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Abstract

We describe a new laboratory technique that has been developed to examine the structure and
amplitude of internal waves. As well as being relatively inexpensive to set up, the technique is
sensitive to small density fluctuations: heat rising from a hand can easily be seen. If the internal
wave field is uniform across the span of the tank, then the density gradient field can be measured
non-intrusively everywhere in space and time. We use this technique to measure the amplitude of
internal waves generated by a circular cylinder that oscillates at an angle with the vertical, and we
examine how the amplitude and phase of the waves changes as a function of the angle of
oscillation. The experimental results are compared with analytic theory. Generally, the theory
agrees well with experimental results although some consistent discrepancies exist which in part
we attribute to the effects of a viscous boundary layer surrounding the cylinder. q 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Internal waves propagate due to buoyancy restoring forces acting in a density
Ž .stratified medium. Nastrom and Fritts 1992 have demonstrated by analysis of aircraft

records of atmospheric turbulence that the most significant source of internal waves in
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the atmosphere are in mountainous regions. The waves are generated by the flow of
Žwind over mountains which force the stratified air upward and downward e.g., see

.Lilly, 1971; Wurtele et al., 1996 . Likewise, in the ocean, internal waves have been
Žobserved to be generated near the continental shelf edge e.g., see Wunsch, 1975;

. Ž .Huthnance, 1989 , over sills such as the Strait of Gibraltar e.g., see Brandt et al., 1996 ,
Ž .and by flow over deep ocean ridges e.g., see Konyaev et al., 1995 . The linear theory

for internal waves generated by small amplitude forcing is well established for isolated
Ž . Ž .Long, 1955 and periodic Gill, 1982, Section 6 topography. In numerical models of
large-scale atmospheric and oceanic flows, linear theory is often employed to model the
generation of internal waves. However, if the horizontal and vertical scales of the
topography are comparable, the applicability of linear theory is drawn into question.

We have begun a program of research to evaluate the effectiveness of linear theory in
predicting the structure and amplitude of internal waves generated by a localised source.
We use a new experimental technique called ‘‘synthetic schlieren’’ that allows us for the
first time to measure non-intrusively the amplitude of spanwise-uniform internal waves
everywhere in space and time. If the waves are not spanwise-uniform, the technique
nonetheless provides an average measure of their spanwise properties. In the work
presented here, we examine the internal wave field produced by a circular cylinder
oscillating at a range of angles to the vertical. Although not directly applicable to the
study of mountain waves, this simple geometry provides an historically precedented
starting point. We compare our results with classic experiments performed originally by

Ž .Mowbray and Rarity 1967 , and we compare the observed amplitude of the waves with
Ž .the amplitude predicted theoretically by Hurley and Keady 1997 . In particular, by

determining where discrepancies occur between theory and the experimentally measured
structure and amplitude of the waves as a function of the amplitude and angle of
oscillation of the source, we are able to assess where models of the coupling between the
fluid response and the source may be improved.

Ž .Mowbray and Rarity 1967 examined internal waves generated by a vertically
oscillating circular cylinder in uniformly stratified fluid. Using a classical schlieren
technique, they showed that internal waves generated by an oscillating cylinder emanate
along four beams forming the pattern of a ‘‘St. Andrew’s Cross’’ with the cylinder at
the centre. Each beam is inclined at an angle Q to the vertical, this angle being
determined by the frequency, v, of the oscillations and the background buoyancy

Ž . 2frequency, N z . For a stratified Boussinesq fluid, the squared buoyancy frequency N
is given by

g d r
2N z sy , 1Ž . Ž .

r d z0

in which g is the gravitational acceleration, r is a reference value of density, and r zŽ .0

is the vertical profile of the background density as a function of height z. From the
Ž .linear dispersion relation for internal waves e.g., see Lighthill, 1978 , it can be shown

that if v-N, then

Qscosy1 vrN . 2Ž . Ž .
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A variety of studies have employed linear theory to predict the structure and
amplitude of the internal wave-beams generated by an oscillating source. For a vibrating

Ž .point source in inviscid fluid, Makarov et al. 1990 showed that wave motion is aligned
along beams of infinitesimal width, the shear across the beam being infinite. In a theory
including the effects of viscosity, this unphysical singularity does not occur. Viscosity
acts to attenuate and broaden the beam with distance from the source. Thomas and

Ž .Stevenson 1972 found a similarity solution for the beam attenuation, showing that the
beam width increases as r1r3 and the fluid displacement decreases as ry1 with distance

Ž .r from the cylinder. These results were confirmed experimentally by Peters 1985 . For
a finite-sized source, the width of the beams has been found to be comparable with the

Ž .source size Appleby and Crighton, 1986, 1987; Voisin, 1991; Hurley and Keady, 1997 ,
however, the qualitative structure of the beams varies depending on the ratio of the
source size d compared with the viscous length scale

1r3gÕŽ .
l s , 3Ž .v N

where Õ is the kinematic viscosity. If l <d, then, the beams are bimodal; that is, theyv

consist of two bands which emanate from the tangential extremities of the source
Ž .Kistovich et al., 1990; Makarov et al., 1990 . If l 4d, then, the beams are unimodal:v

the maximum amplitude is along the centre of each beam. If the viscous length scale is
relatively small so that the beams close to the cylinder are bimodal, then, Makarov et al.
Ž .1990 predicted that wave-beams would be attenuated by viscosity and have a unimodal
structure for r)R , wherev

g NR3
3 3R s R rl s , 4Ž .v v2 ÕN

in which R is the radius of the cylinder. For large rrR, however, the assumptions used
Ž .to derive Eq. 4 may not be valid, and it is possible for the transition from bimodal to

unimodal wave-beam structures to occur over a much shorter distance than R . Indeed,v
Ž .in their experiments of a vertically oscillating cylinder, Sutherland et al. 1999 have

shown that R significantly overestimates this transition distance.v

Recently, analytic solutions have been derived from linear theory of internal waves
generated by a cylinder that oscillates about a range of angles to the vertical in

Ž . Ž .uniformly stratified, inviscid Hurley, 1997 and viscous Hurley and Keady, 1997
fluid. A summary of the latter is given in Section 2. This theory employs the ‘‘boundary

Ž .layer approximation’’ of Thomas and Stevenson 1972 , in which it is assumed that
along-beam motions dominate over across-beam motions. Their solutions qualitatively
reproduce the transition from near-cylinder bimodal to far field unimodal beams.
However, the ‘‘boundary layer approximation’’ is inapplicable near the source where
viscous boundary layers surround the cylinder. With the synthetic schlieren technique it
is now possible to examine the range of accuracy of the theory when applied to
finite-amplitude waves with a finite-sized boundary layer surrounding the cylinder. In
experiments using the technique, we measure the amplitude and structure of the waves
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generated by an oscillating cylinder, and we compare our results with theory to evaluate
the effect of the boundary layer upon the far field evolution of the waves. This work, in
particular, examines how the structure and amplitude of the waves change when a
circular cylinder oscillates at different angles to the vertical.

In Section 3, we give a brief historical review of schlieren and interferometric
techniques and we describe how synthetic schlieren may be used to measure quantita-
tively the amplitude of a spanwise uniform internal wave field everywhere in space and
time. Section 4 describes the experimental results, and these are compared with theory in
Section 5. A summary is given in Section 6.

2. Theory

Here, we review the linear theory of internal waves generated by an oscillating
cylinder in viscous fluid, the analytic solutions for which have been found by Hurley

Ž .and Keady 1997 . We consider a cylinder oscillating with frequency r in a uniformly
stratified fluid with buoyancy frequency N. The displacement of the cylinder in time t is

Ž . Ž .given by A , A exp yiv t , in which A is the horizontal and A the verticalx z x z
Ž .component of the displacement vector. It is convenient to write the amplitude A , Ax z

Ž .sA ysin f, cos f , in which f is the angle of oscillation measured anti-clockwise
from the vertical as shown in Fig. 1. It is assumed that the resulting two-dimensional
wave field is oscillatory with frequency v and may be represented in terms of the

Ž . Ž .streamfunction c x, z exp yiv t . The Boussinesq approximation is employed and the

Ž .Fig. 1. A schematic showing the s ,r co-ordinate system for the down and rightward wave beam propagating
at an angle Q with the vertical.
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waves are assumed to be of small amplitude so that linear theory applies. Under these
Ž .assumptions, it can easily be shown that c x, z satisfies

E2c
2 2 2 4N yv = cq iv Õ= cs0. 5Ž .2Ex

The solution of this equation is found for c along the internal wave beam propagat-
Ž .ing downward and to the right of the cylinder. Eq. 5 is re-expressed in an orthogonal

Ž . Ž .co-ordinate system with axes in the along-beam r and across-beam s directions, as
Ž . Ž .shown schematically in Fig. 1. The relationship between r,s and x, z is given by

ssx cosQqz sinQ , rsx sinQyz cosQ , 6Ž .
Ž .in which Q is the angle the r-axis makes with the vertical. In the r,s co-ordinate

Ž .system, Eq. 5 is further simplified by applying the ‘‘boundary-layer approximation’’
Ž .Thomas and Stevenson, 1972 which assumes that gradients in the across-beam
direction are much larger than those in the along-beam direction. Thus, we obtain

E2c i Õ E4c
y q s0. 7Ž .4Es Er 2v tanQ Es

Ž .The solution to Eq. 7 for the right and downward propagating wave beam is given
by

`ARv J K r sŽ .1iŽQyf . 3cs e exp yK l q iK d K , r)0, 8Ž .H ž /2 K R R0

in which lsÕr2 R2v tan Q and J is the first order Bessel function of the first kind1
Ž .Hurley and Keady, 1997 . Effectively, c is determined from an integral over the
non-dimensional across-beam wavenumber K.

For comparison with experiments, we wish to find the solution in terms of the change
in the squared buoyancy frequency, which is related to the vertical gradient of the

Ž . 2 Ž .perturbation density field, r x, z , by D N sy grr d rrd z. Using linear theory, we0
2 Ž . 2Ž 2 .find that D N s yirv N E crExEz . Hence,

`yi 1
2 2 iŽQyf . 2 4 4 2 4 2

D N s ARN e y l k R q1 k sin2Qy ilk R cos2QŽ .H ž /2 20

=
J RkŽ .1 2 3exp yR k lrq iks dk , 9Ž . Ž .

k

Žwhere we have defined the dimensional across-beam wavenumber ksKrR Sutherland
.et al., 1999 . For fixed values of r, this integral is solved using a discrete fast Fourier

Ž .transform algorithm Press et al., 1993, Section 12.2 .

3. Experimental method

Synthetic schlieren is a new technique that is relatively inexpensive to set up, and
which provides a robust method for visualising and measuring small amplitude, two-di-
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mensional internal waves. Below, we briefly review other schlieren techniques, we
describe the set-up for the experiments reported here, and we explain how the amplitude
of internal waves is measured using synthetic schlieren. A detailed review of schlieren,
interferometric and similar techniques and a more general discussion of synthetic

Ž . Ž .schlieren is given by Dalziel et al. 1999 and Sutherland et al. 1999 .

3.1. ReÕiew of schlieren techniques

ŽSchlieren techniques Toepler, 1864; Mowbray and Rarity, 1967; Thomas and
.Stevenson, 1972 have often been used to visualise the field of internal waves produced

by an oscillating cylinder in salt-stratified water. The methods take advantage of the fact
that the index of refraction n of salt water varies as a function of salinity, and that light
rays passing through stratified fluid at angles close to the horizontal are deflected as they
propagate through fluid of varying refractive index. The degree to which they are
deflected depends upon the density gradient. An internal wave acts to stretch and
compress isopycnal surfaces and thereby change the local density gradient. The path
followed by light rays is thereby deflected to a greater or lesser degree.

In the classical schlieren technique, a light source reflects off a large parabolic mirror
to create parallel beams of light that pass through a test section of the tank filed with
salt-stratified water. A second parabolic mirror refocusses the beam, and a knife edge at
the focus removes parts of the beam that are deflected from their parallel path when
passing through the tank. The parabolic mirrors required to focus the beams are
expensive, difficult to set up, and allow a relatively small field of view.

Ž .The Moire fringe method Sakai, 1990 operates in a similar manner to classical´
schlieren, but replaces the pair of parabolic mirrors and knife edge by a pair of
accurately aligned masks. These masks consist of a set of parallel lines and are normally
aligned so that 50% of the light passing through the first mask on one side of the test
section is stopped by the second ‘‘analysing’’ mask on the other side of the test section.
Due to camera parallax, the lines on the mask in front of the tank are more closely
spaced than those to the rear of the tank. The Moire fringe method is cheaper to´
implement and may be scaled up to cover larger domains more readily than classical
schlieren. The main difficulty is that the alignment between the apparent position of the
mask behind the tank and the analysing-mask in front of the tank is critical and
non-trivial, especially if light entering the camera is not approximately parallel or if the
stratification is non-uniform so that the line spacings are not related by a simple scale
factor.

The synthetic schlieren method overcomes this difficulty by eliminating the need for
the analysing-mask used in the Moire fringe method. It does so by creating a ‘‘virtual’’´
mask that is generated digitally. Thus, synthetic schlieren is not only more robust, but
also capable of quantitatively measuring wave amplitudes. Details of how the method
works and how quantitative measurements are made are given in Section 3.2.

3.2. Set-up of experiment and synthetic schlieren

Ž .Fig. 2 shows the typical set-up not to scale of an experiment using synthetic
schlieren to visualise internal waves. Light rays, which emanate from an image
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Fig. 2. Schematic showing the set-up used for synthetic schlieren. The three solid lines from the light source to
the camera represent light rays which pass through a tank of salt-stratified water. The small dashed lines

Ždeparting from the centre ray represents the deflected ray path taken if the density gradient and hence the
.squared buoyancy frequency changes due to internal gravity waves.

back-illuminated by a rack of fluorescent tubes, pass at angles close to the horizontal
through a tank filled with salt stratified water. The deflected rays then enter a CCD
camera, and the resulting signal is either recorded directly to tape or is digitally
processed through a frame-grabber card and stored on hard-disk using ‘‘DigImage’’, an

Ž .image processing software package Dalziel, 1992 . The digitised intensities are as-
signed integer values between 0 and 255. In these experiments, the illuminated image is
a grid of horizontal black and white lines from which it is possible to determine changes
in the vertical density gradient of the fluid. An image of a random pattern of dots may
also be used, in which case it is possible to measure simultaneously the horizontal and

Ž .vertical density gradients Dalziel et al., 1999 . The camera is placed as far from the
tank as practical, typically about 350 cm away, so as to minimise the angle with which
the light ray enters the camera. For these experiments, the angle is less than approxi-
mately 28. An initial digitised image is recorded to calibrate the light source. During an
experiment, departures from the initial intensities are recorded and used to visualise and
measure the wave amplitudes.

Experiments are performed in a tank with test section 20 cm wide by 40 cm tall. The
length of the test section is over 200 cm long so that end effects are negligible. Using a
double bucket system, an approximately uniform stratification is established with
N 2 ,1"0.1 sy2 over 35 cm depth. A circular cylinder of radius Rs1.67 cm is
suspended with its centre approximately 25.7 cm above the bottom of the tank and is
oriented so that its horizontal axis spans the width of the tank. The cylinder is
constructed from a PVC tube with removable ends which allow it to be partially filled
with water in order to reduce its effective weight when suspended underwater. The
cylinder is supported by a thin metal rod attached to its centre.

The other end of the rod is attached 45 cm along a sinusoidally oscillating arm by a
hinge, and the rod itself is confined to pass through a rigid guide so that the cylinder
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undergoes approximately sinusoidal oscillations along a line. When oscillating verti-
cally, the peak to peak displacement of the cylinder is 0.64 cm, approximately 20% of
the cylinder diameter. The amplitude A is defined to be the maximum displacement of
the cylinder from its equilibrium position. For a vertically oscillating cylinder, As0.32
cm, and for a cylinder that oscillates along an axis at an angle f to the vertical, the

Ž .amplitude is As0.32 cosf cm. The flow about the cylinder is laminar for all
oscillation frequencies and amplitudes examined. Time series constructed from images
of the moving cylinder confirm that it moves sinusoidally; power spectra exhibit
negligible amplitude outside a narrow range about the oscillation frequency.

The results of a typical experiment are shown in Fig. 3. Here, the cylinder oscillates
vertically with frequency v,0.35 sy1. Fig. 3a shows the digitised image taken by the
camera before the cylinder begins oscillating. The image shows the end view of the
cylinder, the suspending rod and the illuminated grid of horizontal lines behind the tank.
Fig. 3b shows the image taken after the cylinder has completed four oscillations and is
moving downward through its equilibrium position. Although Fig. 3a and b are similar,
minute displacements of the lines near the cylinder are clearly visible. Indeed, although
not visible to the naked eye, the lines far from the cylinder are displaced due to the wave
field. The discrepancy between Fig. 3a and b is made apparent by determining the
absolute value of the difference between the intensities of each pixel in the two

Fig. 3. Internal waves generated by a vertically oscillating cylinder visualised by synthetic schlieren. The side
Ž . Ž .view of the cylinder and background grid lines is shown a before the cylinder starts moving and b after it

Ž .has oscillated four times. Image c is produced by subtracting and scaling the intensities of the images shown
Ž . Ž . Ž . 2 Ž . Ž .in a and b . In d , the D N field is shown as calculated from the images shown in a and b . The values

Ž . y2 Ž .corresponding to the gray scale range from y0.15 black to 0.15 s white . See the text for more details.



B.R. Sutherland et al.rDynamics of Atmospheres and Oceans
( )31 2000 209–232 217

diagrams. Fig. 3c is produced by performing this operation over the entire field and
multiplying the result by a scaling factor of 20. The image shows the internal wave field
consisting of four beams. The figure shows that the amplitude of the waves near the
cylinder is largest along tangents to the cylinder parallel to the direction of the beam and
is small along a line through the centre of each beam. The viscosity length-scale given

Ž .by Eq. 3 is l ,10 cm in this experiment, which is much larger than the cylinderv
Ž .diameter 2 R,3.3 cm. Thus, on the basis of Makarov et al. 1990 , the beam near the

cylinder is expected to be bimodal, a result consistent with experiments. The arithmetic
operations used to determine this image may be performed in real time thus allowing
continuous visualisation of the internal wave field during the course of an experiment.

Ž .Although qualitative information e.g., the frequency and angle of the wave beams
may be derived from an image such as that in Fig. 3c, the image does not directly reveal
any quantitative information about the amplitude of the waves. As shown in Section 4,
however, it is possible to relate the intensity change of a pixel to the deflection of a light
ray, and from this calculate the density gradient field. Fig. 3d shows the result of this
calculation determined from the images in Fig. 3a and b. The figure shows the change in

2Ž .the squared buoyancy frequency field D N x, z . The field is shown as a gray-scale for
Ž . y2 Ž .values ranging from y0.15 black to 0.15 s white . Inspection of this field shows,

for example, that the density gradient changes by as much as 10% close to the cylinder.
The details of how the D N 2 field is calculated are given below.

3.3. QuantitatiÕe measurement of internal waÕe amplitudes

Consider the path followed by a light ray passing from the camera through the tank to
Ž .the image, as shown in Fig. 2. The x, y, z co-ordinate system is oriented with z

vertical, y horizontal across the span of the tank toward the image, and x horizontal in
the along-tank direction to the right facing the image. It is assumed that the variations of
refractive index in the y-direction through the tank are negligible. This assumption is
reasonable due to the geometry of the experimental set-up. The only spanwise variations
that do, in fact, occur are within the boundary layers at the side walls of the tank. From
boundary layer theory, the total thickness of the two layers is approximately 2 mm, or
about 1% of the tank width. Although such research has not yet been performed in
detail, it is worth noting that synthetic schlieren could also be used to visualise internal
waves that are not spanwise uniform, such as those generated by an oscillating sphere.
In this case, the deflected light ray would yield some measure of the average variation of
n across the span of the tank. A detailed discussion of this circumstance is beyond the
scope of the present paper.

In order to simplify this discussion for the oscillating cylinder, as well as assuming
the refractive index is independent of y, it is assumed that the path of the light ray lies
in the y–z plane. A more general treatment, including deflections in the x direction is

Ž .given by Sutherland et al. 1999 . If the ray passes through the tank with a small positive
angle to the horizontal, then, as it propagates upward into less dense fluid the index of
refraction is smaller, and the ray is refracted towards the horizontal. Specifically, the
path taken by the ray satisfies Snell’s Law,

n coswsconstant, 10Ž .
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Ž . Ž .in which nsn z is the index of refraction and wsw y, z is the angle the ray makes
with the horizontal. The angle is given in terms of the slope of the ray with the
horizontal by

d z
s tanw . 11Ž .

d y

Combining these gives a differential equation for z in terms of y. Explicitly, taking the
Ž . Ž .y-derivative of Eq. 10 and using Eq. 11 it is found that

Ew nX zŽ .
s . 12Ž .

E y n zŽ .
Ž . Ž . < <Then, taking the y-derivative of Eq. 11 and using Eq. 12 and the fact that w -28,

the equations simplify to

d2 z nX zŽ .
s , 13Ž .2 n zd y Ž .

the solution of which describes the path taken by the light ray through the tank
Ž .Sutherland et al., 1999 .

In the absence of strong mixing or layering, it is valid to assume that the refractive
Žindex varies linearly over the small depth traversed by the light ray typically less than 1

. Ž .cm and that the refractive index varies linearly with density Weast, 1981 . Then, after
Ž .some simplification of the solution to Eq. 13 , the vertical displacement of the ray, z, is

found as a function of the spanwise distance across the tank y:
1

2 2z y ,y tanw y g N y , 14Ž . Ž .i 2
where w is the angle to the horizontal of the ray entering the tank on the camera side,i

and
1 r dn0 y4 2gs ,1.878=10 s rcm, 15Ž .
g n d p0

in which n is a reference value of the index of refraction.0
Ž .Eq. 14 shows that the effect of stable stratification is to bend a nearly horizontal

Ž .light ray along a concave downward parabolic arc. Thus, a local increase in the density
gradient in the tank acts to deflect a light ray downward, and the image behind the tank
appears to shift upward. Because the angle of the ray leaving the tank changes, the
farther the image is positioned behind the tank the greater its apparent vertical
displacement.

Quantitative measurements of the density gradient field are obtained by relating it to
the apparent displacement of horizontal grid lines in the image. By the repeated
application of Snell’s Law as the light ray passes from the grid to the camera, the change
in the squared buoyancy frequency is found as a function of the apparent vertical
displacement field D z of the image:

y11 1 nwater2 2
D N ,yD z L qL L , 16Ž .tank tank screen

g 2 nair
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in which n and n are the refractive indices of air and water, taken to be 1 andair water

1.333, respectively, L ,20.0 cm is the width of the tank, and L ,34.2 cm is thetank screen

distance between the tank and the image. Here, the thickness of the tank walls is
Ž . 2assumed to be negligibly small. Substituting these values in Eq. 16 gives D N ,

2Ž . Ž . y2y0.2D z, in which the fields of D N x, z and D z x, z are measured in units of s
and cm, respectively.

The experiment is set up so that a pixel appears to shift vertically by no more than its
height. Knowing the position and intensities of three vertically aligned pixels, the
vertical displacement of the centre pixel is estimated by quadratic interpolation. Specifi-
cally, if during an experiment the intensity I X of a pixel changes from its initial value I ,0

then, the apparent displacement is

I X y I I X y I I X y I I X y IŽ . Ž . Ž . Ž .0 1 0 y1
D zs z yz q z yz . 17Ž . Ž . Ž .y1 0 1 0I y I I y I I y I I y IŽ . Ž . Ž . Ž .y1 0 y1 1 1 0 1 y1

in which z , z and z are the co-ordinates of the centres of the three pixels, and I ,y1 0 1 y1

I and I are the respective initial intensities. Note, if there is no intensity change of the0 1
Ž X . Ž .middle pixel that is, if I s I , then, D zs0. Eq. 17 is solved only if I - I - I or0 1 0 y1

I - I - I , and the intensity contrast across the three lines is sufficiently large:y1 0 1
< <I y I )D I , in which the threshold D I is set explicitly. Typically, D I s10.1 y1 min min min

Ž . 2Once D z has been determined, Eq. 16 is applied to determine D N . Points for
which D z could not be calculated are determined by working out the weighted average
of the neighbouring calculated values. A Gaussian weighting factor is used, its magni-
tude decreasing with increasing distance from the center pixel being determined. The
image is then filtered and averaged in order to reduce noise, as described below.

Even though a single pixel typically spans a vertical distance of 0.05 cm in the
experiments reported here, it is estimated that apparent displacements corresponding to

Ž .approximately 1r25 of the pixel spacing 0.002 cm can be visualised. For typical
experiments, the noise filtered D z field provides quantitative measurements accurate to

Ž . 2"0.01 cm. As a result, using Eq. 16 and the experimental data that follows it, D N
can be detected in theory for values as small as 0.002 sy2 . However, the actual error in
the measurement of D N 2 is significantly greater due to noise, which is dominated by
rapid variations in the temperature of the laboratory, degradation of the image quality
through storage on video tape, and changes in the light source intensity.

In order to reduce noise effectively, vertical time series are constructed from video
images. Pixel scale noise is reduced by replacing each pixel value with the spatio-tem-
poral average of the surrounding 5 by 5 square pixel region. The result is then put
through a low pass filter in the time domain to reduce contamination of the signal due to
temperature variations, and the mean value in time is subtracted to reduce the effect of
gradually increasing temperatures and light intensities. This is done for a range of
vertical time series determined along a sequence of horizontal positions. After filtering,
the two-dimensional spatial field of view is reconstituted at particular times.

Before filtering, the standard deviation in values of D N 2, determined from calibra-
tion test images is approximately 0.05 sy2 . After filtering the resulting measurements
have an associated error of 0.01 sy2 . This estimate is determined by noting that the
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dominant noise signal at a particular pixel is reduced at the first step by averaging over
25 surrounding pixels.

In some circumstances, it is convenient to estimate the time derivative of the N 2

field, N 2. Effectively, N 2 is a measure of the rate of stretching and compression oft t

vertical density gradients. It is calculated from a finite difference approximation to the
time derivative by determining D z at successive times spaced at intervals much less

Ž .than the period of the wave-motion. Sutherland et al. 1999 have demonstrated that the
basic state fields of perturbation density and horizontal and vertical velocity may be
estimated from the D N 2 and N 2 fields. In order to assist in developing an intuition fort

these relationships, here, we present them for the special case of plane periodic internal
Ž .waves with frequency v and wavenumber vector k ,k :x z

usyirk N 2rN 2 ; vs irk N 2rN 2 ;Ž . Ž .x t z t

rsr irgk DN 2 ; and zs irk D N 2rN 2 . 18Ž . Ž .Ž .0 z z

In the last of these relationships, z is the vertical displacement field associated with the
internal waves. Note that each basic state field is phase-shifted by "pr2 from the D N 2

and N 2 fields.t
Ž .The relationships given by Eq. 18 may be used as a double check on the

experimental results. For example, by tracking the horizontal displacements of a vertical
Ž .line of dye e.g., from a dropped potassium permanganate crystal , an independent

measure of the horizontal velocity field can be determined and compared with u,
Ž .determined from Eq. 18 . An analysis of this kind was performed by Sutherland and

Ž .Linden 1998 .

4. Qualitative results

Using the synthetic schlieren technique, we have performed a range of experiments to
study the structure and amplitude of internal waves generated by a cylinder oscillating at
an angle f to the vertical. In each experiment, the cylinder is positioned near zs25 cm
above the bottom of the tank. Before the experiments are performed, a conductivity
probe is traversed downward through the fluid to measure the density profile. The probe
moves downward at 4 cmrs taking samples at a rate of 100 Hz. The density profile for
the experiments reported here is shown in Fig. 4a. Fig. 4b shows the profile of the
squared buoyancy frequency calculated from the density profile. The figure shows that
N 2 ,1 sy2 at the depth of the centre of the cylinder, and is moderately larger
Ž 2 y2 .1-N -1.2 s below the cylinder.

Ž .Fig. 5 shows the wave-beams emanating from a cylinder oscillating at angles a
Ž . Ž . Ž .fs08, b 15.88, c 22.68 and d 36.88 from the vertical. The angle of oscillation

increases counter-clockwise from the vertical for larger values of f. In each experiment,
the cylinder oscillates at a frequency v,0.53 sy1, thus, producing four wave-beams
each of which is expected to emanate from the cylinder at an angle Q,588 to the
vertical. In each diagram, the wave field is shown over a region extending from
y8-x-8 cm to y10-z-2 cm. The cylinder, which is centred at the origin, is
superimposed in white. Note that the camera is centred approximately 4 cm below the
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Ž . Ž .Fig. 4. Initial experimentally measured vertical profiles of a density and b the squared buoyancy frequency.

centre of the cylinder: the image is recorded of both the end and underside of the
cylinder and, thus, the vertical extent of the cylinder appears larger than its actual radius.
The contours show values of the D N 2 field associated with the internal waves after the
cylinder has completed at least four oscillations and it is moving downward through its
equilibrium position. The contours range from y0.12 to 0.12 sy2 , as illustrated. The
most obvious effect of changing the angle of oscillation is to change the relative phase
of the downward right and left propagating internal wave-beams. When fs0.0, the two
beams are symmetric about a vertical line through the centre of the cylinder. The upward
and downward propagating beams to the right of the cylinder are approximately
anti-symmetric about a horizontal line through the centre of the cylinder. The same is
true of the upward and downward propagating beams to the left of the cylinder.

When the cylinder oscillates at an angle to the vertical, the symmetry is broken
between the downward right and left propagating wave-beams. The relative phase of the
beams changes so that, for example, the amplitude of the D N 2 field on the lower flank
of the left propagating wave-beam is smaller compared with the right propagating
wave-beam as f increases. The change in phase with increasing f of the upward and
downward propagating waves is also apparent to the right and left of the cylinder. When
fs08, there is a positive and negative peak in the D N 2 field approximately 0.5 cm
above and below the line zs0, respectively. When fs36.88, there is a negative peak
centred just below the line zs0 to the right of the cylinder and a positive peak centred
just above the line zs0 to the left of the cylinder.

To demonstrate the phase change in more detail, Fig. 6 shows four time series
constructed from a cross-section along a vertical line directly below the cylinder centre
along xs0. The experiments from which each diagram is determined correspond with

Ž . Ž . Ž . Ž .those shown in Fig. 5 with a fs08, b 15.88, c 22.68 and d 36.88. The cylinder
oscillates at a frequency v,0.72 sy1 in each case. The time evolution of the waves is
shown over 20 s from y6FzFy1 cm, the time series ending when the cylinder
moves downward through its equilibrium position. The contours show the time rate of
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2 Ž . Ž . Ž .Fig. 5. D N field about a cylinder oscillating about an angle f to the vertical with a f s0.08, b 15.88, c
Ž . y122.68, and d 36.88. In each case, the cylinder oscillates at frequency 0.53 s , which generates internal waves

that propagate at angles Q ,588 to the vertical.

change of the squared buoyancy frequency field N 2 with values ranging from y0.25 tot

0.25 sy3, as illustrated. In each diagram, the lines of constant phase propagate upward
with increasing time. This behaviour is expected because internal waves with downward
group velocity have upward phase speed.

The pattern of waves illustrates the effect of changing f upon the relative phases of
the right and left propagating wave-beams. Consider the time and depth at which the
maximum and minimum value of N 2 occurs. Although it is not clear precisely wheret

Ž .the maximum occurs in the case with fs08 Fig. 6a , both the positive and negative
peaks occur at depths between zsy4 and y3 cm. For successively larger values of f,
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Fig. 6. Time series of a vertical cross-section taken directly beneath the cylinder at xs0 for the cylinder
y1 Ž . Ž . Ž .oscillating with frequency 0.72 s about an angle f to the vertical with a f s0.08, b 15.88, c 22.68 and

Ž .d 36.88.

the depth and phase of the cylinder oscillation for which the negative peak value of N 2
t

occurs is approximately the same: the peak occurs near zsy3 cm at a time when the
cylinder moves upward through its equilibrium position. However, the positive peak
value of N 2 occurs at a time closer in phase to the negative peak and it occurs att

Ž . Ž .shallower depths z)y3 cm . In particular, when fs36.88 Fig. 6d , the peak is
situated near the base of cylinder at about zsy2 cm and occurs shortly after the
cylinder begins to move upward from its deepest displacement. Thus, as the cylinder
oscillates at angles further from the vertical, the interference between the left and right
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wave-beams is more destructive. Indeed, linear theory predicts that if the cylinder
oscillates horizontally, the N 2 field of the two beams should destructively interferet

along xs0.

5. Comparison with theory

A range of experiments have been performed in which we compare observations and
theory for internal waves generated by a cylinder oscillating with different amplitudes
and a range of angles to the vertical. Future work will examine how the wave field
depends upon the shape of the cylinder itself.

A detailed study of the dependence of the internal wave field amplitude upon the
Ž .amplitude of a vertically oscillating cylinder is given in Sutherland et al. 1999 . In this

paper, we review the comparison of experiments with the theory of Hurley and Keady
Ž .1997 for the structure of the wave field produced by a cylinder oscillating vertically at
four different frequencies. We then examine how the structure of the wave field depends
upon the angle of oscillation with the vertical. Future work will examine how the wave
field depends upon the shape of the cylinder itself.

5.1. Cylinder oscillating at different frequencies

Fig. 7 shows the downward and right propagating internal wave beam generated from
Ž . y1 Ž . y1 Ž .a cylinder that oscillates vertically at frequencies a vs0.15 s , b 0.35 s , c 0.53

y1 Ž . y1s and d 0.72 s . Because linear theory predicts that density perturbations scale with
the cylinder amplitude it is convenient to show contours of the D N 2 field normalised by
the cylinder amplitude As0.32 cm. The contours range from y0.5 to 0.5 sy2 cmy1. In
each case, the fields are shown as the cylinder moves downward through its equilibrium
position. The waves are shown in a frame of reference rotated anti-clockwise by an
angle 908yQ , with Q determined so that in each case the lines of constant phase ofr r

the right and downward propagating beams between 10FrF15 cm are, on average,
Ž . Ž . Ž . Ž .horizontal. In a Q s78.98, b 66.18, c 54.28 and d 39.48. In this frame, ther

Ž . Ž .horizontal r axis is the along-beam direction and the vertical s axis is the
across-beam direction oriented so that s)0 corresponds with the upper flank of the

Žwave beam. Note, this orientation for s is opposite to that used by Hurley and Keady
Ž . .1997 .

The buoyancy frequency of the fluid is N,1.02"0.04 sy1, determined from the
Ž .mean and standard deviation of the experimentally measured N z profile for 10FzF30

cm. From linear theory, the corresponding angle of propagation of the beams with the
Ž . Ž . Ž . Ž .vertical is expected to be a Q,81.5"0.38, b 69.9"0.88, c 58.7"1.58, and d

45.1"2.48, respectively, for the four diagrams in Fig. 7. Although Q ,Q is expected,r
Ž . Ž . Ž .we find that Q is consistently smaller than Q : in a DQ,2.68, b 3.88, c 4.58 andr

Ž .d 5.78, in which DQsQyQ . The reason for this discrepancy is unclear. Parallax,r

while playing a small role, does not account for the observed apparent deflection of the
beam. It is possible that the deflection occurs because the width of the beam is

Žcomparable with the scale of the background buoyancy frequency variations Sutherland
.and Linden, 1999 , or that it is an artifact of the broadening beam as it attenuates.
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Fig. 7. Normalised D N 2r A field for a vertically oscillating cylinder with amplitude A, oscillating at
Ž . y1 Ž . y1 Ž . y1 Ž . y1frequencies a v s0.15 s , b 0.35 s , c 0.53 s and d 0.72 s . The background buoyancy

y1 Ž .frequency is N ,1.02"0.04 s . The right and downward propagating beam of waves is shown in a r,s
co-ordinate system. The vertical dashed line at r s9R indicates where a cross-section is taken for comparison
with theory.

In experiments performed with the cylinder oscillating at frequency v,0.72 sy1,
upward propagating waves reflect from the water surface and significantly interfere with
the wave beams that propagate downward from the cylinder. The interference between
the reflected and downward propagating wave beams can be seen in Fig. 7d. Here, the
positive and negative peaks above s,2 cm are associated with the reflected waves.
The lower flank of the reflected beam interferes with the upper flank of the downward
propagating beam originating from the cylinder at about s,2 cm, but the interference
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Ž .is negligible on the lower flank of the beam s-0 cm . In general, the diagrams show
that the amplitude of the waves is larger if the cylinder oscillates with larger frequency.

Ž .Fig. 8 shows the amplitude of the observed dashed line and theoretically predicted
Ž .solid line wave field determined from the four experiments shown in Fig. 7. The plots
of D N 2rA are shown along cross-sections perpendicular to the beam, centred at a
distance 9R from the centre of the cylinder as indicated by the vertical dashed line in
each diagram of Fig. 7. The distance is chosen to be sufficiently far along the wave
beam from the cylinder that the superposition of the upward propagating wave beam
upon it can be neglected in the case with vs0.35 sy1. The structure of the wave beam

Ž .at a range of distances from the cylinder is examined by Sutherland et al. 1999 .
In each diagram, the range of experimental error is indicated in the top left-hand

corner. From the estimates given at the end of Section 3.3, the error in the amplitude is

Ž . Ž . 2Fig. 8. Comparison between theory solid line and experiment dashed line of the normalised D N r A field
along a cross-section perpendicular to the beam taken nine cylinder radii from the source. The cross-sections
are taken from the corresponding diagrams in Fig. 7. The vertical dashed lines in each plot indicate the radius
of the cylinder. The ranges shown in the top left corner of each plot indicate the experimental error.



B.R. Sutherland et al.rDynamics of Atmospheres and Oceans
( )31 2000 209–232 227

given by "0.01rA,"0.03. The error in time is estimated by assuming the desired
phase of the waves can be determined within 0.5 s of the actual time at which they
occur.

In each of the four cases shown, the across-beam structure is well reproduced by the
Ž . y1theoretical prediction given by Eq. 9 . In the case with vs0.15 s , the theoretical

structure of the upward propagating wave beam is superimposed, as it is necessary in
this case to account for interference of the upper and lower beams at rs9R. In Fig.
8a–c, the discrepancies between theory and experiment are within experimental error. In
Fig. 8d, the differences between experiment and theory for s)1 cm may be attributed
to the interference of the surface reflected wave beam with the upper flank of the
downward propagating wave beam, as discussed above.

Although the theoretically predicted amplitude is within errors, in general, some
consistent discrepancies exist. We find that in each case the width of the beam is
underpredicted by theory by approximately 10"6%. This discrepancy is examined

Ž .more closely by Sutherland et al. 1999 , who argue that it occurs because linear theory
neglects the viscous boundary layers surrounding the cylinder, that effectively act to
increase the size of the source. This is not to say that a theoretical solution, rescaled to
account for the effective increase in size of the source, would be sufficient to predict
accurately the experimental results. For example, whereas the width of the beam is
consistently underpredicted, as shown below, the amplitude of the waves is apparently
both over- and underpredicted, depending on the wave frequency.

A comparison between the experimental and theoretical profiles shows that theory
overpredicts the peak positive amplitude observed on the upper flank of the beam,
except in the case with v,0.15 sy1. This discrepancy is believed to be an artifact of

Ž .errors in the time "0.5 s at which the images are analysed from video images of the
experiment. As a result, the phase of the waves may differ from theory by as much as
6%.

However, what cannot be attributed to such an artifact is that theory overpredicts the
peak-to-peak amplitude of the waves by approximately 5% for the case with the cylinder

y1 Ž . y1 Žoscillating with frequency v,0.53 s Fig. 8c . For the case with v,0.72 s Fig.
.8d , the theoretically predicted peak amplitude on the upper flank of the beam is more

than twice as large as the experimentally determined amplitude. This occurs because
waves that have reflected downward from the surface of the tank interfere with the
downward propagating beam emanating from the cylinder. Nonetheless, by analysis of a
range of experiments, not reported here, we find in general that theory overpredicts the
amplitude of large frequency waves. Although it is possible that this discrepancy may be

Žan artifact of the way in which the experimental data is noise-filtered the procedure
.acting to smooth the observed profiles , it seems likely that the amplitude of the waves

would be smaller in experiments in part because a fraction of the energy associated with
them is dissipated in the boundary layer surrounding the cylinder. A more detailed study
of the boundary layer dynamics is necessary to determine how.

In general, though not clear from Fig. 8a, we also find that theory moderately
Ž .underpredicts the amplitude of small frequency waves. Sutherland et al. 1999 argue

that this may be the result of wave-wave interactions that occur over the relatively large
region where the upward and downward propagating wave beams overlap.
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5.2. Cylinder oscillating at an angle with the Õertical

Fig. 9 shows the structure of the downward and right propagating wave beam
Ž . Ž . Ž . Ž .generated by a cylinder oscillating at angles a fs0.08, b 15.88, c 22.68 and d

36.88 to the vertical. The fields are shown as the cylinder moves downward through its
equilibrium position. In each case, the cylinder oscillates at frequency v,0.35 sy1, and

Ž .the amplitude of oscillation is given by A,0.32 cosf cm. As in Fig. 7, the diagrams

Fig. 9. Normalised D N 2r A field for a cylinder oscillating with amplitude A about an angle f to the vertical
Ž . Ž . Ž . Ž .with a f s08, b 15.88, c 22.68 and d 36.88. In each case the cylinder oscillates at frequency v ,0.35

y1 y1 Ž .s and the background buoyancy frequency is N ,1.02"0.04 s . The waves are shown in a r,s
co-ordinate system, rotated by counter-clockwise about an angle Q so that the downward and rightr

Ž . Ž . Ž . Ž .propagating wave beam is approximately horizontal. In a , Q s66.18, b 68.48, c 70.18 and d 70.08.r
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2 Ž .show contours of D N rA in a r,s co-ordinate system rotated counter-clockwise by
an angle 908yQ , so that the beams in this system are approximately horizontal. Ther

contours range from y0.50 to 0.50 sy2 cmy1. From linear theory, we expect the beams
to propagate at an angle Q,70.4"1.08 from the vertical. However, we find the angle

Ž . Ž .of propagation to the vertical is consistently less by an amount a DQs4.38, b 2.08,
Ž . Ž .c 0.38 and d 0.48.

The experimental results are compared with theory in Fig. 10. along a span-wise
cross-section taken at rs9R, as indicated by the dashed line on each diagram of Fig. 9.

2 Ž .The normalised D N rA fields determined theoretically solid line and experimentally
Ž .dashed line are shown. The agreement between theory and experiment is generally
good in each case. However, the predicted width of the beam is consistently smaller than
the observed width. Based on the distance between the two positive peaks, we find that
the theory underpredicts the experimentally determined width by approximately 7"4%.

Ž . Ž . 2Fig. 10. Comparison between theory solid line and experiment dashed line of the normalised D N r A field
along a cross-section perpendicular to the beam taken nine cylinder radii from the source. The cross-sections
are taken from the corresponding diagrams in Fig. 9. The vertical dashed lines in each plot indicate the radius
of the cylinder. The ranges shown in the top left corner of each plot indicate the experimental error.



B.R. Sutherland et al.rDynamics of Atmospheres and Oceans
( )31 2000 209–232230

In addition, we find that theory underpredicts the peak positive amplitude of the
waves on the lower and upper flank of the beam in all four cases. We attribute this
discrepancy in part to errors in the time at which the analysed image is taken from
video, as discussed above. In all four experiments, the theoretically determined peak-to-
peak amplitude is moderately larger than that observed in experiments.

6. Conclusions

We have described a new ‘‘synthetic schlieren’’ technique for visualising and
quantitatively measuring the amplitude of nominally two-dimensional internal waves.
The technique is more robust than previously existing visualisation techniques in that it
is relatively inexpensive to set up, it allows a wider field of view, and provides
non-intrusive measurements of the amplitude of a quasi-two-dimensional wave field
continuously in time. Furthermore, the technique is highly sensitive. In the experiments
reported here, for example, fluid parcels displaced vertically by distances as small as
0.01 cm can be detected, and density gradient changes as small as 1% of the ambient
density gradient can be measured.

Using this technique, we have performed experiments with a cylinder oscillating at a
range of frequencies along an axis inclined to the vertical. Comparing the results with

Ž .the theoretical predictions of Hurley and Keady 1997 , we find generally good
agreement. The difference between the theoretical and experimentally measured ampli-
tudes is well within experimental error across the width of the beams measured nine
radii from the source, except in cases where the beams are contaminated by surface-re-
flecting wave beams. When comparing theory with a range of experiments, however,
consistent though small discrepancies are found to exist.

We find that the width of the wave-beam is underpredicted by theory by as much as
10%. We believe this is due to the viscous boundary layer around the cylinder not being
included in current theories for the structure of these waves. Viscous boundary layers act
effectively to increase the size of the source. Indeed, order of magnitude estimates of the

Ž .boundary layer size by Sutherland et al. 1999 agree with the observed difference in
width between theory and experiment.

Both theory and experiment show that the amplitude of the waves increases as a
function of frequency, but is a weak function of the angle of oscillation of the source.
However, theory moderately overpredicts the peak to peak amplitude of large frequency
waves. This is attributed in part to viscous dissipation in the boundary layer surrounding
the cylinder, which is not accounted for in theory. It is also found that, in general, theory
underpredicts the peak-to-peak amplitude of low frequency waves. The reason for this is
unclear at present but may result from changes to the structure of the wave beam due to
weakly non-linear interactions between the upward and downward propagating waves,
which overlap over a relatively large region when forced at low frequency. In ongoing
research, such finite amplitude effects are being examined both experimentally and
numerically for vertically oscillating elliptical cylinders.

To understand the effects of the boundary layer in more detail, a variation of the
synthetic schlieren technique is presently being used in which, rather than measuring the
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displacement of horizontal lines, the displacement of a random array of dots is tracked
Ž .Dalziel et al., 1999 . With this set up, it will be possible to improve the resolution of
measurements of the fluid motion in the boundary layer.
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