2

PD
2L. (4d)
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Figure 2. (a) The boundary of the vortex core specified by the parameter ε, evaluated numerically
by Norbury (1973) and shown for a range of values of ε. (b) The dividing streamlines, separating
circulating fluid from the external potential flow, for the same values of ε shown in (a).

Combining (4b) and (4c) we find

X2

D2
=

1

2
π
KR

PR
; (5)

and similarly (4b) and (4d) give

X

D
=

1

2
πc
K2
R

TR

D

L
. (6)

Finally from (5) and (6) we have

L

D
=

√
π

2
c
P

1/2
R K

3/2
R

TR
. (7)

If we assume that the circulation, impulse and energy are conserved, there is a
single ring in the class we are considering which is formed for a given plug aspect
ratio. Figure 3 shows a plot of L/D against the parameter ε for c = 1. There is a
maximum value of L/D above which a single ring cannot be formed. This limit, which
corresponds to Hill’s spherical vortex, is at L/D = 7.83. (This limit is about twice the
value obtained experimentally by Gharib et al. It is reduced if some energy is lost
during the formation process, but a comparison with their results, and discussion of
the reasons for this difference, will be deferred to § 3.)

However, according to the above formulation of the matching problem, a significant
general conclusion can already be drawn from (4) (which have been used to derive
(7)). If we fix the energy of the plug (and ring) and the diameter D, then from (4d)
LU2

P is a constant. Hence if L is increased keeping the energy fixed, the plug velocity
decreases, but from (4b) and (4c) it follows that both the circulation and impulse
increase. This limitation on the aspect ratio of the plug thus implies that, for a fixed
kinetic energy used to produce a ring, the particular member of a family of vortices
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Figure 3. The aspect ratio L/D of the impulsively produced plug plotted against the core parameter
ε for the corresponding ring, calculated using (7) and the data tabulated in table 2 of Norbury
(1973).

corresponding to the maximum L/D is the one that has the maximum impulse and
circulation. As the plug aspect ratio increases, the relative size of the core increases
to accommodate the vorticity produced at the walls of the generator.

Using a similar technique, we can examine whether it is possible to incorporate
all the plug fluid into the ring. In this case we match the volume of the plug to
that of the ring – either the volume of the vorticity-containing core Vc or the total
volume Vc + Ve (where Ve is the volume of irrotational fluid carried along with the
core, using Norbury’s notation). Multiplying equations (5) and (6), which incorporate
conservation of circulation, impulse and energy, and using (7) we obtain an expression
for X3. In this case, again using the non-dimensional tabulated values, and comparing
the volume with (1a), we find

Volume of core

VP
=

2VcTR

cP 2
R

, (8)

and a corresponding expression for the total volume. These two ratios are shown as
functions of ε in figure 4, assuming that circulation, impulse and energy are conserved
during formation. Note that for ε > 0.42 approximately, corresponding to L/D > 3.5,
the total volume of fluid moving with the ring is smaller than that of the original plug,
so that some of the ejected fluid cannot be transported with the ring. For all aspect
ratios the core volume is less than that of the plug, and hence it is never possible to
get all the plug fluid into the core of the rings in the family considered by Norbury.
We should note, of course, that even in the case where the volume moving with the
ring is larger than that of the plug volume, there is no guarantee that all the plug
fluid will actually be incorporated. Some of the ambient fluid may be entrained while
some of the injected fluid is left behind, as shown by Maxworthy (1972).

Similarly, a further property of interest can be calculated for this family of rings as
a function of ε. The initial velocity of propagation compared to the ejection velocity
can be written, when impulse and energy are conserved,

W

UP

=
WRPR

2TR
. (9)
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Figure 4. The ratio of the volume of the ring core to the plug volume (dashed line), and the
corresponding ratio of the total volume carried along by the ring to the plug volume (solid line),
calculated from (8) for various values of ε using Norbury’s data.
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Figure 5. The ratio of the velocity of the ring to the plug velocity, calculated from (9) for various
values of ε using Norbury’s data.

This ratio is plotted in figure 5, and it is seen that the ring velocity is always less than
that of the injected plug. This is a necessary feature of the formation process since
otherwise the ring would leave plug fluid behind.

3. Comparisons with Gharib et al. (1998), and the effect of varying the
parameters

So far, we have investigated the constraints on the L/D ratio obtained by matching
two sets of parameters separately. Now we consider the implications of applying both
of these constraints simultaneously. Viscosity has little time to act during the ring
formation process at typical Reynolds numbers of these experiments, and vorticity is
carried with the fluid. Consequently, the additional constraint imposed by matching
the volume of the plug with that of the ring must be satisfied if the circulation is
conserved. This constraint of volume conservation provides the final condition that
selects the maximum plug length. The critical aspect ratio L/D = 3.5 is quite close to
the value obtained experimentally by Gharib et al. (1998).
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As mentioned above, it is never possible to get all of the plug fluid into the core of
the ring (figure 4), so it may seem to be impossible to conserve the circulation. But
the vorticity flux from the walls of the generator only penetrates some of the plug
fluid – the exact fraction depends on the injection time divided by the viscous diffusion
time – and so it is not necessary to incorporate all of the plug fluid into the core. The
irrotational plug fluid can be carried outside the core. Of course, this requires some
subtle rearrangements of the fluid during the ring formation, but since it is likely that
the fluid near the edges of the plug does roll up into the core, such a matching seems
feasible. Certainly the agreement between the theoretical and experimental values of
the critical aspect ratio supports this possibility.

Gharib et al. (1998) attribute the critical plug aspect ratio to the maximum circu-
lation that the ring can acquire. From our calculations (figure 4) we see that circu-
lation, impulse and energy produced by the generator can be incorporated into the
ring for values of the aspect ratio considerably larger than the critical value obtained
experimentally. Only when the incorporation of the volume of the injected plug is
considered is the experimental value predicted by the theory.

The effect of making different assumptions about the input conditions will be
mentioned briefly. From (7), if energy is lost during the formation process (c < 1)
then the maximum permissible L/D ratio is also reduced. At the same time, we see
from (8) and figure 4 that this would make it easier to fit all the ejected fluid in
the region moving with the ring, since this volume is increased relative to the plug
volume. Insertion of the profile constants appropriate for a parabolic input velocity
profile shows that the maximum plug length is reduced by a factor of 0.43, so that
(L/D)max, corresponding to the Hill’s vortex, would be 3.39. The likely increase in the
vorticity associated with a parabolic profile would reduce this value even more. (We
note the numerical calculation by Rosenfeld, quoted by Gharib et al. (1998), which
suggests that the reduction factor is about 0.25 when a parabolic profile is used.)

To make a further direct comparison between the experimental and our calculated
results, we have plotted in figure 6 the dimensionless energy (cf. (7))

α =
TR

P
1/2
R K

3/2
R

, (10)

which is the same form as given in equation (1) of Gharib et al. (1998). Data from
figure 3 and the values of α calculated at discrete values of ε have been used to
plot α as a function of L/D for the Norbury family, and the corresponding plot for
the measurements with an impulsive ‘plug’ input have been transferred from Gharib
et al.’s (1998) figure 15. The points and the line drawn through them represent the
calculations, and the crosses are the experimental values. They lie virtually on the same
curve, corresponding to (7), and there is only a small difference when experiments
using other input conditions (i.e. motions of the piston) are considered.

The horizontal line drawn at α = 0.33, is that taken by Gharib et al. (1998) to be
the limiting non-dimensional energy αlim below which the vortices become unstable.
At this stage the limit αlim = 0.33 is an entirely experimental value; in order to justify
it theoretically one would need to carry out a ‘matching’ calculation, based now on
vorticity distributions such as that plotted in figure 14(c) of Gharib et al. (1998).
The agreement shown in figure 6 suggests, however, that the differences between the
experimental distributions of vorticity in the core and those assumed by Norbury are
relatively unimportant in setting this limit.
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Figure 6. The dimensionless energy α = TRP
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points and the line refer to the values obtained in our matching calculation, and the crosses are
from experimental data of Gharib et al. (1998).

4. Summary and discussion
Prompted by the experimental results recently published by Gharib et al. (1998),

we have presented calculations aimed at understanding the physical mechanisms
that determine the properties of vortices produced when fluid is ejected impulsively
from a pipe. The method of calculation consists of matching the properties of the
ejected fluid, the circulation, impulse, volume and kinetic energy, to the corresponding
properties of the family of finite-core vortices examined theoretically by Norbury
(1973). It is a ‘before’ and ‘after’ calculation, which does not consider the details
of the formation process. We find that there is a maximum length-to-diameter ratio
(L/D) of the plug such that a single vortex can form; for ratios above this a trail
of vorticity-containing fluid is left behind. This limitation on the aspect ratio implies
that, for fixed kinetic energy input, the member of a particular family of vortices
corresponding to the maximum L/D is the one that has the maximum dimensionless
core radius.

We regard these results as providing illumination on the physical principles govern-
ing the formation of vortices. The Gharib et al. (1998) experiments show that in fact
the limiting value of L/D is about 4. The value obtained by matching to the Norbury
vortices is close to this value, and the differences may be attributable to the different
vorticity distributions in the vortex cores – the measured profiles are more peaked
than those assumed by Norbury. It is also suggested that the vorticity-containing
fluid wraps into the vortex core, while irrotational fluid in the plug is carried along
with the ring.

Our explanation of the maximum plug aspect ratio (or formation number in the
terms used by Gharib et al. (1998)) is quite different from their explanation. Gharib
et al. (1998) and Mohseni & Gharib (1998) argue that the critical value is determined
by an energy constraint associated with the maximum energy carried by a vortex
when the two cores touch. For rings with thicker cores they suggest that vorticity is
left in the wake. However, it seems from their data (see Gharib et al. 1998, figure 14c)
that even at this limiting stage most of the vorticity is carried in two well-separated
cores. Our results show that the limit implied by matching the energy, impulse and
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circulation for the Norbury class of rings (figure 3) has not been reached, and it is
the volume constraint (figure 4) that is the determining factor.

These phenomena are relevant to two different situations in which a series of
vortices is observed to form, and the phenomena have been related to a Strouhal
number describing the rate of formation of vortices. The breakup of a circular jet
(Crow & Champagne 1971) can be considered in terms of vortices with the optimal
properties. Each vortex has formed from the maximum length of jet consistent with
the conservation of circulation, impulse, volume, and energy. A less obvious extension
is to the swimming of fish, which flap their tails and shed vortices at a rate that
corresponds to a Strouhal number of about 0.3. Such vortices also have the ‘optimal’
property of having the maximum impulse (or thrust) for a given energy input, and
they are as close as they can get without interfering.

The potential applications of the fish-swimming mechanism to propulsion of vehi-
cles are being actively studied by ocean engineers who want to learn more about this
mechanism and adapt it for the propulsion of vehicles (Triantafyllou, Triantafyllou &
Grosenbaugh 1993; Triantafyllou & Triantafyllou 1995). The efficiency of propulsion
by an oscillating foil has been measured as a function of frequency, and has been
found to be a maximum at a Strouhal number of about 0.3, in the same range as
swimming fish. But most of the thinking has been in terms of continuously flapping
foils, and the vortex ring ideas presented above suggest other questions to be explored.

An important implication of the present paper is that the repetition of vortex
production is not necessary for an individual vortex to have the ‘optimal’ character-
istics. For example a fish often makes a single flap of its tail, or two flaps in quick
succession, to change direction or swim a short distance. This can be compared to
the formation of a single vortex ring by projecting just the right length of a plug
from a pipe to produce the maximum impulse for a given energy input. The fish can
then wait as long as it likes before creating another ‘optimal’ vortex, which will again
have maximum efficiency in the sense that maximum thrust is produced for a given
expenditure of energy. The concept of Strouhal number only arises when we consider
how frequently this can be done before the vortices interfere with one another; it
gives an upper limit to the frequency of vortex ring production, but there is no lower
limit.

There is, of course, another form of propulsion used by marine animals that is
directly related to the production of vortex rings by expelling fluid from a tube.
Squid, salps and jelly fish propel themselves by a mechanism referred to by biologists
as ‘jet propulsion’, but the pulsating nature of the flow has been clearly recognized.
Siekmann (1963) has reported a theoretical study of a pulsating jet, and has applied it
to some laboratory data and to the swimming of squid. These, and other applications
of the optimal vortex ring to propulsion, will be examined in more detail in a future
paper.

We are grateful to Dr T. Fohl for several stimulating discussions on the subject of
this paper, and for keeping us up to date with the potential applications.
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