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This paper describes an experimental investigation of mixing due to Rayleigh–Taylor
instability between two miscible fluids. Attention is focused on the gravitationally
driven instability between a layer of salt water and a layer of fresh water with par-
ticular emphasis on the internal structure within the mixing zone. Three-dimensional
numerical simulations of the same flow are used to give extra insight into the be-
haviour found in the experiments.

The two layers are initially separated by a rigid barrier which is removed at the start
of the experiment. The removal process injects vorticity into the flow and creates a
small but significant initial disturbance. A novel aspect of the numerical investigation
is that the measured velocity field for the start of the experiments has been used to
initialize the simulations, achieving substantially improved agreement with experiment
when compared with simulations using idealized initial conditions. It is shown that the
spatial structure of these initial conditions is more important than their amplitude for
the subsequent growth of the mixing region between the two layers. Simple measures
of the growth of the instability are shown to be inappropriate due to the spatial
structure of the initial conditions which continues to influence the flow throughout
its evolution. As a result the mixing zone does not follow the classical quadratic time
dependence predicted from similarity considerations. Direct comparison of external
measures of the growth show the necessity to capture the gross features of the initial
conditions while detailed measures of the internal structure show a rapid loss of
memory of the finer details of the initial conditions.

Image processing techniques are employed to provide a detailed study of the internal
structure and statistics of the concentration field. These measurements demonstrate
that, at scales small compared with the confining geometry, the flow rapidly adopts
self-similar turbulent behaviour with the influence of the barrier-induced perturbation
confined to the larger length scales. Concentration power spectra and the fractal
dimension of iso-concentration contours are found to be representative of fully
developed turbulence and there is close agreement between the experiments and
simulations. Other statistics of the mixing zone show a reasonable level of agreement,
the discrepancies mainly being due to experimental noise and the finite resolution of
the simulations.

† Present address: Department of Applied Mechanics and Engineering Sciences, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA.
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1. Introduction

Mixing between fluids can result from a variety of mechanisms such as mechanical
stirring or the generation of vortical motions through shear instabilities which wrap
up the iso-concentration surfaces. Density differences can lead to a stabilization or
destabilization of the flow, thus either decreasing or increasing mixing, depending
on the relationship between the density gradients and gravitational field. These
relationships may occur as the result of initial or boundary conditions, or be produced
as a side effect of other processes occurring within the flow.

Rayleigh–Taylor instability can occur whenever the density and pressure gradients
are in opposite directions. Lord Rayleigh (1883) was the first to consider this problem,
concentrating on an unstable stratification in a gravitational field. Subsequently,
Taylor (1950) showed that any component of acceleration normal to an interface
between two fluids of differing densities would produce an instability when the
acceleration was towards the denser fluid. Since then Rayleigh–Taylor instability has
received attention in a wide range of contexts, but many aspects of the instability are
still uncertain. A review is provided by Sharp (1984), although considerable progress
has been made over the last decade.

Few previous experimental studies have investigated the mixing produced by
Rayleigh–Taylor instability between miscible fluids. The use of miscible fluids makes
possible a detailed study of the fine-scale structure where molecular processes become
important in the absence of surface tension. In addition, relatively little of the earlier
work has drawn together both experimental and three-dimensional numerical models
for the instability. Linden, Redondo & Youngs (1994) present possibly the most com-
prehensive comparison and find a broad qualitative similarity, but good quantitative
agreement is lacking. This paper discusses improved experimental diagnostics and
provides a higher level of interaction between experiments and numerical simulations
with the numerical component designed to model the experimental flows as closely
as feasible.

The physical arrangement we study is the instability between a layer of salt water of
density ρ1 initially overlying a layer of fresh water of density ρ2 < ρ1. The experimental
apparatus consists of a rectangular tank of depth H = 500 mm with the two fluid
layers initially separated by a barrier at half the tank depth. In order to simplify the
experimental design and analysis, we focus on flows with very low Atwood numbers,
A = (ρ1−ρ2)/(ρ1 +ρ2). The dimensional group (H/Ag)1/2, where g is the acceleration
due to gravity, then gives the characteristic time scale for the flows. Most of the
experiments presented in this paper were conducted with A ≈ 2 × 10−3 giving a
characteristic time scale of 5 s.

Of central concern to many earlier studies of Rayleigh–Taylor instability was the
growth of the mixing zone, the region where a mixture of upper- and lower-layer fluids
may be found. It was believed that for many purposes a knowledge of the growth
of this mixing zone was sufficient to characterize the instability. Indeed, dimensional
analysis and similarity theory both predict a simple, self-similar growth for this zone
in miscible fluids with negligible viscosity and diffusivity.

If the instability were to evolve from an interface which is initially flat apart
from infinitesimal disturbances, then the initial growth would be linear with viscosity
setting the maximum growth rate to length scales of the order of (ν2/Ag)1/3 (Chandra-
sekhar 1961, p. 447), where ν is the kinematic viscosity. The associated time scale is
(ν/A2g2)1/3. For the flows discussed in this paper these scales correspond to a length
scale of the order of 1 mm and time scale of 0.1 s. This rapid e-folding of these
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disturbances leads to nonlinear growth of the instability very soon after it is initiated
and long before it has extended a significant fraction of the depth of the tank. During
this linear growth phase the Reynolds number also increases exponentially so that
viscous effects are negligible within a few e-folding time scales.

For most of the growth phase of the instability the flow is not influenced by the
presence of the upper and lower boundaries of the tank. Dimensional analysis then
suggests for an inviscid flow that the penetration of the lower layer into the upper
half of the tank should follow

h1 = α1Agt
2, (1)

where α1 is a dimensionless constant. Similarly, the penetration into the lower half of
the tank follows

h2 = α2Agt
2, (2)

with an appropriate value of the constant α2. For Boussinesq flows with A � 1 the
symmetry of the problem suggests α1 = α2. For non-Boussinesq flows, the less-dense
fluid will be more mobile than the denser fluid, resulting in α1 < α2.

By non-dimensionalizing the penetrations h1 and h2 by the depth of the tank H ,
we obtain

δi ≡ hi/H = αiτ
2, i = 1, 2, (3)

where

τ = (Ag/H)1/2t (4)

is the dimensionless time. It is observed that by τ = 4 the mixing zone has reached the
top and bottom of the tank and a globally stable stratification has been established.
Local regions of instability remain in a combination of internal waves and decaying
turbulence.

The experiments of many previous researchers (e.g. Read 1984; Youngs 1989;
Kucherenko et al. 1991; Dimonte & Schneider 1996) have been consistent with the
quadratic time dependence suggested by equation (4), at least for part of the growth
phase and in high-Atwood-number immiscible fluids. Moreover, the constant α1 has
been found to be independent of Atwood number over a wide range of Atwood
numbers, with a typical value of α1 ≈ 0.06. In contrast α2 is found to increase slowly
with the Atwood number. With miscible fluids at low Atwood number the picture is
less clear. Linden et al. (1994) and Dalziel (1993) both present evidence that while
the growth rate has a τ2 component, the true picture is somewhat more complex. The
departure from the expected quadratic dependence has been attributed to the initial
conditions, but the relationships and mechanisms have not been extracted.

Detailed comparisons with numerical simulations of the internal structure for mix-
ing of miscible fluids are not available. Redondo & Linden (1993) discuss some
aspects, as do Linden et al. (1994), but these comparisons have experimental limita-
tions. Through the combination of an improved experimental setup and the use of
image processing techniques, the present paper attempts to rectify this situation.

In § 2 the experiments are described and the key features of the initial conditions
they produce are analysed. The details of these initial conditions are then incorporated
in the numerical simulations which are introduced in § 3. An overall qualitative
comparison of the experimental and numerical results is presented in § 4, before
considering the growth of the mixing zone in § 5. Details of the density structure
within the mixing zone are described in § 6, while § 7 discusses the statistical properties
of the mixing produced. Finally our conclusions are given in § 8.
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2. Experiments
The experimental apparatus was chosen to provide a simple way of investigating the

mixing of miscible fluids. Optical diagnostics have been used to measure the fine-scale
structure and this necessitates the use of two fluids with the same refractive index.
Other requirements are that the boundary conditions should be well-defined and the
initial conditions should contain as little disturbance as possible. In addition, the flow
should evolve over a time scale sufficiently short to render viscous effects unimportant,
but sufficiently long to enable accurate quantitative diagnostics using image processing
techniques. These requirements have led to the choice of an experiment using two
aqueous solutions. Refractive-index matching then implies that a low Atwood number
(A� 1) must be used.

Well-defined initial conditions may be achieved by starting with a stable strati-
fication and then accelerating the test chamber downwards to obtain an unstable
acceleration. This approach has been used by Read (1984), Kucherenko et al. (1991)
and Dimonte & Schneider (1996). However, few of the experiments have used miscible
liquids and, with this technique, it is difficult to use the low Atwood number needed
for refractive index matching, because of the long acceleration distance then required
for significant mixing to occur.

A number of other researchers (e.g. Andrews & Spalding 1990; Voropayev,
Afanasyev & van Heijst 1993) have tried inverting a stable stratification. Unfor-
tunately, unless the fluid is very viscous, Kelvin’s circulation theorem shows that
it is not possible to achieve the desired unstable initial stratification. In a circular
cylinder rotated about its (horizontal) axis, the rotation will leave the stratification in
its initial configuration (except in thin boundary layers near the walls). At the other
limit, with a tall narrow container, it is possible to achieve an unstable stratification
in this way, but the initial orientation of the interface is at an angle of tan−1 2π to
the horizontal (Simpson & Linden 1989), representing a substantial departure from
ideal initial conditions.

These considerations have led to the choice of a static tank with the denser layer
of fluid initially above the layer of less-dense fluid, these layers being separated
by a barrier. The use of a static tank makes the diagnostics easier and apparatus
simpler. However, there is an inevitable disadvantage: removal of the barrier creates a
significant initial disturbance. The design of the barrier (see § 2.1) has been chosen to
minimize this disturbance and a detailed analysis of the effect of barrier removal on
the development of the instability is presented. In many industrial and environmental
situations statically unstable turbulent mixing evolves from non-ideal initial conditions
and we suggest that the study of the effect of initial conditions found in the present
apparatus contains useful lessons for a broader class of problems.

2.1. Experimental method

The experiments were performed in the tank shown in figure 1. This tank is L =
400 mm long, W = 200 mm wide and has a working section H = 500 mm deep. One
endwall of the tank is slotted and the sidewalls are grooved in order that a barrier
may be inserted at half the tank depth, dividing it into two equal volumes. A floating
lid is positioned at the top of the upper layer to provide a rigid boundary which
allows the water level to adjust as the barrier is withdrawn.

Conventional barriers, such as that used by Linden et al. (1994), comprising a single
rigid sheet to separate the two layers have the disadvantage of viscous boundary layers
forming on their upper and lower surfaces as the barrier is withdrawn. The wake left
behind the barrier due to these shear layers introduces a long-wave disturbance to
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Figure 1. Sketch of experimental apparatus. The hollow stainless steel barrier is shown as dark
grey and the nylon fabric as light grey. The orientation of the perspective views presented in § 4.2
are also indicated.

the initial conditions. The viscous boundary layers are also stripped off the barrier
by the endwall of the tank to form a pair of strong vortices propagating away from
the barrier (Dalziel 1994b).

The design of the barrier used for the experiments reported here was conceived
by Lane-Serff (1989) in an attempt to eliminate shear layers forming on the two
surfaces of the barrier, and has been used previously by Dalziel (1993, 1994a, b) for
Rayleigh–Taylor instability. The barrier consists of a flat, rigid tube made of stainless
steel (shaded dark grey in figure 1) through which two pieces of nylon fabric (shaded
light grey) are passed. One piece of fabric is stretched along the upper surface of the
stainless steel to be attached to the endwall of the tank immediately above the slot
in the endwall. The second piece of fabric is similarly stretched over the lower side
and also attached to the endwall of the tank. When the tube is withdrawn, the nylon
fabric immediately above and below remains motionless, except that as the end of
the tube passes a given point, the nylon fabric at that point is pulled in and removed
along the centre of the tube. Thus, except for the passage of the end of the barrier,
the fluid in the tank sees the barrier as a motionless boundary. Unfortunately, the
construction of the barrier meant there was a 10 mm wide strip down each side of
the barrier which was not protected by the nylon fabric. As we shall see later in § 4.1,
this feature affects the flow at the later stages in its development. Details of the initial
conditions resulting from this barrier are presented § 2.3.

The barrier was withdrawn at the start of each experiment by pulling manually
on the nylon fabric passing through the length of the barrier while simultaneously
pushing inward on the outer end of the barrier. The withdrawal rate was found
to be repeatable to within 10%. For the majority of experiments presented here a
withdrawal rate of UBarrier ≈ 200 mm s−1 was selected, giving a withdrawal time of
t0 ≈ 2 s (τ0 ≈ 0.4).
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Prior to the start of the experiment the volume below the barrier is filled with a
solution of water and propan2ol, while the volume above is filled with a salt-water
solution. The alcohol was used to match the refractive index between the two bodies
of fluid. An adequate level of matching was achieved with 3 ml of propan2ol in the
lower layer for every l g salt in the upper layer. The initial density of the two layers
was measured using a Paar densitometer to determine the Atwood number. This
Atwood number was repeatable to within 5% between one experiment and the next.
The LIF (light-induced fluorescence) experiments presented here were all performed
with an Atwood number of A = 2 × 10−3 (giving a time scale of 5 s) whereas the
perspective experiments were run with A = 7 × 10−4 (and a correspondingly longer
time scale).

The solutions were preconditioned by exposing them to a 300 m bar vacuum
overnight in order to allow them to reach thermal equilibrium with the labora-
tory and remove most of the dissolved air to prevent a plume of bubbles forming at
the trailing edge of the barrier during the removal process.

2.2. Measurement techniques

Three techniques were used to provide diagnostics for the experiments: computer-
enhanced light-induced fluorescence, particle tracking and perspective views.

2.2.1. Light-induced fluorescence

Most of the results reported in this paper were obtained using light-induced
fluorescence (LIF). The dense layer was doped with a small quantity of sodium
fluorescein (a green fluorescent dye) and the flow illuminated from below by a thin
light sheet oriented as a vertical plane centred halfway across the width of the tank.
A high-resolution, frame integration monochrome CCD video camera was used in
conjunction with a 1/100 s mechanical shutter to give full frame resolution video
images of the flow. The video signal was recorded on Super VHS video tape for later
analysis.

Normally a laser is used as the light source for LIF flow measurements. However,
here the light sheet was produced by a 300 W xenon arc lamp, collimated by an
integral parabolic reflector into a slowly diverging beam. The degree of collimation
provided by the light source allowed light sheets as thin as 0.5 mm to be produced
throughout the depth of the tank. For the experiments reported here a light sheet
2 mm thick was used to increase the intensity of the LIF images and thus allow the
video camera to be operated at a lower gain.

The illumination provided by the light sheet was not, however, uniform. The
intensity along the bottom of the tank varied by a factor of four. This variation was
exaggerated further up the tank with the along-tank divergence of the sheet (practical
considerations prevented the arc lamp being positioned any further back to allow
only the central spot to be used). In addition, the concentration of fluorescent dye
required to provide an image of sufficient intensity for the video camera was such
that there was a significant attenuation of the light sheet as it passed through the dye.
Image processing techniques (Dalziel 1994b) were used to correct for the attenuation
and divergence of the light rays prior to extracting quantitative information.

2.2.2. Particle tracking

The velocity measurements presented in § 2.3 were obtained using the particle
tracking technique described in Dalziel (1992, 1993). For these experiments the flow
was seeded with neutrally buoyant 250 µm diameter Pliolite VTAC particles and
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illuminated with a light sheet in the same manner as described for the LIF experiments.
The seeding density was such that around 3000 particles were visible in the light sheet
at any one time, and these particles were tracked to obtain their Lagrangian paths
while they remained within the light sheet. The randomly distributed velocity data
obtained in this manner were then mapped onto a regular Eulerian grid using a
weighted least-squares technique.

2.2.3. Perspective views

To produce the perspective views presented in § 4.2, the lower layer was dyed with a
concentrated mixture of red and blue food colouring, to render it nearly opaque with
light unable to penetrate further than a depth of around 1 mm. Sodium fluorescein
dye was also added so that the surface of the dyed region fluoresced under the
illumination of the xenon arc lamp. The net result of this cocktail of dyes was to give
the lower layer a solid appearance, even when diluted significantly by upper layer
fluid.

2.3. Initial conditions

As described in § 2.1, the purpose of the nylon fabric wrapped around the barrier
was to present the fluid above and below the barrier with a stationary surface as the
barrier was removed. Unfortunately, the barrier does introduce perturbations to the
flow caused by the motion of the nylon around its trailing edge, and the removal of
the finite volume associated with it. Of these two the volume-driven component is the
more important, even though the barrier represents only 0.5% of the total volume of
the tank.

2.3.1. Mechanism

The effect of removing the finite volume associated with the barrier may be
understood most readily by considering an unstratified flow. As the barrier is removed,
the upper layer moves downward to replace the volume of the barrier no longer in
the tank. The floating lid forces this motion to be essentially uniform along the length
of the tank. While there is a potential energy change associated with the change in
free-surface height, it is exactly balanced by the work done on the barrier by the
hydrostatic component of the pressure field acting on the end of the barrier, and may
thus be ignored.

If the barrier is withdrawn at a constant velocity, then the upper layer adjusts
downwards at a constant velocity. However, at the level of the barrier, the area over
which this adjustment is made depends on how far the barrier has been withdrawn.
At the initial instant this area is vanishingly small, inducing extremely large velocities
towards the trailing edge of the barrier. With the barrier further out, the horizontal
area over which the adjustment takes place is increased, reducing the magnitude of
the velocities.

The stationary nature of the nylon fabric in contact with the water and the short
time scale for barrier withdrawal suggest that the leading-order flow will respond
inviscidly. By replacing the moving barrier with a fixed barrier plus mass sink we
may make a first attempt at modelling this process by ignoring density differences
and using two-dimensional potential flow theory. Figure 2 shows the velocity field
resulting from this model near the beginning and end of the removal process. The
key features to note here are the reduction in the magnitude of the vertical velocities
and increased penetration of the flow into the lower layer as the barrier is removed
further.
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Figure 2. Potential flow model for the removal of the barrier. Velocity vectors are shown superim-
posed on a greyscale representation of the velocity potential. The barrier is shown when (a) 10%
and (b) 90% withdrawn.

The potential flow model predicts its own failure. There is a clear jump in the
horizontal component of the velocity across the barrier near the trailing edge, and
this velocity is oriented towards the trailing edge (which is itself moving in the opposite
direction). As a result the fluid is forced to turn a sharp corner and decelerate (relative
to the trailing edge) at the trailing edge which, for real fluids, would lead to separation
and vorticity. Another shortcoming of the potential flow model is the instantaneous
nature of the velocity field. If the withdrawal of the barrier is stopped, the velocity
field instantaneously returns to zero. Resolution of these problems is found in the
Kutta condition. While Kelvin’s circulation theorem prevents vorticity being generated
within a closed fluid contour, the flow associated with the barrier provides the ability
to close previously open contours and thus allow vorticity to be injected into the
flow by the trailing edge of the barrier. If we can ignore precise details of what is
happening at the trailing edge we may model this effect as the injection of a vortex
sheet behind the barrier, the changing strength of the vortex sheet being derived from
the velocity jump across the barrier as it is removed.

2.3.2. Measurements

Experimental measurements have been made of the flow produced by the barrier
to confirm the mechanism outlined in the previous subsection and provide details of
the additional structure provided by the advection of the vortex sheet and the motion
of the nylon fabric around the trailing edge. These measurements were obtained by
tracking neutrally buoyant particles in an unstratified flow.

Figure 3 shows the velocity field and the streamfunction obtained from one such
experiment. For a streamfunction to exist, the in-plane flow should be divergence free.
Calculation of ∂u/∂x+ ∂w/∂z shows that due to small three-dimensional effects this
is only approximately true. We therefore construct an approximate streamfunction by
integrating the velocity field iteratively under the assertion that ψ at a particular point
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Figure 3. Elevation showing the velocity field induced by the removal of the barrier in a typical
homogeneous experiment. The full length of the tank is shown but only the central 50% of the
height. The velocity vectors are superimposed on the approximate streamfunction for this nearly
two-dimensional flow.

is the mean of values obtained by integration of u and w from the four surrounding
points. This procedure minimizes the energy discrepancy between the measured veloc-
ity field and calculated streamfunction. The underlying two-dimensionality of the flow
has been confirmed by homogeneous experiments using the LIF technique with two
light sheets spaced across the tank. In these experiments scales with a wavelength as
small as 10% of the length of the tank are observed to be essentially two-dimensional,
although finer scales exhibit a three-dimensional character.

An ensemble of homogeneous experiments similar to that shown in figure 3 was
performed. While there was considerable scatter in the precise velocities, the overall
structure of the flow, at least near the barrier z = 0, was consistent. The scatter may
be attributed to three aspects of the experiments: variations in the barrier withdrawal
rate, residual motion in the tank prior to withdrawing the barrier (it was not possible
to allow the fluid to come completely to rest due to variations in the particle densities
leading to particles settling or rising out) and random fluctuations in the trailing-edge
condition.

2.3.3. Combined model

The symbols in figure 4 plot the streamfunction at z = 0 for ten experiments similar
to that shown in figure 3. Also shown in this figure are least-squares fits to these
data using the first ten Fourier (sine) modes. While these fits do not capture all the
structure of the streamfunction at z = 0, they do capture the essential overturning
and intermediate wavelengths.

To simplify the use of these experimental initial conditions in numerical simulations,
we shall impose the linearity assumption that the vortex sheet is not advected while
the barrier is being withdrawn. We thus confine all the vorticity to z = 0 and can
extend the flow from the z = 0 streamfunction to the remainder of the tank using
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Figure 4. Streamfunction at z = 0 for 10 homogeneous experiments (marks). Least-squares fits
using the first ten Fourier modes are also indicated (lines).
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Figure 5. Flow induced by the vortex sheet model initialized from a homogeneous experiment.

two-dimensional irrotational flow. This results in the initial conditions being modelled
as

ψ(x, z) = ψ0UBarrierL
hBarrier

H

N∑
n=1

an sin
nπx

L

sinh (nπH/2L)(1− 2|z|/H)

sinh (nπH/2L)
, (5)

where N = 10, an are the fitted Fourier coefficients and ψ0 is an order-one dimen-
sionless constant which, in practice, is a function of the barrier Reynolds number.
Here we assume ψ0 = 1. The flow field obtained from this irrotational extension to
the experimental initial conditions is shown in figure 5 for the experiment presented
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in figure 3. Comparison between these two figures shows differences in the details,
due primarily by the advection of the vortex sheet, but good similarity in the main
features. The agreement between these plots is comparable with that between two
nominally identical experiments, showing the error in this approach to be of the order
of the random variation between experiments. As we shall see in § 4, the choice of
N = 10 for (5) recovers the relatively strong wavenumber-5 component observed in
the experiments and avoids the introduction of Gibbs phenomenon or other features
resulting from under-resolving the initial conditions.

3. Numerical simulations
The numerical aspects of this work have been performed with the TURMOIL3D

computer program (Youngs 1991), as was used by Linden et al. (1994) in their
comparison between experiments and simulations. Details of the initial conditions
and the precise manner in which the code was set up for the work presented here
differ from that used in the earlier study and so some further description is given
here.

3.1. TURMOIL3D

The TURMOIL3D code uses an explicit method to solve the compressible Euler
equations plus an advection equation for the mass fraction of fluid 1. The experiments,
in which the flow is incompressible, are simulated by choosing the initial sound speed
high enough to eliminate any dependence on Mach number. The numerical density
ratio ρ1/ρ2 = 1.2 has been chosen to be large enough to ensure that the small density
fluctuations due to compressibility of the simulated flow have little effect, while at the
same time ensuring that the density difference is sufficiently small for the Boussinesq
approximation to remain valid and the results to be independent of the actual values
of the density except for a scaling of the buoyancy terms and related time scales.

The numerical Schmidt number, Sc = κ/ν, where κ is the mass diffusivity and ν
is the kinematic viscosity, is of order unity whereas in the experiments Sc ∼ 103.
However, the Reynolds number in the experiments is thought to be high enough for
the properties of the fine-scale mixing to be insensitive to the Schmidt number. Hence
the comparison between simulation and experiment is considered to be valid.

Advection of all fluid variables is calculated by using the monotonic method of van
Leer (1977). As argued by Linden et al. (1994), this gives a numerical scheme with
many properties essential for the present application. For example, the fluid density,
which is initially discontinuous, stays in the interval [ρ1, ρ2] thereby avoiding spuri-
ous buoyancy-generated turbulence. The monotonicity constraints in the advection
method imply that there is nonlinear dissipation inherent in the numerical scheme
which acts at a length scale of order the mesh size. An additional sub-grid model
is therefore not needed to provide the required dissipation of density and velocity
fluctuations by the unresolved scales. It is assumed that fluid is molecularly mixed
at the grid scale to produce a density depending linearly on the volume fraction or
concentration C of fluid 1.

The computational domain is 0 < x < L, 0 < y < 1
2
L, − 1

2
H < z < 1

2
H and a

uniform, isotropic mesh of size ∆x was used with 160 × 80 × 200 zones to mimic
the aspect ratios found in the experiments. Reflective boundary conditions (i.e. no
flow normal to the boundaries) are used on all sides of the box and the barrier is
assumed to be removed in the negative x-direction (i.e. towards the left). Tests of the
code using different resolutions (in both two- and three-dimensional runs – see below)
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demonstrate that the results presented in this paper are not an artefact of the mesh
size.

3.2. Idealized initial conditions

Simulations starting from two different types of initial conditions were run. The first
type utilized idealized initial conditions consisting of an initial velocity field u = 0
and a random perturbation to the interface height described by z = η(x, y). The
latter consists of a sum of Fourier modes with wavelengths in the range 4∆x to 8∆x
and randomly chosen amplitudes. The standard deviation of the amplitude of these
perturbations is σ = 0.08∆x = 3.2×10−4H , which has been found to be just sufficient
to initiate the classical αAgt2 growth (see equation (1)) of the mixing zone. We shall
refer to these as idealized simulations.

The amplitude of the initial perturbation to the interface height is sufficiently
small that it is represented in the simulations simply as a random concentration
fluctuation in the meshes adjacent to the z = 0 plane. The overall mixing rate is
virtually independent of which set of random amplitudes is chosen. Further, while
the early stages of evolution of the mixing zone depend on the standard deviation
and wavenumber spread of the random perturbations, the subsequent loss of memory
of the initial conditions and establishment of quadratic temporal growth have been
found to be robust features (Youngs 1991).

3.3. Real initial conditions

The second set of initial conditions is based on a combination of the conditions
derived from the homogeneous experiments reported in § 2.3 and the idealized initial
conditions of § 3.2. In this way it is intended to capture the key features of the
experimental initial conditions without the need to resort to full three-dimensional
measurements of them. We shall refer to these as barrier simulations.

The incompressible, irrotational extension of the experimental z = 0 streamfunc-
tion (5) was used to initialise the x- and z-components of the velocity field and the
y-component was set identically to zero. This modelled the two-dimensional compo-
nent of the experimental initial conditions at low wavenumbers. To trip the three-
dimensionality of the Rayleigh–Taylor instability and provide the high-wavenumber
component to the experimental conditions lost through the fitting process, the same
random perturbation to the interface z = η(x, y) as used for the idealized initial
conditions was also applied.

No attempt was made to match the power levels between the experimental velocity
field and the random interface perturbation. Indeed, such a matching would be
difficult unless both components of the perturbation were applied to the same aspect
of the initial conditions and there were three-dimensional experimental measurements
available. In the absence of such matching, care must be taken to ensure the memory
of the higher-wavenumber aspects of the experimentally derived initial conditions is
lost during the evolution of the simulations. Indeed, it was found that more of the
initial two-dimensional structure was retained by the simulations than was observed
at later times in the experiments, especially when comparing ensemble averages for
the experiments with cross-tank averages for the simulations. In order to reduce the
contamination of our results by this memory, three different sets of initial conditions,
each corresponding to a different homogeneous experiment, were used to initialize
different runs of TURMOIL3D. The statistical results presented are the ensemble
average of these runs.
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4. Qualitative results
In this section we describe the evolution of the flow from a qualitative (pictorial)

viewpoint to compare the gross similarities and differences between the experiments
and the two types of simulation.

4.1. Plane sections

Figure 6 presents a sequence of LIF images of the experiments above the corre-
sponding planar sections for the two types of simulation. The experimental images
have been corrected for the attenuation and divergence of the illuminating light sheet
and show only the lower half of the tank in order to improve the spatial resolution.
The lower half of the tank was selected so that the more interesting flow structures
resulting from the initial conditions could be observed. These images suffer from noise
at either end of the tank (especially the left-hand end) due to the low intensity of the
illuminating sheet in these locations. The simulation output is for a single y = const.
plane in the interior of the flow and is visualized with the same relationship between
concentration (volume fraction) and greyscale as obtained from the fluorescent dye
in the experiments.

The barrier-induced overturning motion is clearly visible in the LIF images. The
dominant feature is a plume of dense fluid descending down the right-hand endwall
of the tank. The growth rate of this plume is approximately a factor of two faster
than the flow in the interior of the tank. The formation of this plume is visible from
the initial instant at which the barrier withdrawal starts, and by τ = 1 (figure 6a)
it is well established with a horizontal length scale small compared with the vertical
scale. Perturbations to the interface at other wavelengths with a smaller amplitude
are also visible. Principal among these are modes with wavenumbers 3 to 6. Both
homogeneous experiments and unstable Rayleigh–Taylor runs with twin light sheets
suggest that these length scales are the result of predominantly two-dimensional
disturbances produced by the withdrawal of the barrier. Superimposed on these large
scales are smaller-scale three-dimensional modes. Interaction of these modes both with
other three-dimensional modes and the larger-scale two-dimensional modes leads to
the rapid breakdown of the disturbances introduced by the barrier except at the
largest scales. By τ = 2 (figure 6b) only the components with wavenumbers 1 to 3
survive with an appreciable amplitude. The breakdown of these scales would require
the three-dimensional motion to grow to a comparable level for intense nonlinear
interactions. However, the sidewalls of the tank block the growth of three-dimensional
motions on these scales, which, combined with the initially large difference in both
scale and energy between these modes and the dominant overturning motion, imply
that the two-dimensional barrier-induced motion is likely to survive.

Once the plume down the right-hand endwall reaches the bottom of the tank
it forms a gravity current propagating towards the left along the tank floor. This
gravity current is highly turbulent and entrains lower-layer fluid, as can be seen
from the wealth of small-scale structure within it (figure 6c). The fluid in the lower
quarter of the tank towards the left-hand end remains essentially unmixed until the
gravity current is approximately 50% of the distance across the floor. At this stage
in the experiments a volume of (mixed) upper-layer fluid enters the light sheet. This
fluid originates from motion induced in the strip along each side of the barrier not
protected by the nylon fabric. The shear between the barrier and the fluid in this strip
causes a much higher initial growth rate than in the central body of the experiment.
This un-modelled three-dimensional component to the initial conditions does not
influence the development of the instability on the centreline of the tank until the
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(a) (b)

Figure 6 (a, b). For caption see facing page.
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(c) (d)

Figure 6. Comparison between a typical experiment (top) and simulations using idealized initial
conditions (middle) and initial conditions measured from experiments (bottom). The flows are
shown for (a) τ = 1 (t = 5 s), (b) τ = 2 (t = 10 s), (c) τ = 3 (t = 15 s), and (d) τ = 4 (t = 20 s). Note
that only the flow in the lower half of the tank is shown for the experiment.
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lateral length scale is comparable with the dimensions of the tank when the main
growth phase of the instability is over.

Once the gravity current has crossed the floor of the tank (figure 6d) the initially
two-layer unstable stratification has reached a globally stable state and the mean
density of the fluid decreases with increasing height. Regions of locally unstable
stratification remain embedded within this stable density gradient, providing the
potential energy for additional small-scale mixing.

The central set of images in figure 6 are for simulations with idealized initial
conditions. In contrast with the experiments, the width of the mixing region grows
uniformly along the length of the tank. While a dominant scale can be detected at
each time shown in the figure, this scale is less distinct and at higher wavenumbers
than that found in the experiments. The penetration and length scales grow more
slowly than found in the experiments, with the flow first touching the bottom of
the tank at τ ≈ 2.7 compared with the τ ≈ 2.0 – 2.2 for the experimental flow.
For the particular y = const. plane shown here, the mixing region first reaches the
bottom at the left-hand end (figure 6c) shortly before doing so at the right-hand end.
Unmixed lower-layer fluid remains at the bottom of the tank even after τ = 4. The
gross character of the flow is independent of the location of the plane being viewed,
although, as expected, there are differences in the detailed structure.

The barrier simulations are shown in the bottom panel of figure 6. The visual
similarity with the experimental LIF images is striking. While there are differences
at the small and intermediate scales, the gross overturning, the time scale to reach
the bottom of the tank, and the dilution of the two fluids agree remarkably well.
Although the experimental images presented here show only the lower half of the
tank, comparison with additional runs showing either the upper half or the entire
tank show a similar level of qualitative agreement in the upper half. The variations
between this simulation and the experiment shown in figure 6 is comparable with
the variations between nominally identical experiments. Furthermore, using initial
conditions from a different homogeneous barrier experiment chosen at random from
the set shown in figure 4 does not alter the level of similarity.

The simulations have been used to demonstrate that the time required for the mixing
zone to extend to the bottom of the tank is only a weak function of the strength of the
perturbation, which is, in turn, related to the withdrawal speed of the barrier UBarrier

through (5). This equation suggests a time scale of H2/UBarrierhBarrier ∼ 500 s for the
‘mixing zone’ to reach the bottom of the tank in the absence of a density-driven flow,
considerably longer than the (H/Ag)1/2 ∼ 5 s time scale for the Rayleigh–Taylor flow.
As a result, varying the amplitude of the initial perturbation (i.e. UBarrier) by a factor
of two in either direction makes only a small (less than 7%) difference to the length
of the growth phase in the simulations.

As noted in § 3.1, the resolution of the numerical simulations presented here
is believed to be adequate and does not influence the conclusions drawn in the
comparison between the experiments and simulations. Indeed, for external measures
of the flow such as typified by h2, the barrier simulations achieve close agreement
even for low-resolution two-dimensional simulations. This point is illustrated by figure
7 which presents the concentration field at τ = 2 for two-dimensional simulations
at resolutions of 80 × 100 (figure 7a) and 160 × 200 (figure 7b) as well as the full
three-dimensional barrier simulations at 160×80×200 (figure 7c). The overall growth
of the mixing zone is virtually indistinguishable between these three simulations, the
differences occurring at the finer scales. This agreement is the result of the external
features of the flow being dominated by the two-dimensional component of the initial
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(a) (b) (c)

Figure 7. Comparison between barrier simulations performed at different resolutions. (a)
Two-dimensional, 80× 100 zones, (b) two-dimensional, 160× 200 zones and (c) three-dimensional,
160× 80× 200 zones.

conditions, and this component being well resolved even at relatively low resolutions.
However, the internal structure of the flow, which results from nonlinear three-
dimensional interactions, requires a full three-dimensional simulation to capture it. In
two dimensions, increasing the resolution increases the generation of the finest scales
resulting from shear instabilities at the boundaries between C = 0 and C = 1 fluid,
but this does not mimic the three-dimensional turbulence present in the experimental
flow or three-dimensional simulations.

The experiments contain finer scales than can be resolved by the simulations.
Linden et al. (1994) have shown that the evolution of the instability in idealized
simulations is sensitive to the mesh resolution due to processes at the finest scales.
Tests using realistic initial conditions and different mesh resolutions have shown that
the dominant behaviour of the two-dimensional component in the barrier simulations
greatly reduces this resolution dependence, and that the resolution of the current
simulations is more than adequate for most aspects of the flow.

Figure 8 repeats the sequence shown in figure 6 but here showing the mean
concentration from an ensemble of sixteen LIF experiments (top panel), the cross-tank
mean for the idealized simulation with a single set of random modes (middle panel),
and the cross-tank mean for an ensemble of three barrier simulations. The members
of the ensemble for the barrier simulations all used the same high-wavenumber
spectrum for the initial interface displacement but different two-dimensional barrier-
induced components (as indicated in figure 4). The ensemble of barrier simulations
was introduced to model the variety of initial conditions found in the experimental
ensemble more accurately. In addition, the use of an ensemble reduces the need to
match the power levels in the two- and three-dimensional components of the initial
perturbations.

The gross, large-scale features seen in the individual experiments and slices of
figure 6 are maintained in the averaged images. For the experiments (top) and barrier
simulations (bottom) the large-scale overturning develops as before. The wavenumber-
2 component of the flow remains visible, but the higher wavenumber components are
largely smeared out by random variations between the initial conditions. The mixing
region for these two scenarios touches the bottom of the tank first at the right-hand
end to form a gravity current propagating towards the left along the bottom of the
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(a) (b)

Figure 8 (a, b). For caption see facing page.
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(c) (d)

Figure 8. As for figure 6, but showing the ensemble mean flow for the experiments and the
cross-tank mean flow for the simulations.



20 S. B. Dalziel, P. F. Linden and D. L. Youngs

tank. The fluid originating from the unprotected strip down each side of the barrier
and entering the light sheet is again a consistent feature of the experiments not found
in the simulations due to its absence in the initial conditions used for the simulations.

Some of the structure found in the individual slices for the idealized simulations
persists in the cross-tank mean. As early as τ = 2 (figure 8b) there is evidence of
some structure in these means related both to the initial noise (introduced to trip
the instability) and its coupling with the tank walls. It has often been stated that
idealized Rayleigh–Taylor instability loses its memory of the initial conditions, but
this is only true in a statistical sense. Taking the planar concentration mean recovers
the up/down symmetry expected in this low Atwood number flow. Similarly, taking
an ensemble mean of idealized simulations initiated with a different set of random
modes effectively eliminates this structure.

4.2. Perspective views

Figures 9 and 10 show perspective views of the early stages in the developing
experimental and simulated flow. These views are included to give a qualitative
impression of the three-dimensional character of the instability.

Two views of the same experiment are shown in figure 9. The left-hand column
shows the flow viewed through the endwall at an angle of approximately 30◦ to the
horizontal, while the right-hand column views the flow looking down through the
floating lid at approximately 60◦ above the horizontal. The orientation of these views
is sketched in figure 1. In both cases only the right-hand 30% of the tank is visible,
with the barrier being withdrawn towards the viewer. Note that this experiment
was conducted with A = 0.0007 compared with the A = 0.002 used for the other
experiments reported here. This has little effect other than to increase the characteristic
time scale from 5 s for the basic A = 0.002 flow to 8.5 s for the lower Atwood number
flows.

The flow soon after the passage of the barrier contains a significant two-dimensional
component clearly visible in the top view of figure 9(a) but which is not apparent
in the end view. The rapid downward motion adjacent to the right-hand endwall
(the far end in these perspective views) is difficult to discern, even when viewing the
original video footage (for practical reasons it was not possible to dye the upper
layer to obtain perspectives from below in which this plume would be clearly visible).
The two-dimensionality of the initial structure soon becomes less apparent as the
three-dimensional instability takes over. These perspective views highlight the smaller
dominant length scales so that while there is still a significant two-dimensional
component present at τ = 0.5, it is no longer visible in either view of figure 9(b).

The upward-propagating bubbles of light fluid are remarkably smooth, especially
when contrasted with the presence of the very fine scales seen in the LIF images of
figure 6. This smoothness is not simply an artefact of the method of visualization,
but the result of the intense divergence of the dense fluid pushed aside by the rising
bubble. This divergence causes any fine-scale features swept away from the nose of
the bubble to be accumulated in the wake behind. Not all of the structures visible in
the LIF images in figure 6 show such smooth leading-edge geometry as for many of
these bubbles the light sheet is not aligned with the flow but instead cuts through the
structures at locations where there is no strong divergence.

The number of mushroom-like structures decreases rapidly as their length scale
grows. While some small structures continue to exist between the largest structures,
they are increasingly engulfed by the growing dominant scale. The end views show
clearly that this process occurs in a uniform manner across most of the width of
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(a)

(b)

(c)

(d)

Figure 9. Perspective views of the early stages of development of the instability for an A ≈ 7×10−4

flow. The left-hand column shows the view through the endwall of the tank and the right-hand
column the view through the floating lid on the top of the tank. The same experiment is shown for
both views at times (a) τ = 0.25 (t = 2.12 s), (b) τ = 0.5 (t = 4.24 s), (c) τ = 0.75 (t = 6.36 s), and (d)
τ = 1.0 (t = 8.48 s).

the tank. The exception to this uniform growth is the flow immediately adjacent to
the front and back walls (right and left side of the perspective views) where the
flow generated by the unprotected strip down either side of the barrier is just visible.
Interaction between this flow and the interior of the tank appears to be confined
largely to the area immediately adjacent to the walls until this flow starts to interact
with the top and bottom of the tank. The sequence is terminated after τ = 1 because
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(a)

(b)

(c)

(d)

Figure 10. Perspective views from the simulations. Idealized initial conditions are shown in the
left-hand column and simulations initialized with experimental initial conditions are shown in the
right-hand column. Views are for the same times as in figure 9: (a) τ = 0.25, (b) τ = 0.5, (c) τ = 0.75,
and (d) τ = 1.0.

the mixing zone extends beyond the field of view of the video camera and shadowing
of the interior of the flow by the more rapid growth above these unprotected strips.

Perspective views of the idealized and barrier simulations are shown in figure 10 with
approximately the same orientation and perspective as the end views of the experiment
in figure 9. Visually the two simulations appear very similar and both contain a more
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homogeneous array of structures than found in the experiments, but there is less
detail available, partly due to the limited resolution of the simulations, and partly due
to the method of rendering the C = 0.975 iso-concentration surface. The initial length
scales of the developing three-dimensional structures are, if anything, slightly larger
than those seen in the experiments. As this length scale is imposed by the random
component of the initial conditions, it suggests that the three-dimensionality of the
experiments contains more power at the higher wavenumbers. The less homogeneous
character of the experimental structures is due in part to evolution during the
withdrawal process, and in part to the wider range of scales excited by the barrier
than have been modelled for the numerical simulations.

The superimposed two-dimensional barrier perturbation is just discernible in the
barrier simulations (figure 10b, right-hand column), more through its modulation of
the random component than by being visible directly. The slower growth rate for the
idealized simulations is also detectable, although it does not stand out clearly.

5. Mixing zone growth
The growth of the mixing zone has received more attention in the literature than

any other single measure of the development of the instability. In this section we first
introduce the definition of the width of the mixing zone used by a selection of the
previous researchers and compare the results obtained in this way for the current
experiments and simulations. After considering the limitations of this definition, a
number of alternative definitions are explored and their results compared.

5.1. Growth rate

A precise definition of the length-scale of penetration of one layer into the other
has often been lacking, especially in the experimental context. For simulations some
degree of consistency has been enforced, at least for individual researchers, through the
need to utilize a program to extract the data from the simulations, but experimental
measurements have often been done by eye with differing criteria from image to image
and experiment to experiment. With the experimental LIF images now available in
a digital format, it is possible to remove the subjective element of this analysis.
Furthermore, by converting the simulation output into virtual images, all three data
sets may be analysed in exactly the same manner with the image processing software.

The most widely used definition of the mixing zone width has been based on the
plane-averaged concentration profile. In particular, the width is defined as the depth
at which this profile reaches a prescribed threshold concentration level, C1 (say).

For this paper we use an overbar to indicate along-tank averaging such that
C(z, t) represents vertical profiles of the along-tank mean of the concentration field
of a single experimental realization or a single along-tank vertical plane of data
from the simulations. While these profiles could be used to compute h2 by finding
C(z = h2, t) = C1, these data would be subject to significant statistical fluctuations
from one experiment or data plane to the next. In order to reduce these fluctuations
and reduce the sensitivity to a single experiment for the initial conditions in the barrier
simulations, we employ ensemble as well as spatial averaging to construct the profiles.
In particular, the experimental C(z, t) profiles are averaged over 16 realizations
(cross-tank averages are not employed due to the effects of the unprotected strip
down either side of the tank). With the idealized simulations the C(z, t) profiles are
averaged across the width of the tank (effectively recovering a planar average profile),
while for the barrier simulations a combined planar and ensemble averaging (over
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three realizations) is employed. Thus the concentration is averaged over the largest
data sets possible to compute the vertical profile. We use the notation 〈•〉 to represent
data which have been averaged over an ensemble and/or the width of the tank. Hence
〈C(z, t)〉 represents the ensemble average of C(z, t) for the experiments, the planar
average concentration profiles for the idealized simulations and the combined planar
and ensemble average for the barrier simulations.

Figure 11 presents the vertical profiles of the planar/ensemble-average concentra-
tion as a function of time. These 〈C(z, t)〉 profiles are rendered as a greyscale which,
to aid interpretation, varies as aC + b cos (10πC) to produce a sequence of light and
dark bands. The superimposed curves represent the quadratic growth law (3) with
αi = 0.03, 0.05 and 0.07, i = 1, 2.

As only the flow in the lower half of the tank was visualized, the experimental
data are missing for the upper half of the tank. Further, during the first 2 s of
the experiments, the barrier remained visible in the field of view, contaminating
the 〈C(z, t)〉 profiles in figure 11(a) near z = 0. Comparison with the superimposed
quadratic curves shows the results are in broad conformity with the similarity law,
but not in close agreement. The idealized simulations in figure 11(b) show a lower
growth rate and much closer agreement, while the barrier simulations (figure 11c)
follow the same trends as the experiments.

The superiority of the barrier simulations for modelling the flow can be analysed
by considering scatter plots of the 〈C(z, t)〉 concentrations and the correlation co-
efficient between the respective data sets. Figure 12 presents these scatter plots as
greyscale images, where the darkness of the greyscale represents the frequency of the
relationship. There is clearly less structure in the scatter plot between the experi-
ments and idealized simulations (figure 12a) than is found between the experiments
and barrier simulations (figure 12b), particularly at the lower concentrations which
mark the downward propagation of the mixing zone. For the idealized simulations
correspondence between the two concentration profiles is found only for the highest
concentrations which occur near z = 0, t = 0, whereas the barrier simulations show
a clear functional relationship for all time and space. The correlation coefficients are
0.82 and 0.62 for figures 12(a) and 12(b), respectively.

Linden et al. (1994) and Dalziel (1993) have both presented fits for h2 where
〈C(z = h2, t)〉 = C1 for some threshold concentration C1. In an attempt to modify the
similarity law to make some allowance for the non-ideal initial conditions imparted
by their respective barriers, Linden et al. (1994), who estimated the penetration by
eye, assumed the penetration to start from some time origin t0 < 0. Dalziel (1993),
measuring the penetration from digitized images (but without the corrections applied
in the data sets presented here), allowed the addition of a linear term to the growth.
The data presented here could be treated in a similar manner. Linden et al. (1994)
commented that it was difficult to obtain an unambiguous value for αi, and Dalziel
(1994a) showed the value of αi obtained from a formalized fitting procedure depends
on the number of terms fitted and the temporal range of the data used. While their
precise forms differed, the net effect was similar, and any attempt to fit a quadratic
dependence to the data in a systematic manner would lead to a potentially large range
of viable values for α1 and α2. The same arguments apply here to the experimental
data and the barrier simulations.

There are two related reasons for the inconsistency of quadratic fits to the experi-
mental and barrier simulation 〈C(z, t)〉 = C1 data sets. First, the growth from the finite
perturbations produced by the removal of the barrier is not simply the sum of linear
and quadratic terms for the time dependence and, second, the flow does not have
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Figure 11. Evolution of profiles of the mean concentration field. (a) The experimental data, averaged
over the length of the tank and over the 16-experiment ensemble. The simulations with (b) idealized
initial conditions and (c) the measured initial conditions. For the simulations the data are averaged
over the length and width of the flow domain. The superimposed curves represent the quadratic
growth of the similarity law with values of αi = 0.03, 0.05 and 0.07 (i = 1, 2) for the solid, dashed
and dot-dashed lines (respectively).
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Figure 12. Scatter plot of C(z, t) between (a) experiments and idealized simulations, and (b)
experiments and barrier simulations. In both cases the simulations occupy the vertical axis and the
experiments the horizontal. The frequency of the relationship is represented as a greyscale.

the horizontal homogeneity implicit in the similarity law. The barrier perturbations,
whether the simple solid barrier of Linden et al. (1994), or the composite barrier of
Dalziel (1993) and the present study, both introduce additional (horizontal) length
scales at t = 0. Not only do these length scales have their own time scales associated
with them, but they represent different dynamics in different regions of the tank.

In contrast, the idealized simulations are well-modelled by quadratic time depen-
dence, as found by earlier investigators. The values of α1 and α2 here are both ∼0.04,
consistent with those reported by Youngs (1994a) and Linden et al. (1994). With only
a small-amplitude initial random perturbation to the interface position to trigger the
instability, the quadratic growth is achieved almost immediately. Similar results have
been found when the small-scale random perturbation is applied to the velocity field
rather than the interface position. Linden et al. (1994) showed that the introduction
of a long-wave perturbation delays the start of the similarity phase of the growth.

In an attempt to remove, or at least reduce, the influence of the plume down
the right-hand end of the tank, figure 13 presents the 〈C(z, t)〉 data sets for the
flow in the left-hand half of the tank for the experiments and barrier simulations.
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Figure 13. As for figure 11, but showing the mean profiles for the left-hand 50% of the length of
the tank for (a) the experimental data and (b) the barrier simulations.

The corresponding plot for the idealized simulation is essentially the same as that
presented in figure 11(b) due to the more homogeneous nature of this flow. Again
the experiments and barrier simulations are in close agreement with a lower growth
rate than was found for the entire length of the tank. Arguably this growth is
modelled more closely by the simple quadratic time dependence, at least up until
the mixing zone first reaches the floor of the tank. The agreement between the two
deteriorates after this point due to the effect of the unprotected strips down either
side of the barrier. The combination of this un-modelled flow plus the gravity current
propagating across the floor lead to a departure from the quadratic law.

5.2. Integral measures

As an alternative to the penetration measured by thresholding the mean concentration
profiles, Youngs (1994b) suggested using the integral mixedness

hIntegral =

∫ H/2

−H/2
〈C〉(1− 〈C〉) dz, (6)
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Figure 14. Integral measures for the growth of the mixing region: (a) h1,0 and (b) h1,1. The
experimental data are shown as solid lines, the simulations with idealized initial conditions as
dashed lines and the simulations using experimentally derived initial conditions with dot-dash lines.

as a more robust measure, less susceptible to statistical fluctuations than h2. Both
the similarity law and the results presented by Youngs suggested hIntegral should also
follow a quadratic growth. Dalziel (1994b) adapted this to consider the lower half of
the tank only and extended the possible measures to include

hm,n =
(m+ n)m+n

mnnm

∫ 0

−H/2
〈C〉m(1− 〈C〉)n dz, (7)

where m and n are integers. The factor outside the integral has been introduced
to limit hm,n to the range [0, H/2]. For the present paper we shall consider only

h1,0 = 〈C〉H/2, the amount of upper-layer fluid in the lower half of the tank, and h1,1

which, for a symmetric density field, is 2hIntegral .
Figure 14 plots these integral measures for the experiments and simulations. The

plane and ensemble averaging to obtain 〈C(z, t)〉 for these calculations is identical to
that employed in figure 11. The three curves in figure 14(a) give the h1,0 measure of the
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penetration. The corresponding curves in figure 14(b) are for the integral mixedness,
h1,1. Both sets of curves follow an approximately quadratic increase with time up to
τ ≈ 2 when the mixing zone extends to the bottom of the tank. The experimental
curves remain in close agreement with the barrier simulations until τ ≈ 2.5 at which
time fluid originating from the unprotected strips down either side of the barrier
enters the field of view.

After τ ≈ 2.5 it is clear that the experiments become more efficient at transporting
dense upper-layer fluid to the lower half of the tank due to the strength and coherence
of the large-scale overturning motion. The integral mixedness reaches a maximum
at τ ≈ 3.5 with the mean concentration of upper-layer fluid increasing through 0.5
(z/H = 0.25) as the stable stratification becomes established.

Similar measurements with the averaging restricted to the left-hand half of the tank
show the importance of the flow down the right-hand wall, with the experiments and
barrier simulations again in good agreement up to τ ≈ 2.5. In this restricted data set
the values of h1,0 and h1,1 are substantially lower than those based on the whole length
of the tank and, for τ . 1.5, are comparable with those for the idealized simulations.
This is a result of the weak upward flow resulting from the barrier perturbation
reducing the apparent local growth rate into the lower layer. The rate of growth
of the mixing zone into the upper layer is, of course, enhanced by this flow in the
left-hand half of the tank.

The growth from the idealized simulations (dashed curves) is substantially lower
than the experiments or barrier simulations. The curves for the idealized simulations
are, as expected, identical whether the averaging is over the entire length of the
tank or the left-hand end only. Compared with the experimental data and barrier
simulations, we find a lower growth rate for an average over the entire length of the
tank, repeating our earlier findings. As may be expected from the similarity law, the
h1,0 curve is well fitted by τ2 until the mixing region extends to the bottom of the tank.
The h1,1 curve is less well-modelled by a quadratic growth law for τ . 1, reflecting the
initial growth phase before the flow becomes fully nonlinear.

6. Structure within the mixing zone
We have seen in the previous section that for external measures of the instability,

such as the width of the mixing zone, the experiments agree well with the barrier
simulations, but there is only poor agreement with the idealized simulations. In this
section we look in more detail at the internal structure of the developing instability
to establish how this is affected by the barrier-induced perturbation and how well
the barrier simulations model the experiments in these features. The estimates of the
fractal dimension given here are more accurate than those reported by Linden et al.
(1994). Moreover, concentration power spectra have been measured for the first time
for Rayleigh–Taylor instability.

6.1. Power spectra

Concentration power spectra provide not only details of the mixing between the
two fluid layers, but, by inference, also provide details of the state of the turbulence
produced by the instability. We focus on the along-tank concentration power spectra
and average the results over the region −0.1 6 z/H 6 0 just below the initial density
discontinuity. As with the results presented in the previous section, the experimental
spectra were averaged over the ensemble of sixteen runs while the idealized simulations
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Figure 15. Typical horizontal concentration power spectrum from the ensemble of 16 experiments.
The spectrum is shown for τ = 2 and is calculated over a window extending from z/H = −0.1 to
z/H = 0. The + marks represent the arithmetic mean power level while the solid line is a weighted
least-squares power-law fit to the data for dimensionless wavenumbers in the range 10 6 k/k0 6 50.

The dot-dashed line represents a k−5/3 spectral slope.

were averaged over the width of the tank and the barrier simulations averaged over
both the width of the tank and the three runs in the ensemble.

In the absence of a horizontally periodic domain, the data had to be continued or
padded prior to computing their Fourier transform. For the results presented here
the data (160 mesh points for the simulations and 492 pixels for the experiments)
were extended to the next power of 2 using a linear interpolation between the
concentrations at either end of the domain. A standard one-dimensional fast Fourier
transformation algorithm was used to generate the power spectra prior to averaging.
Trials with artificially generated data and comparison with other windowing strategies
using a direct Fourier transformation algorithm confirmed the appropriateness of this
approach. The averaging of the power levels was achieved using both arithmetic
and geometric means and the results obtained compared and found to be in good
agreement. As the arithmetic average is more easily interpreted theoretically, only
these averages are presented here. The spectra from the experiments have also been
calculated with different horizontal window sizes. These tests have shown the spectral
slopes to be insensitive to the size and position of the window, and to the poor signal-
to-noise ratio in the left-hand side of the images. Spectra based on the whole length
of the tank are presented here as these provide the largest self-similar range and
the least contamination by the padding and windowing procedure. We are interested
primarily in the spectra for length scales small compared to the length of the tank
and so any weak contamination by the windowing and padding procedure is not
important. Moreover, at these wavenumbers the one-dimensional spectra calculated
here yield the same wavenumber dependence as integrating three-dimensional spectra
over spherical wavenumber shells (Tennekes & Lumley 1972, p. 253).

Figure 15 shows the arithmetic ensemble mean power spectrum for the experiments
at τ = 2. A weighted least-squares power-law fit to the data in the range 10 6 k/k0 6
50, where k0 = 2π/L, is shown as a solid line. This range of wavenumbers was selected
in order to avoid contamination by the large-scale motions introduced by the barrier
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Figure 16. The time evolution of the spectral slope, as determined by least-squares fits to the
spectral data of the type shown in figure 15, for the ensemble of experiments.

at the small-wavenumber end, and the signal noise at the high-wavenumber end. The
choice also effectively eliminates any influence from the procedure to extend the data.
The slope of this line is −1.49. The departure from the power-law behaviour for
wavenumbers k/k0 > 128 is due primarily to pixel noise in the processed images. This
cut-off corresponds approximately to the Kolmogorov length scale beyond which we
would expect a flattening of spectra for this high-Schmidt-number flow. The power
levels have been normalized by P0 such that P/P0 = 1 at k = 1 for a uniform
concentration C = 1.

A wide variety of fully developed turbulent flows display the k−5/3 Kolmogorov
velocity spectrum (Tennekes & Lumley 1972, p. 263), a characteristic common in both
experimental and numerical studies. Moreover, a scalar field, initially distributed in
a smooth manner, will be advected by the same turbulence to give a concentration
field with the same wavenumber dependence (Tennekes & Lumley 1972, p. 283). The
dot-dashed curve in figure 15 shows that for the present Rayleigh–Taylor instability
a − 5

3
slope is consistent with the experimental measurements. Arguably this fit is as

appropriate as the more general power-law fit (which is sensitive to the precise range
of data and weighting function used) discussed above, and shows the concentration
fields to be consistent with a Kolmogorov velocity spectrum.

The spectra for individual realizations agree well with the ensemble mean, showing
only a slight difference in slope and increased scatter. Changing the vertical extent
over which the power is averaged impacts the scatter more than the slope. Extending
this region to include the entire lower half of the tank leaves the mean almost
unchanged except at very small wavenumbers.

Figure 16 shows the time evolution of the spectral slope, where the slope was
evaluated using the same weighted least-squares routine used for the fits in figure
15. For τ > 0.4 the slopes decrease from around 2 to the 5

3
value indicated by the

horizontal line. Examination of the individual spectral plots suggests the degree of
scatter in the slope reflects the scatter in the individual plots and that the true spectral
slope is changing only on an O(1) time scale. The steep k−2 slope at early times (τ . 1)
is due to the combination of the energy introduced at relatively large scales by
the withdrawal of the barrier, and the time required to establish fully developed



32 S. B. Dalziel, P. F. Linden and D. L. Youngs

10–4

10–5

10–6

10–7

10–8

10–9

1.0 5.0 10.0 50.0 100.0

Po
w

er
, P

/P
0

(a)

(b)

10–9

1.0 5.0 10.0 50.0 100.0

Wavenumber, k/k0

10–4

10–5

10–6

10–7

10–8

Po
w

er
, P

/P
0

Figure 17. Typical horizontal concentration power spectra from the numerical simulations using
(a) idealized initial conditions and (b) experimentally derived initial conditions. In both cases the
spectra are shown for τ = 2, and are calculated over a window extending from z/H = −0.1 to
z/H = 0 using arithmetic averaging over the width of the tank. The solid line is a weighted
least-squares power-law fit to the data for dimensionless wavenumbers in the range 10 6 k/k0 6 25.

The dot-dashed line represents a k−5/3 spectral slope.

turbulence. This view is reinforced by examination of the individual spectra at these
early times which show that a much smaller range of wavenumbers follow a power
law than found at τ = 2 in figure 15.

The decrease in spectral slope for τ > 3 occurs when the mixing zone has extended
to fill the entire tank and a globally stable stratification is established. In these
conditions, the large length scales are affected by the globally stable nature of the
stratification, while the smaller length scales are influenced by the locally unstable
regions. As a result the large length scales are damped by the stratification, with their
energy being transferred to the density field in the form of internal waves, leading to
a decrease in the spectral slope since the smaller scales are not damped as efficiently.
Even if the locally unstable regions were not present, the larger scales would be
damped preferentially by the stratification.
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Figure 18. The time evolution of the spectral slope for the simulations using (a) idealized initial
conditions and (b) experimentally derived initial conditions, calculated as for the experimental data
shown in figure 16.

Figure 17 plots the mean spectra at τ = 2 for the idealized (figure 17a) and barrier
(figure 17b) simulations. Weighted least-squares power-law fits to the data in the range
10 6 k/k0 6 25 are indicated by solid lines, with the dot-dashed line signifying a
k−5/3 spectrum. The use of a smaller range of wavenumbers to determine the spectral
slope reflects the reduced range over which a power-law relation may be found and
the lower resolution of the numerical concentration fields.

The fitted power-law relationships give slopes of −1.79 and −1.63 for the idealized
and barrier simulations, respectively. The data show significant curvature even within
the 10 6 k/k0 6 25 range used to establish the spectral slope. Comparison with a k−5/3

relationship suggests this would also be a reasonable fit to the spectra. The roll-off at
high wavenumbers is an artefact of the finite resolution and numerical diffusion of
the simulations combined with the O(1) Schmidt number for the simulations. Earlier
work with the same numerical model (Linden et al. 1994) shows that for homogeneous
turbulence, the velocity power spectra are well fitted by k−5/3 down to a wavelengths



34 S. B. Dalziel, P. F. Linden and D. L. Youngs

of 6∆x, here corresponding to k/k0 ≈ 26, with the decay again increasing at higher
wavenumbers.

Comparison of the power levels shows close agreement between the idealized and
barrier simulations over most of the wavenumber range, with the largest differences
occurring at the lowest wavenumbers where the flow is influenced most by the barrier-
induced initial conditions. In contrast the experimental power levels are lower than
the simulations by as much as a factor of 3 at low wavenumbers, and higher by a
comparable factor at high wavenumbers. This variation reflects in part the broader
range of wavenumbers giving power-law behaviour plus the higher resolution of the
experiments providing more power at the highest wavenumbers.

The evolution of the spectral slope for the idealized and barrier simulations is
plotted in figure 18. The idealized simulations (figure 18a) take much longer to
establish the k−5/3 spectrum indicative of fully developed turbulence, reflecting the
slower growth rate for the instability, and the manner in which the initial disturbances
were confined to 20 6 k/k0 6 40 and extend to higher and lower wavenumbers only
through nonlinear interactions.

The barrier simulations are initiated with a much broader range of length scales
through the combination of the 20 6 k/k0 6 40 random three-dimensional perturba-
tion used for the idealized simulations, and the 1 6 k/k0 6 10 two-dimensional model
for the withdrawal of the barrier. In the barrier simulations the gap between these
two ranges of wavenumber is filled by nonlinear interactions much more rapidly than
the idealized simulations can extend to lower wavenumbers. As a result the k−5/3

spectrum is established earlier in the barrier simulations, at τ ≈ 1, than the idealized
simulations (τ ≈ 1.8).

Comparison of the barrier simulations (figure 18b) with the experimental (figure
16) spectral slopes shows that this initial development phase takes longer in the
simulations due to the initial absence of scales in the range 10 < k/k0 < 20 and the
absence of any three-dimensional motions for k/k0 < 20. At late times (τ > 3) the
simulations do not show the trend towards a flattening of the spectra that was found
in the experiments. There is some evidence to suggest this is due to a stronger stable
stratification being set up earlier in the experiments. The weaker stratification in the
simulations is due in part to the absence of the flow down the front and back walls
caused by the unprotected strips along each side of the barrier and the order-unity
Schmidt number.

6.2. Fractal dimension

The LIF visualizations of the experiments and the planar sections through the
simulations both provide information on the intersection between iso-concentration
surfaces and the viewed plane. Geometrically the intersection forms a set of contours
in the viewed plane which may then be analysed using a variety of tools. The possible
fractal geometry of such contours is one aspect which has received considerable
attention in recent years. While much of the work has centred on plumes and jets
(e.g. Lane-Serff 1993; Catrakis & Dimotakis 1996), Redondo & Linden (1990) have
previously applied fractal analysis to Rayleigh–Taylor instability.

The present analysis differs from the work of Redondo & Linden (1990) in a number
of ways. First, much higher resolution images could be used due to improvements in
video technology and the introduction of propan2ol to the lower layer to remove the
defocusing effect of refractive index variations. Second, a more powerful and better
collimated light source enabled the thickness of the illuminated sheet to be of the same
order as the Kolmogorov scale. Third, correction for the attenuation and divergence
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of the light sheet enables iso-concentration rather than iso-intensity surfaces to be
studied. Finally, the scope of the measurements has been greatly extended.

Both studies determine the fractal dimension as defined by Kolmogorov capacity
using the box counting algorithm. The domain is divided into a set of touching but
non-overlapping boxes characterized by size ε and the number of boxes N(ε) through
which the iso-concentration contour passes is counted. This number and the size of
the boxes are related through the relationship

N(ε) ∝ ε−D(ε), (8)

where D(ε) is the scale-dependent dimension. If this dimension is found to be inde-
pendent of the scale, D(ε) = D2 (say), the contour is said to be fractal.

Figure 19 presents the relationship between N and ε for the experiments (figure
19a), idealized simulations (figure 19b) and barrier simulations (figure 19c). In each
case a clear power-law relationship is visible spanning two orders of magnitude of
box size. The data presented here are for the C = 0.5 iso-concentration contour at
τ = 2 and the box counts have been averaged over the respective data sets. Individual
realizations and data planes show the same degree of power-law behaviour, although
there is some scatter in the slope. The fractal dimensions for each case are obtained
by a least-squares fit to the data for box sizes 0.02 6 ε/L 6 0.2, although the slopes
so obtained are relatively insensitive to the precise range of data selected.

The data presented here are restricted to the central 50% of the length of the tank
to avoid contamination by the poor signal-to-noise ratio on the left-hand side of the
images. If the full length of the tank is included, this noise increases the calculated
dimension by around 10%, whereas the results show relatively little sensitivity to the
lower level of noise found in the central region. In contrast, this high-wavenumber
noise had little impact on the power spectra presented in the previous section.

The time evolution of the fractal dimension for the C = 0.5 iso-concentration
contour is shown in figure 20. All three flows are characterized by an initial growth in
the dimension (which would be unity at τ = 0 if the flow started from a perfectly flat
interface), then an approximately constant dimension from τ = 0.5. The differences
during this initial phase reflect the differences in the initial conditions at the smaller
scales. The two simulations exhibit a close similarity due to the same random three-
dimensional perturbation being used for both, with only small differences resulting
from the introduction of the two-dimensional barrier perturbation. The more vigorous
three-dimensional nonlinear perturbations introduced by the real barrier lead to a
more rapid initial growth in the fractal dimension.

The values of the dimension are in good agreement between τ = 0.5 and τ = 2.2.
At around this time the flow from the unprotected strips down either side of the
barrier enters the field of view and a globally stable stratification is established. As
we have seen already with the power spectra, this implies that the energy in the larger
length scales is reduced relative to that in the smaller scales. The iso-concentration
contours begin to be smoother and more horizontal at larger length scales, although
they remain as contorted as before at the finer scales. The net result is an increase in
the fractal dimension due to the increasing dominance of the finer scales.

If the fluorescent dye used to mark the upper layer did not diffuse (but density
did), and we were able to view an infinitely thin light sheet, then ultimately the
stirring caused by the turbulent velocity field would lead to the iso-concentration
contours covering an ever-increasing area until all motion had died away. The fractal
dimension would increase towards 2 during this time, the limiting value depending
on the Schmidt number for the flow. If the density also did not diffuse (i.e. the fluids
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Figure 19. The power-law relationship between contour length and coverage using the box-counting
algorithm. The plots shown are for τ = 2 (t = 10 s) and the C = 0.5 concentration contour for (a)
the experiments, (b) the simulations with ideal initial conditions and (c) the simulations using the
barrier perturbation.
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Figure 20. The time evolution of the C = 0.5 fractal dimension. The experimental data are shown
with a solid line, the idealized simulations with a dashed line and the barrier simulations with the
dot-dash line.

were immiscible), the dimension would tend towards unity as the fluids separated. For
the experiments both density and the fluorescent dye diffuse so that, as the turbulence
decays, the iso-concentration contours associated with the final stable stratification
gradually become smoother and more horizontal, leading to a reduction in the fractal
dimension. While the dimension is still increasing in the experimental data at τ = 4,
the curvature suggests that a maximum will soon be reached for the experimental
data set. Calculation of the dimension at later times does show a reduction as will be
seen in the time evolution of the dimension for lower concentration contours.

The concentration dependence of the measured dimension has also been investi-
gated and the results plotted in figure 21. Curves are shown for C = 0.5 (solid),
C = 0.375 (dashed) and C = 0.25 (dot-dash), and the dimension can be seen to be
approximately independent of the concentration level selected up until τ ∼ 2.2. After
this point the simulations remain independent of concentration, but the experimental
curves diverge. As noted above, the increase in the experimental fractal dimension for
τ & 2.2 results from the establishment of a globally stable stratification and the rela-
tively slow diffusion of the fluorescent dye compared with the fluid momentum. This
same Schmidt number effect combined with the vertical distribution of the density is
the cause of the increased concentration dependence and eventual reduction in the
fractal dimension in the experimental data.

The lack of concentration dependence in the fractal dimension for the present flows
is in sharp contrast to the behaviour in plumes and jets. Concentration dependence
has been found in plumes and jets to be the result of a strong correlation between
the concentration and the intensity of the turbulence (e.g. Lane-Serff 1993). This
intensity in turn reflects variations in the spatial and temporal structure of the flow.
The fractal dimension is found to be higher for higher concentrations, which occur
(on average) near the centreline of the plume or jet where there is a slower roll-off
in the concentration power spectra. For the present Rayleigh–Taylor instability the
turbulence is largely uncorrelated with the mean concentration field, at least where
concentration fluctuations exist. In particular, the shape of the horizontal power
spectra is observed to be independent of the vertical location within the mixing zone.
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Figure 21. The dependence of the fractal dimension on the concentration C contour selected. (a)
Experiments, (b) idealized simulations and (c) barrier simulations. Curves are shown for C = 0.5
(solid), C = 0.375 (dash) and C = 0.25 (dot-dash).



Structure of turbulence induced by Rayleigh–Taylor instability 39

We thus find that all concentration contours are advected by turbulent motions with
similar characteristics and produce a concentration-independent fractal dimension.

The structural differences between the two cases lead to further differences in the
fractal nature of the flows. Catrakis & Dimotakis (1996) found the fractal dimension
for plumes and jets to be scale dependent (i.e. D(ε) is a non-constant function of ε),
whereas the constant slope in figure 19 shows that the dimension is independent of
scale for the present Rayleigh–Taylor instability. We suggest here that these differences
are the result of the same correlation between concentration and turbulence found
in plumes and jets but absent from Rayleigh–Taylor instability. In a plume or jet a
typical iso-concentration contour will span a finite range of radii and, as a result, be
subject to a range of statistically and structurally different turbulent eddies. Sections
of the contour at smaller radii will experience more intense turbulence with a different
structure (on average) than those sections at larger radii. The box counting algorithm
will be biased at small scales towards the regions containing more highly contorted
contours (i.e. smaller radii where the turbulence has a slower roll-off in the power
spectrum) with the bias gradually changing as the scales increase. As a result the
relationship between box count and box size is not the simple power law found in
the more homogeneous Rayleigh–Taylor instability.

These arguments can be taken one step further to form the hypothesis that any
correlation between the structure of the turbulence and concentration of some scalar
will result in the fractal dimension for iso-concentration contours being (a) concen-
tration dependent and (b) scale dependent. The converse, however, need not be true
as a homogeneous flow need not produce a scale-independent fractal dimension.

The relationship between the velocity power spectrum and the fractal dimension
of a marked line of fluid elements advected by a two-dimensional flow field is known
(Vassilicos 1989) to be

Pu(k) ∼ kD′−2, (9)

where D′ is the co-dimension of the line and Pu(k) is assumed to be constant in time
between the point when the line is marked and the dimension measured.

This result has led to the (as yet unproven) suggestion (see Sreenivasan 1991) that,
for the distortion of a surface by a three-dimensional flow, the fractal dimension and
the slope of the power spectra may be related in the same way, with the dimension D2

of the iso-concentration contours being related to the co-dimension D′ of the surface
by D′ = D2 − 1. For the present study the dimension is typically D2 ≈ 1.47 during
the growth phase, a value which suggests velocity power spectra following k−1.53. This
result is consistent with the spectra inferred from the concentration measurements.

We need to be careful about how the arguments leading to (9) and its three-
dimensional counterpart are applied to the evolving Rayleigh–Taylor instability. The
fluid surface is marked at τ = 0 and is advected by an evolving velocity field. During
the early stages of this evolution the velocity power spectrum flattens towards a k−5/3

relationship, resulting in a increase in the fractal dimension of some associated scalar.
During this evolution the true fractal dimension could be seen only if new fluid lines
or surfaces were marked at each stage. The surface marked by the density has been
subjected to a range of different flow structures during its history and, as a result,
any fractal dimension calculated from it will represent some weighted mean of what
has gone before rather than being a snapshot of the current flow.

What allows us to use these data and, to a first approximation, ignore this evolution
effect is the combination of an accelerating flow and diffusion of the measured
concentration field. The acceleration of the flow means that the turbulence responsible
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for the advection of the concentration field is more intense in the recent past than
earlier in the evolution. As a result, the structure of the velocity field responsible for
the recent advection is more important than the advection which occurred at earlier
times. This biasing towards more recent advection is further assisted by diffusion
of the measured scalar. This diffusion acts to erase information about advection at
earlier times, especially at the finer scales.

The net effect of this evolution is likely to be minimal between τ = 1 and τ = 2.5
where we have seen that the statistical properties of the flow are approximately
constant. At earlier and later times the effect of the evolution is likely to manifest
itself as a lag in the measured fractal dimension. Note that similar arguments may be
applied to the relationship between the concentration power spectra and the velocity
field responsible for advecting it.

The dimension D2 ≈ 1.47 determined from these experiments is greater than the
D2 ≈ 1.3 obtained by Linden et al. (1994). The significantly thicker light sheet and
mismatched refractive indices used in the earlier study both lead to a blurring of the
finer-scale features and hence the higher value of D2 for the newer experiments. We
believe D2 ≈ 1.47 reflects the structure of the instability more accurately.

7. Concentration statistics within the mixing zone
The ultimate effect of the growth of the mixing zone and the development of

fine-scale three-dimensional structure is that significant mixing at a molecular level
occurs. One way to quantify this is to construct the concentration probability density
function. In addition, a molecular mixing fraction has been defined which gives an
integrated estimate of the degree of molecular mixing.

7.1. Probability density functions

Linden et al. (1994) presented concentration probability density functions for their
experiments and simulations, achieving a moderate level of agreement between them.
With the improvements in the experimental techniques and the modelling of the
experimental initial conditions, we are in the position to investigate this relationship
further. As before a combination of ensemble and cross-tank averages are used to
improve the statistical reliability of the data.

Figure 22 compares the concentration probability density functions for the three
data sets in the same regions as used to calculate the power spectra. The curves
have been normalized such that the integral of the area under each curve is unity.
At τ = 1 (figure 22a), all three show a slowly varying response over much of
the concentration range, with the most noticeable feature being the sharp increase in
probability density at high concentrations for the experiments and barrier simulations.
This feature is due to the down-rush of upper-layer fluid adjacent to the right-hand
endwall as the barrier is withdrawn. The same feature is not observed in the idealized
simulations because the mixing occurs uniformly over the length of the tank. The
experimental curve follows that for the idealized simulations more closely at τ = 2
(figure 22b), at least for low concentrations. At higher concentrations, there is little
to distinguish between the curves, except that the experiments and, to a lesser extent,
the barrier simulations have a small bump near C = 0.6. The origin of this bump is
unclear.

By τ = 3 (figure 22c) the flow is influenced by the top and bottom of the tank.
The curves for the simulations have broadened out, although the experimental curve
is somewhat peaky. A similar peakiness was found by Linden et al. (1994; their
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Figure 22. Comparison between the concentration probability density functions at (a) τ = 1, (b)
τ = 2, (c) τ = 3 and (d) τ = 4 for the experiments (solid) and the simulations with idealized initial
conditions (dashed) and using the barrier perturbation (dot-dash).

figure 10). While it could be argued that the barrier simulation follows the experi-
ment the more closely of the two due to the presence of a peak around C = 0.35,
the differences are too large to add much support for this. Similar arguments apply
to τ = 4 (figure 22d) with the experimental and barrier simulation peaks coincid-
ing at around C = 0.32, but overall differences are larger than between the two
simulations.

The clear differences between the simulations and experiments render it impossible
to make a definitive statement that one type of simulation matches the experiments
better than the other. These results suggest more that the use of probability density
functions is not a good method for discriminating between the various scenarios. The
experimental results are somewhat contaminated by the noise at the two ends of the
tank, but this is thought to have only a small impact on the results presented here.
The limited spatial resolution of the simulations may also play a role.

7.2. Molecular mixing fraction

The molecular mixing fraction,

θ =
C(1− C)

C(1− C)
, (10)

is a measure of how well-mixed the two layers are on a given horizontal plane (Linden
et al. 1994). The maximum value θ = 1 will be achieved when the concentration is
uniform across the plane. Here θ = θ(z, τ) and the double overbar represents averaging
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Figure 23. Evolution of profiles of the mean molecular mixing ratio θ̂ (z/H, τ). (a) The experimental
data, is averaged over the length of the tank and over the 16 experiment ensemble. The simulations
are with (b) idealized initial conditions and (c) the measured initial conditions. For the simulations
the data is averaged over the length and width of the flow domain. The superimposed curves
represent the quadratic growth of the similarity law with values of αi = 0.03, 0.05 and 0.07 (i = 1, 2)
for the solid, dashed and dot-dashed lines (respectively).

both along and across the flow domain (i.e. the average over a horizontal plane).
To achieve consistency between the experimental and numerical data sets in the

present paper, we calculate an equivalent molecular mixing fraction θ̂(z, τ) as the
combined ensemble and/or cross-tank average of θx(z, τ), where θx(z, τ) is computed
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Figure 24. Time evolution of the global molecular mixing fraction Θ̂(τ). Experimental data is
shown as solid lines, idealized simulations as dashes and barrier simulations as dot-dashed lines.

using along-tank averages only. In particular we use

θ̂ =

〈
C(1− C)

C(1− C)

〉
. (11)

Figure 23 shows the molecular mixing profiles θ̂(z, τ) as greyscale images in a form
analogous to the concentration profiles of figure 11. The experimental data in figure
23(a) show a similar pattern of growth of the mixing layer to the barrier simulations
shown in figure 23(c). As expected the mixing layer can be seen to penetrate downward
into the lower layer more rapidly than its upward growth. In contrast the idealized
simulations of figure 23(b) shows a symmetric growth which is well-modelled by a
quadratic time dependence as indicated by the superimposed curves. The experimental
data and barrier simulations are less well-modelled by such a growth law and exhibit
a more complex structure than the idealized simulations.

Linden et al. (1994) define the global molecular mixing fraction,

Θ =

∫ H/2

−H/2
C(1− C) dz

/∫ H/2

−H/2
C (1− C) dz, (12)

where Θ = Θ(τ), is a measure of the horizontal homogeneity and mixing for the
entire domain. As with the molecular mixing profiles we must reconcile the differences
between spatial and ensemble averaging and we compute an equivalent measure

Θ̂ =

〈∫ H/2

−H/2
C(1− C) dz

/∫ H/2

−H/2
C (1− C) dz

〉
, (13)

where Θ̂ = Θ̂(τ) and the angular brackets in (13) represent ensemble and/or cross-
tank averaging of the quotient of the integrals.

The global molecular mixing fraction increases with time as shown in figure 24. The
idealized simulations produce a larger value of Θ̂ for τ . 2.5, reflecting the greater hori-
zontal homogeneity found in the absence of the barrier-induced initial perturbation. In
the barrier simulations the mixing layer extends to the bottom of the tank earlier than
for the idealized simulations, leading to the establishment of a more stable and hori-
zontally homogeneous state earlier than in the idealized simulations, thus causing the
relative increase in Θ̂ for the more complex initial conditions. We believe that in both
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cases the numerical simulations underestimate Θ̂ at early time due to lack of resolution
of the fine-scale structure. Towards the end of the similarity phase the calculated values
of Θ̂ are similar to the asymptotic Θ̂ = 0.8 reported by Linden et al. (1994) for well-
resolved self-similar mixing. The experimental measurements of Θ̂ show a broad simi-
larity with their numerical counterparts, but it is not possible to draw any firm conclu-
sions due to the contamination of these results by noise in the intensity measurements.

8. Conclusions
Traditionally the analysis of Rayleigh–Taylor instability has concentrated on α1

and α2 growth rate constants when comparing flows with different setups and ap-
proaches. One of the aims of this paper has been to provide a much broader range
of diagnostics for both the experiments and simulations, allowing additional insight
into the physics and extending the breadth of any comparison. Through the use of
image processing techniques we have been able to extract details of the structure of
the concentration field within the mixing zone and provide, for the first time for a
laboratory experiment, quantitative measurements of the power spectra and molecular
mixing, and to obtain more reliable figures for quantities such as the penetration and
fractal dimension.

Detailed numerical simulations were undertaken both to verify that the current
generation of codes are able to provide quantitative agreement with experimental
measurements (provided appropriate initial conditions are selected), and to allow a
detailed comparison between the real, but non-ideal, experiments and the idealized
instability starting from a purely random initial perturbation. Such idealized flows
are difficult, if not impossible, to achieve in the laboratory environment and this
two-pronged approach has enabled us to determine which features of the flow are
sensitive to the initial conditions and which develop in a more universal, self-similar
manner.

As we have seen in this paper, we have excellent quantitative agreement between
most aspects of the experiments and simulations, yet we are unable to give a rea-
sonable, unambiguous estimate for the α2 growth rate. The difficulty stems from the
inhomogeneous structure of the flow and the sensitivity of α2 (and α1) to the precise
method by which it is calculated. Increased spatial resolution has lead to a decrease
in the values of α1 and α2 obtained from simulations, and an extension of the range
of times over which τ2 behaviour is found, reflecting the reduction in numerical dissi-
pation. Nevertheless, even with the highest-resolution simulations currently available,
there is an ambiguity as to how the growth should be determined. While α1 and
α2 may be a very simple measure of the development of the instability, we contend
here that it is not such a useful measure. Detailed comparisons should include other
measures of the structure of the evolving mixing zone and the internal structure and
statistics of the flow in addition to the component of h1 or h2 exhibiting a quadratic
time dependence.

A further example of why the quadratic growth constants α1 and α2 do not
provide a good characterization of the flow is the similarity between the experiments,
TURMOIL3D calculations and simpler two-dimensional calculations presented in § 4
(figure 7). Visual comparison of these two-dimensional simulations with their three-
dimensional counterparts shows that the overall growth and large-scale structure are
in close agreement, at least up to τ = 3, and that measures of h1 and h2 (and hence
α1 and α2) would be comparable while, at the same time, the finer scales and internal
structure are completely lacking.
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Integral measures of the penetration such as h1,0 and h1,1 may be more robust against
statistical fluctuations, but if the flow does not emanate from spatially homogeneous
initial conditions, they may provide an inappropriate vehicle for comparison of
different flows. For simple comparisons between different sets of initial conditions,
it is desirable to use more than one such measure as these different moments of
concentration provide information about different aspects of the flow. We suggest
that the scatter plots presented in figure 12 provide a broader base for comparison of
both structure and growth rate.

Comparisons of the internal structure of the flow show that at small scales the
memory of the initial conditions is rapidly lost and the flow exhibits the character-
istics of scale-independent self-similarity and a fully developed turbulent spectrum.
The agreement between the experiments and barrier simulations is excellent, given
the limitations on the spatial resolutions in the simulations and signal noise in the
experiments. Even the idealized simulations show a remarkable agreement in the
internal structure (although the spatial resolution of these is more restrictive), sug-
gesting the universal nature of the dynamics within this region. The main differences
arise after the mixing region extends to the bottom of the tank (and the un-modelled
three-dimensional component of the initial conditions becomes important), and from
absolute quantities such as the probability density functions which show a sensi-
tivity to fine details of the initial conditions but not to the gross features of the
flow.

The level of statistical agreement between experiments and three-dimensional sim-
ulations reflects the resolution at which the simulations were undertaken. If the
resolution were to be increased for a three-dimensional simulation, we would expect
very little difference in the growth of the mixing zone but there would be some
differences in the internal structure. In particular we would expect the self-similarity
found in both the simulations and experiments to extend to higher wavenumbers
and smaller length scales, with little differences at the lower wavenumbers and larger
length scales. Growth rates, spectral slopes, fractal dimensions and molecular mixing
fractions are all expected to remain much the same.

Correct modelling of the initial conditions is critical if the gross features of the
numerical simulations are to agree, even qualitatively, with experimental, industrial
or natural manifestations of Rayleigh–Taylor instability. This modelling need not
include all the scales found in the real initial conditions. The turbulent nature of the
flow causes the memory of the finer details of the initial conditions to be lost very
quickly. This loss of memory allows artificial noise to be used to model the fine-scale
component of the initial conditions. Although matching the amplitude of this noise
would be desirable, at least at the larger length scales, the present work has shown
that it is not essential. Once the flow becomes nonlinear, the turbulent interactions
rapidly fill any gaps in the spectra and provide a continuous wavenumber dependence.

In most studies of Rayleigh–Taylor instability the initial conditions have been
characterized purely in terms of their power spectra with an implicit assumption
that the phase relationship between the modes is unimportant. If this assumption is
true, then the spatial structure of the initial perturbation will not affect the averaged
properties or the internal details of the subsequent flow. However, the local nature
of baroclinic generation of vorticity compared with the more global nature of the
Fourier power spectra lead us to question the validity of this assumption.

The phase relationship becomes particularly important when considering flows
with a well-defined initial structure such as that produced in these experiments by
an interaction between the flow induced by the barrier and the endwalls of the tank.



46 S. B. Dalziel, P. F. Linden and D. L. Youngs

Simulations have shown that a range of different flows and growth rates may be
produced by changing the phases of the various Fourier modes used to describe the
initial conditions. If the initial conditions are more homogeneous, external measures
of the flow may differ significantly from those produced by the barrier simulation
(e.g. the rate of growth of the extremes of the mixing zone), although some of the
mean statistics may be comparable. As we have seen, the internal structure of the
concentration field does not retain a memory of the initial conditions, yielding a close
similarity in these aspects regardless of the phase of the initial conditions.

The external features of the flow are controlled primarily by the larger scales in
the initial conditions as these are more energetic and robust to nonlinear interac-
tions and thus the corresponding features survive as identifiable structures for much
longer than the finer-scale components of the instability. Indeed the ensemble of
experiments has shown that while precise details of the initial conditions vary from
one realization of the flow to the next, the larger scales and the overall development
of the instability are similar across the ensemble. It is thus unnecessary to model
the initial conditions with a high degree of accuracy. Moreover, we have shown that
replacing the finer-scale components of the initial perturbation with random noise
while retaining the larger-scale two-dimensional component provides a set of initial
conditions which evolve numerically in much the same way as the corresponding
experiments.

The initial conditions perturb the flow away from a horizontal interface between the
two layers, thus allowing the baroclinic generation of vorticity. The spatial structure
of the perturbation sets the spatial structure of the vorticity which subsequently drives
the flow. In contrast, the amplitude of the perturbation is much less important. The
amplitude sets the initial rate at which the baroclinic torque will generate vorticity, but
it does not directly affect the spatial distribution of this vorticity and the initial linear
phase of vorticity generation will take place regardless of the (non-zero) amplitude of
the perturbation. This baroclinically generated vorticity soon starts to drive the flow,
the vorticity having grown to levels much higher than that contained in the initial
perturbation. The subsequent growth of the instability is only weakly dependent on
the amplitude of the initial perturbation.

Determining the initial conditions as an ensemble mean of experimental initial
conditions would be a reasonable option if there were random component with an
intermediate to large-scale structure and amplitude comparable with the variation
between experiments in the ensemble. For the present work, the ensemble mean of
the initial conditions measured in the homogeneous case reproduces the largest-scale
overturning mode, but the amplitude of the smaller-scale components (particularly
the pronounced k/k0 ≈ 5) is considerably reduced due to small phase differences
between different realizations within the ensemble. It is thus more meaningful to
perform an ensemble of simulations, each with a slightly different structure to their
initial conditions, than to do a single simulation starting from the ensemble mean.

We have modelled explicity only the two-dimensional component of the experimen-
tal initial conditions. This approach has clearly been successful (at the centreplane)
until after the mixing zone has extended through the entire depth of the tank. It is not
so successful near the front and back walls, or at later times due to the significant but
neglected three-dimensional component introduced by the unprotected strips down
either side of the barrier. We suggest that if a similar level of modelling of this
component were to be included we would see a corresponding improvement in the
agreement near the walls and at late times.

Detailed comparisons of the type presented here are still relatively rare. We expect
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they will become of increasing importance to both the experimental and the compu-
tational fluid dynamics communities as the technologies available for both aspects of
the work improve. An important component of such studies will be detailed analysis
of the initial and boundary conditions. In many cases a relatively crude level of mod-
elling will be all that is required. Matching the conditions in unstable flows is more
likely to be important due to the amplifying effect inherent in most instabilities. As
we have seen, such matching can lead to a dramatic improvement in the quantitative
agreement between the two approaches.

S. B. D. wishes to acknowledge the financial support of AWE Aldermaston and the
Isaac Newton Trust.
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