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We perform laboratory experiments in a recirculating shear flow tank of non-uniform
salt-stratified water to examine the excitation of internal gravity waves (IGW) in
the wake of a tall, thin vertical barrier. The purpose of this study is to characterize
and quantify the coupling between coherent structures shed in the wake and internal
waves that radiate from the mixing region into the deep, stationary fluid. In agreement
with numerical simulations, large-amplitude internal waves are generated when the
mixing region is weakly stratified and the deep fluid is sufficiently strongly stratified.
If the mixing region is unstratified, weak but continuous internal wave excitation
occurs. In all cases, the tilt of the phase lines of propagating waves lies within a
narrow range. Assuming the waves are spanwise uniform, their amplitude in space
and time is measured non-intrusively using a recently developed ‘synthetic schlieren’
technique. Using wavelet transforms to measure consistently the width and duration
of the observed wavepackets, the Reynolds stress is measured and, in particular, we
estimate that when large-amplitude internal wave excitation occurs, approximately
7% of the average momentum across the shear depth and over the extent of the
wavepacket is lost due to transport away from the mixing region by the waves.

We propose that internal waves may act back upon the mean flow modifying it
so that the excitation of waves of that frequency is enhanced. A narrow frequency
spectrum of large-amplitude waves is observed because the feedback is largest for
waves with phase tilt in a range near 45◦. Numerical simulations and analytic theories
are presented to further quantify this theory.

1. Introduction
Internal gravity waves (IGW) are generated whenever the fluid is perturbed at

frequencies less than its natural buoyancy frequency. Such excitation occurs naturally
in many geophysical circumstances. Probably the best known example of this phe-
nomenon is the generation of mountain waves, a manifestation of IGW that occur
when sufficiently strongly stratified air is vertically displaced as it flows over orogra-
phy. The transport of momentum by these waves is now well known to contribute
significantly to the general circulation of the atmosphere (for example, see Bretherton
1969; Lilly & Kennedy 1973; McFarlane 1987; Palmer, Shutts & Swinbank 1986).
Likewise, IGW may be generated due to the flow of stratified water over sea mounts
and sills; a classic example is the excitation of internal solitary waves in the Strait
of Gibraltar (for example, see Lacombe & Richez 1982; Brandt, Alpers & Backhaus
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1996), Recently, mechanisms other than orographic excitation have been examined
including convective forcing (for example, see Fovell, Durran & Holton 1992; Alexan-
der 1996) and shear instability (for example see Davis & Peltier 1979; Fritts 1982;
Chimonas & Grant 1984; Sutherland, Caulfield & Peltier 1994).

A dramatic visualization of IGW in the atmosphere can occur under partly cloudly
conditions when moisture condenses at the crests of the waves thus rendering them
visible as banded cloud patterns†. The preponderance of almost periodic wave trains
made visible by clouds is a curiosity, however. Often IGW exhibit such periodicity even
though local topographic features are irregular, and over flat land and sea periodic
cloud patterns are nonetheless observed. The processes leading to the generation of
periodic IGW under these circumstances remain poorly understood.

Laboratory experiments on stratified turbulence suggest that nonlinear mechanisms
may contribute significantly to the mechanism whereby quasi-periodic IGW are
generated. For example, in mixing box experiments performed by Linden (1975) a
fully turbulent region near the surface of an initially linearly stratified fluid was
established by a vertically oscillating horizontal grid. As the experiment progressed
transient IGW excitation was observed below the base of the mixing region and,
although the turbulence exhibited motion with a broad range of frequencies, the
waves themselves occurred within a relatively narrow frequency band. Specifically,
IGW were observed to propagate below the mixing region with phase lines tilting at
angles ranging from 0◦ to 35◦ with the vertical. Estimates of the wave amplitudes
suggested that significant energy radiated from the turbulent region. Similar results
were observed in experiments performed in linearly stratified fluid of the wake behind
a horizontal cylinder (for example Stevenson & Thomas 1969; Lin & Pao 1979; Boyer
et al. 1989) and behind a sphere (for example Lin, Boyer & Fernando 1992; Bonneton,
Chomaz & Hopfinger 1993). In each case, observed waves propagated away from the
turbulent region in a limited band of frequencies close to the buoyancy frequency.

These observations lead us to propose that periodic IGW occur when they are
capable of acting back upon the mixing region in a way that further enhances
their excitation, an assertion that we attempt to demonstrate both qualitatively and
quantitatively here.

As with any feedback process, the influence of IGW back upon the mixing region is a
nonlinear mechanism that acts significantly when motions near the base of the mixing
region are of sufficiently large amplitude. Numerical simulations have shown that this
feedback is a robust feature of dynamically unstable flows in non-uniform stratification
(Sutherland et al. 1994). The specific criterion for strong emission (‘strong’ in the
sense that the mean flow experiences non-negligible drag due to the transport of
momentum away from the mixing region by IGW) is defined in terms of two
buoyancy parameters, Jmix and Jdeep. Under the Boussinesq approximation the squared
buoyancy frequency N2 is defined in terms of the ambient density gradient ρ(z)
by N2 = −(g/ρ00)dρ(z)/dz, in which ρ00 is the characteristic density. Then in the
mixing region (where there is strong shear and overturning and entrainment occurs)
Jmix = N2

mixL
2/U2, in which Nmix is the buoyancy frequency evaluated at a vertical

level where the shear is largest, and U and L are the characteristic velocity and length
scales, respectively, of the shear flow. In the far field (where there is no background
shear and no mixing, only wave propagation) Jdeep = N2

deepL
2/U2, in which Ndeep

† At the time of writing, excellent photographs taken by satellite and by space shuttle astronauts
of internal gravity waves in the atmosphere and ocean appear on the NASA World Wide Web site:
http://www.nasa.gov/gallery/photo/.



Internal wave excitation 225

is the characteristic buoyancy frequency below the mixing region. By examining
the growth and nonlinear development of the most unstable normal mode of an
unstable hyperbolic tangent shear flow with non-uniform stratification in a periodic
channel, Sutherland (1996) has shown that strong excitation occurs if Jmix . 1/4 and
Jdeep & 1/4. This mechanism for IGW excitation has been proposed as a source of
non-hydrostatic upward propagating IGW due to shear instability of the upper flank
of the tropospheric jet (Sutherland & Peltier 1995) and of downward propagating
IGW generated by shear instability of the upper flank of the equatorial undercurrent
(Sutherland 1996).

As part of this work, we perform laboratory experiments to examine the shear
excitation of IGW in the wake of salt-stratified flow over a thin barrier. Unlike many
studies of sheared stratified turbulence, we study the behaviour of non-uniformly
stratified fluid. Typically, the region where mixing occurs is more weakly stratified
initially than the deep stationary fluid where IGW propagation occurs. The experiment
has been set up in this way because numerical simulations predict that large-amplitude
IGW may be generated under such circumstances and, hence, the interactions between
the mixing region and radiating IGW may be more easily observed. The dynamics
of the experimental flow differ from the numerical studies in which the flow is
horizontally periodic and the disturbances grow in time. Here the shear instability is
a spatially growing disturbance.

Analytic solutions of uniformly stratified constant upstream flow over a thin barrier
have been found previously by Miles (1968) (see also figure 3 of Huppert & Miles
1969), although his calculations showed that the flow is unstable (in the sense of Long
(1955) that the solution has closed streamlines) to wavelengths small compared with
4.0Uc/Nc, in which Uc is the upstream flow speed and Nc is the buoyancy frequency.
Although laboratory experiments have been performed to study the flow over a thin
barrier with the upstream conditions prescribed by Miles (1968) (Davis 1969; Castro,
Snyder & Baines 1990), ours differ from these conditions in two significant ways:
the barrier is large compared with the fluid depth, extending over approximately
80% of the fluid depth; the upstream flow and stratification is non-uniform, the flow
being non-zero only over the top 20% of the fluid depth and the stratification in
the mixing region being generally smaller than the stratification of the deeper fluid.
Accordingly, our focus is not on the generation and upward propagation of IGW
that occur on the scale of the lee waves. Rather we examine the generation and
downward propagation of IGW that occur on the scale of coherent structures that
develop from shear instabilities immediately in the wake of the barrier. In the light of
the prediction of Miles (1968), it is reasonable to expect that instabilities should occur
due to wavelengths on the order of U/Nmix. Indeed, in experiments with a moderately
stratified mixing region vortex shedding occurs on length scales in this range.

IGW characteristics are determined by a variety of methods including conductivity
probe measurements at a fixed depth which give the fluctuation density in time at
a point, and dye line tracking which gives the fluctuation horizontal velocity along
a vertical line. We make extensive use of a ‘synthetic schlieren’ technique (Dalziel,
Hughes & Sutherland 1998) by which the instantaneous two-dimensional wave field
can be quantitatively but non-intrusively determined. These methods will be described
in some detail in §2.

In §3 we describe qualitatively the experimental results. In particular, we demon-
strate the excitation of IGW in three experiments, each with similar deep stratification
but with weak, moderate, and strong stratification in the mixing region. Time series
demonstrate the coupling between coherent structures in the lee and radiating IGW.
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Adapting the technique developed by Alexander (1996), we employ a wavelet
analysis in §4 to provide consistent estimates of the extent and amplitude of the
observed wavepackets, and to compute the momentum flux across a fixed vertical
level. The analyses show that the drag exerted on the mixing region due to the
extraction of momentum by IGW is significant when strong IGW emission occurs:
the mean flow over the horizontal extent of the wavepacket can be decelerated by
approximately 7% of the characteristic flow speed over the shear half-depth.

To illustrate and quantify further the effect of IGW excitation back upon the mixing
region, we have performed a series of numerical simulations, which are reported in §5.
The initial basic state, a hyperbolic tangent shear flow in non-uniform stratification,
is similar to that examined by Sutherland (1996). However, instead of simulating the
nonlinear development of a horizontally periodic normal mode, here we study the
horizontal spatial as well as temporal evolution of a localized perturbation to the
vorticity field in the shear flow. We show that the mixing region itself undergoes a
significantly modified evolution when the deep fluid is sufficiently strongly stratified
to allow the generation of IGW.

Some simple arguments based on linear theory are proposed in §6 to explain why
IGW are frequently observed in a limited range of frequencies.

2. Experimental setup
Experiments are performed in a recirculating tank as shown schematically in

figure 1. The test section of the tank is 40 cm deep, 20 cm wide and over 2 m long.
Using a ‘double bucket’ system, the tank is filled with salt-stratified water to a depth of
approximately 35 cm. The stratification near the surface is reduced between successive
experiments by mixing which occurs over the top 10 cm. Over time, a surface mixing
region develops due to convection driven by evaporation. During the many days
over which a series of experiments is typically performed, this unstratified region can
extend down to approximately 3 cm below the surface, and in some experiments the
region can significantly affect the large-scale structure of the downstream flow. Its
direct influence upon the generation of IGW is likely to be a secondary effect because,
as we will show, the length scale relevant to the dynamics of IGW generation is of
order 1 cm, much less than the depth (approximately 5 cm) of the mixing region
downstream of the barrier.

A Kovasznay-type motor (Odell & Kovasznay 1971) generates a shear flow near
the surface. The motor is composed of two stacks of horizontally oriented disks that
rotate about their vertical axes, and which accelerate the interstitial fluid within their
viscous boundary layers. The three disks in each stack are situated between z = 27
and 35 cm above the bottom of the tank. Though the vertical structure of the resulting
shear flow depends in part upon the structure of the vertical density profile, typically
the fluid in the test section is stationary between z = 0 and 25 cm.

A 27 cm tall, 4 mm thick vertical barrier stands on the bottom of the tank and
spans its width. The height of the barrier is chosen so that the vertical displacement
of fluid passing over the barrier is small (on the order of 1 cm) compared with
the barrier height. The shear flow upstream of the barrier is stable, as indicated by
the propagation of vertical dye lines dropped up to 50 cm upstream. As the shear
flow passes over the barrier lee waves and overturning regions occur downstream.
The qualitative behaviour of the flow varies depending on the flow speed and local
stratification. For the range of experiments performed, the upstream flow speed
measured at the same depth as the top of the barrier ranges from about 0.5 cm s−1
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Figure 1. Schematic of the Kovasznay-type tank, in which a stratified shear flow near the surface of
a recirculating tank is driven by two sets of interleaving rotating disks. Internal waves are generated
in the lee of a 27 cm tall, thin vertical barrier that spans the width of the tank.

to 2.0 cm s−1. The density structure near the same depth is either unstratified or
stratified with buoyancy frequency as large as Nmix ' 1 s−1. Typically, the deep water
stratification is characterized by buoyancy frequency Ndeep ' 1 s−1. When large-
amplitude internal waves occur the density gradient is observed to change locally due
to stretching and compression of the isopycnals. This effectively changes the local
value of the squared buoyancy frequency by up to 15% (i.e. ∆N2/N2 . 0.15, in which
∆N2 = −(g/ρ00)∂ρ

′/∂z, and ρ′ is the perturbation density field).
The initial density profile ρ is measured with a conductivity probe that between brief

acceleration and deceleration times is traversed vertically at 4 cm s−1 with a sampling
rate of 100 Hz. In some experiments, successive traverses of the probe are periodically
taken through the mixing region to measure the deepening of the mixed layer.

The flow in the mixing region itself is visualized by dye in two ways. The mean flow
profile is determined by tracking the propagation of vertical lines of dye. To make the
lines, 1 mm diameter glass beads coated with a concentrated solution of rhodamine
dye are dropped into the flow at regular intervals. Shed vortices and the flow that
passes near the top of the barrier are visualized by potassium permanganate crystals
that are placed on top of the barrier and which slowly dissolve during the course of
an experiment.

The wavelength, frequency, and amplitude of IGW are measured by a variety of
techniques. By recording conductivity variations at a fixed level z0 over time, vertical
displacements below the base of the mixing region ∆z may be estimated from the
density fluctuations ρ′ assuming the linear relationship

∆ρ′(t; z0) = ∆z(t; z0)dρ/dz. (2.1)

In addition, the horizontal motion of vertical lines of rhodamine dye in the deep fluid
can be tracked from digitized images of the experiment to give the profiles of the
fluctuation horizontal velocity along the line.

We make extensive use of a ‘synthetic schlieren’ technique by which we quantita-
tively, but non-intrusively measure the two-dimensional field of the IGW as it evolves
in time (Sutherland et al. 1998). The technique consists of placing a back-illuminated
grid of horizontal black lines behind the test section and recording the position of the
lines using a CCD camera connected to an image processing system, DigImage. The
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stretching and compression of isopycnals due to the passage of IGW locally changes
the gradient of the index of refraction of the fluid so that the grid lines behind
them appear to be displaced. At any time the vertical displacements of the grid lines,
∆zG(x, z, t), from the initial grid line positions are used to calculate directly the change
of the squared buoyancy frequency ∆N2(x, z, t) = −(g/ρ0)dρ

′/dz. Explicitly,

∆N2(x, z, t) = −[γ ( 1
2
LT

2 + nw/naLGLT
)]−1

∆zG, (2.2)

in which nw and na are the indices of refraction of water and air, respectively, LT is the
span of the tank, and LG is the distance from the tank to the grid of lines. The effect of
the thickness of the tank walls, which is a negligible correction, has been omitted from
the equation. The constant γ = (1/g)(ρ00/nw)dn/dρ ' 1.878× 10−4 s2 cm−1, in which
g is the acceleration due to gravity, ρ00 is the density of water at room temperature,
and dn/dρ is the rate of change of the index of refraction of salt water with density,
which is approximately constant for the small salt concentrations used here.

In practice, ∆zG is determined by quadratic interpolation of the pixel intensity at
one time with the initial intensity of the upper, middle and lower pixels. The intensity
of a single pixel is the average digitized intensity of light over the pixel area, typically
0.2 mm2. Interpolation is performed only when the intensity difference between the
upper and lower pixels and the middle pixel exceeds some threshold. The pixels have
digitized intensities ranging from 0 to 255 and, typically, a threshold is set at 25. The
pixels excluded from the calculation are assigned to be the Gaussian weighted average
of the surrounding included pixels. In this way, points within a standard deviation of
2 pixels contribute most significantly.

As well as calculating ∆N2 as a function of the displacement of grid lines from
their initial position, the time derivative of the squared buoyancy frequency, N2

t , is
found by calculating the displacement of grid lines between two short successive times
(typically 0.4 s).

Ambient heat fluctuations in the laboratory can give rise to spurious noise. Because
these fluctuations occur on a much faster time scale (1/10 s) than that of IGW (10 s),
it is possible to filter them from the digitized signal by applying a low pass Fourier
filter to time series constructed from the ∆N2 and N2

t fields.
Figure 2 shows the ∆N2 and N2

t fields between 5 cm upstream and 30 cm down-
stream of the barrier (at x = 0), and between 5 cm above and 20 cm below the top of
the barrier (at z = 0). The ∆N2 field is shown on a grey scale with black corresponding
to ∆N2 = −0.16 s−2 and white corresponding to ∆N2 = +0.16 s−2. Similarly, the N2

t

field is shown on a grey scale corresponding to values ranging from −0.04 to 0.04 s−3.
The fields are calculated at a time when strong IGW radiate from the mixing region,
the waves extending downward from left to right. Although the calculation is not valid
in turbulent regions where the flow is not spanwise uniform, it is nonetheless useful
to show these regions as they qualitatively indicate the flow structure in the mixing
region. The panels show that a lee wave develops in the wake of the barrier, breaking
after a half-period, approximately 10 cm downstream (see also figure 3). The IGW with
phase tilts approximately 45◦ to the vertical are generated with horizontal wavelengths
approximately 7 cm, smaller than the wavelength of the lee waves. As expected, the
∆N2 field is out of phase with the N2

t field where propagating IGW occur. The ∆N2

field also shows significant structure upstream of the barrier, which corresponds to the
vertical compression (where ∆N2 ' 0.16 s−2 near z = −15 cm) and stretching (where
∆N2 ' −0.16 s−2 near z = −4 cm) of isopycnal layers. Conversely, downstream of
the barrier the isopycnal layers are stretched and compressed at z = −15 cm and
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Figure 2. (a) The change in squared buoyancy frequency ∆N2 and (b) its time derivative N2
t

calculated in Experiment B see text) when IGW are generated downstream of the barrier (at x = 0).
Note the calculated values are valid only where the flow is approximately spanwise uniform, i.e. not
in the turbulent mixing region.

z = −4 cm, respectively. In time these maxima propagate upward over many minutes,
consistent with the behaviour of IGW with long horizontal extent. As such, these
long horizontal IGW are resonant modes whose structure depends upon the geometry
of the tank, the position of the barrier in the test section, and the density structure
at depths below the top of the barrier. The waves occur well below the top of the
barrier where no background flow is forced by the pumping mechanism of the motor.
There is no mean flow at these depths to block, and therefore these waves must result
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from the shear-induced stress near the surface. Although the study of these waves
certainly merits future study, their analysis is beyond the scope of the present work.
Because they propagate on long time scales, they are effectively filtered by taking the
time derivative. Thus only IGW of frequencies close to the buoyancy frequency are
apparent in the N2

t field, and most of our analyses are performed on this field.
Although the N2

t field is not a useful quantity on its own, velocity fields may be
determined from it to within a set of integration constants. Assuming incompressibil-
ity, linearity, and supposing that the initial N2 profile varies slowly on the scale of
the vertical wavelength of the IGW, then

∂w′/∂z = −∂u′/∂x ' N2
t /N

2. (2.3)

The linearity assumption requires some clarification. It will be shown that the am-
plitude of vertical displacements due to IGW well below the mixing region is less
than 1 mm, which is small compared with horizontal wavelengths of the order 7 cm.
This does not contradict our claim that nonlinear effects are relevant to interactions
between radiating IGW and the mean flow. As we will show, the amplitude of IGW
at the base of the mixing region where they are generated is a significant fraction of
the wavelength.

The vertical velocity field can be determined from equation (2.3) by vertically inte-
grating the field N2

t /N
2, the result being determined to within an integration constant

C(x) for each horizontal position x of a row of pixels. Likewise, the horizontal veloc-
ity field can be found by horizontally integrating equation (2.3), and the fluctuation
density and vertical displacement field can be determined to within a set of integration
constants from the field of ∆N2.

When integrating in practice, cumulative noise (for example, due to variations in
air temperature or degradation of images stored for long times on video tape) can
overwhelm the signal from the IGW field.

IGW wavenumbers and frequencies are found from power spectra of space–time
plots of the N2

t field. We find, in general, that the spectra of IGW generated by
instabilities are sharply peaked about a narrow range of values. The peak value itself
can be used to determine the IGW amplitude for waves of a particular frequency
and wavenumber by using a technique adapted from Alexander (1996). This method,
which uses a wavelet analysis to determine the spatial and temporal extent of the
wavepacket, is described in detail in §4.

3. Results
Depending on the motor speed (and also weakly depending on the degree of

stratification) the near surface fluid upstream of the barrier accelerates to speeds
between 0.5 cm s−1 and 2.5 cm s−1 approximately 60 s after the motor is turned on.
Once established the flow speed is uniform in the vertical over the top 6 cm. Over
many minutes mixing downstream tends to decelerate the flow near the surface and
the upstream velocity profile gradually evolves in response. The fluid over the bottom
20 cm is stationary throughout each experiment except for fluctuations due to IGW. A
detailed understanding of the mixing region dynamics, though interesting, is beyond
the focus of the present study. Instead we examine the flow immediately downstream
of the barrier, studying the development of coherent structures in the lee and how
these couple with radiating IGW.

Figure 3 shows a schematic of the flow typically observed in the mixing region.
The lee wave that develops downstream of the barrier occurs on a scale U/Nmix,
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Figure 3. A schematic of the typical structure of the flow downstream of the barrier. The indicated
length scale, L, and velocity scale U, are those relevant to the generation of IGW (of wavelength
λIGW) by vortices shed in the wake of the barrier. IGW excitation is distinct from the excitation of
lee waves (of wavelength λLEE), which develop on a scale U/N in which N is a characteristic value
of the buoyancy frequency in the mixing region.

in which U and Nmix are characteristic values of velocity and initial background
buoyancy frequency, respectively, determined near the depth of the top of the barrier.
Instabilities in the lee occur on a smaller scale, these being determined by the thickness
of the shear on the lower flank of the flow (see, for example, figure 2). Precisely what
determines this scale is not well understood although, from Miles (1968), unstable
flow is expected to occur on scales smaller than U/Nmix. We estimate this length scale
L in experiments to be the extent of the turbulent fluid at the base of the mixing
region at a distance downstream where the mixing region is deepest, as indicated
schematically in figure 3. The velocity scale U is defined to be the flow speed at the
top of the turbulent fluid.

Typical characteristic scales are L ' 1 cm and U ' 0.5 cm s−1. These values are
consistent with the length and time scales of radiating IGW, which have wavenumbers
on the order of kx ' 1 rad cm−1 and frequencies on the order of ω ' 0.5 rad s−1.
The corresponding Reynolds number for most experiments examined in detail here
is Re ' 50.

Although the typical Reynolds numbers are small, the time-scale for viscous dif-
fusion of IGW is τν = 1/(νkx

2) ' 100 s, an order of magnitude larger than the
wave period. Therefore, for most purposes, viscous effects upon the wave propagation
can be ignored. The structure of the downstream flow evolution depends on the
stratification and flow speed, and may be characterized by a buoyancy parameter

Jmix = N2
mix/(U/L)

2
. Equivalently, a Froude number, J

−1/2
mix , could be defined, but we

work with Jmix in order to make a direct analogy to numerical simulations. If Jmix < 1
the shear flow is less stable to dynamic instability than if Jmix > 1. Although we
examine only a limited range of parameter space, in general we observe the following
behaviour for different values of Jmix during the initial stages of each experiment.
When Jmix ' 0 a recirculating eddy occurs downstream of the barrier extending to
the depth at which the deep water stratification becomes significant, and small-scale
disturbances superimposed on the eddy are periodically shed from the barrier. When
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0 < Jmix . 1 spanwise vortices superimposed on a lee wave are shed quasi-periodically
from the barrier (as illustrated in figure 3). Finally, when Jmix & 1 a lee wave develops
with transient small-scale disturbances superimposed on it.

In all cases IGW are observed to radiate into the deep fluid as the flow first
becomes established, their excitation being directly coupled with the development of
spanwise-coherent structures in the lee of the barrier that quasi-periodically deform
the base of the mixing region. The amplitude and duration of the wave excitation
depends upon the evolution of the mixing region and the degree of stratification of
deep fluid. The latter is characterized by a buoyancy parameter Jdeep = N2

deep/(U/L)
2
,

in which Ndeep is a characteristic value of the buoyancy frequency in the deep fluid.
Thus internal waves of frequency less than Ndeep may by generated as a consequence
of instabilities in the mixing region (on a time scale L/U), if Jdeep > 1. For a
parallel shear flow, linear theory and numerical simulations suggest that weak IGW
radiation is expected to occur if the fluid is uniformly stratified, and that strong
radiation occurs if Jmix < 0.25 and Jdeep > 0.25 (Lindzen 1974; Sutherland et al.
1994; Sutherland 1996). For the non-parallel flow in our experiments, we expect a
similar condition will hold provided the length scale of horizontal variations of the
background flow (i.e. the wavelength of the lee wave) is long compared with the depth
of the shear flow. For the experiments examined in detail here, we show that this is
indeed the case. Although the experiments explore only a limited range of parameter
space, the results are consistent with the analytic and numerical predictions.

3.1. Flow structure

Figure 4 illustrates the downstream flow 110 s after the motor is turned on for three
experiments in which the motor speed and the deep stratification are the same but the
stratification of the mixing region is different. We present detailed analyses of these
three experiments, in particular, because they most clearly illustrate the dynamics of
interest. Each panel shows the initial background squared buoyancy frequency profile
N2(z) to the left of processed images of the N2

t field on a grey scale ranging from −0.04
to 0.04 s−3. The profiles and fields are shown from 5 cm above the top of the barrier
to 10 cm below it, and to a distance 25 cm downstream of the barrier which is situated
at x = 0. The calculation used to determine this field is not necessarily valid in the
mixing region where density gradients may be large and spanwise incoherent, although
the values may be taken as quantitatively correct in the deep fluid. Nonetheless, the
enhanced image conveniently illustrates the coupling of IGW to coherent structures
in the mixing region. That is, internal waves are observed to propagate with the same
length scale and horizontal phase speed as disturbances at the base of the mixing
region. This is more apparent in continuously moving video images of the flow.

Figure 4(a) shows the development of a long lee wave of approximately 15 cm
wavelength and the excitation of IGW from the base of the mixing region of approx-
imately 5 cm wavelength. The waves propagate downward and to the right, while the
crests of the waves propagate upward and to the right. Hereafter, this experiment
is denoted Experiment A. Figure 4(b) shows the downstream flow in an experiment,
denoted Experiment B, where the stratification is greater near the top of the barrier.
In this case U/Nmix is smaller and, correspondingly, the wavelength of the lee waves
is smaller. Larger vertical structures are also present in the mixing region. In this
experiment, large-amplitude IGW are generated over many wave periods even after
the mixing region becomes more turbulently developed. Figure 4(c) shows the down-
stream flow in an experiment, denoted Experiment C, in which the stratification of
the mixing region is larger still, and the excitation of IGW is relatively weak. In this
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Figure 4. Initial N2 profiles (left-hand panels) and the N2
t field (right-hand panels) for three

experiments: (a) Experiment A, (b) Experiment B, and (c) Experiment C. The N2
t fields are shown

from 5 cm above to 10 cm below the barrier and to 25 cm downstream of the barrier. The scale
ranges from black to white for values of N2

t from −0.04 to 0.04 s−3. In all three experiments the
motor speed is the same and the images shown are taken 110 s after the motor is turned on.

case IGW are excited with frequency comparable to the buoyancy frequency of the
deep fluid. At later times, however, as the mixing region becomes well mixed, it will
be shown that bursts of large-amplitude IGW may nonetheless occur.

Quantitative data summarizing the salient results of Experiments A, B and C are
listed in table 1. The table entries are explained in detail in the next section. We
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Expt A Expt B Expt C

L (cm) 1.0 1.1 1.3
U (cm s−1) 0.61 0.64 0.39
Jmix 0.13 0.23 3.0
Jdeep 1.8 1.9 7.2

λx (cm) 7.7 7.7 7.7
T (s) 15.0 10.8 11.7
Θ = cos−1(ω/Ndeep) 59.9◦ 45.9◦ 50.1◦

Xw (cm) 10.7 11.1 12.0
Tw (s) 83.2 48.2 58.9

AN2
t

(s−3) 0.003 0.018 0.003

Au (cm s−1) 0.005 0.032 0.004
Aw (cm s−1) 0.003 0.031 0.004
Az (cm) 0.002 0.026 0.003

〈u′w′〉 (10−4 cm 2 s2) −0.08 −5.0 −0.08
2|∆〈u〉|/U% 0.2 7 0.2

Table 1. IGW characteristics, amplitudes, and wavepacket extents determined in three experiments
from horizontal time series of the N2

t (x, t) field at a depth 10 cm below the top of the barrier (see
text). Our estimation of the impact of IGW excitation back upon the mean flow is based upon data
in the last row of the table. This gives the percent change to the average mean flow over the depth
of the shear which decelerates over the horizontal extent of the IGW wavepacket due to momentum
transport away from the mixing region.

note here that the characteristic velocity and length scales in the mixing region U
and L, respectively, are sufficiently large that viscous effects can be neglected. The
Reynolds numbers of the flows range from approximately 400 to 600. Consistent with
observations and measurements of Experiments A, B and C, vortex shedding occurs
when Jmix < 1 and large-amplitude internal wave excitation occurs when the fluid
below the mixing region is sufficiently strongly stratified, Jdeep > 1.

3.2. IGW excitation

IGW are generated due to vertical motions at the base of the mixing region and are
regular over many wave periods suggesting that they are coupled directly to coherent
structures in the mixing region. This is clear from video images, but can be adequately
demonstrated by showing time series of vertical cross-sections of the flow. Figure 5
shows the filtered N2

t field for the same three experiments shown in figure 4 but for
vertical cross-sections of the flow 7.5 cm downstream of the barrier between 60 and
160 s after the motor is turned on the cross-section extending from 5 cm above the
top of the barrier to 15 cm below it. In all three experiments the phase lines move
upward in time, behaviour consistent with downward propagating IGW. The slope
of the phase lines is the vertical phase velocity and the distance between the crests
of the waves gives the period. Figure 5(a) shows IGW are excited as soon as mixing
begins downstream of the barrier (t ' 90 s). The relatively weak waves are excited
for approximately 3 wave periods. Afterwards, wave excitation still occurs though it
is substantially weaker. In comparison figure 5(b) shows that relatively strong IGW
excitation occurs in Experiment B, for which the stratification in the mixing region is
moderately larger. Note that in this panel the grey scale is shown for values spanning
a greater range: |N2

t | 6 0.06 s−3. Long period IGW occur as mixing begins after
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Figure 5. Vertical time series of the N2
t field for the same three experiments shown in figure 4: (a)

Experiment A, (b) Experiment B, and (c) Experiment C. The time series are shown of a vertical
cross-section of the flow 7.5 cm downstream of the barrier from 60 s to 160 s after the motor is
turned on. The cross-sections extend from 5 cm above the top of the barrier to 15 cm below it. The
ranges of the grey scales are different as indicated in the top right corner of each diagram.

between 60 and 90 s, although they are initially weak. Very large amplitude IGW of
frequency close to the buoyancy frequency are excited after 100 s when large coherent
structures are periodically shed in the wake of the barrier. If the initial stratification
in the mixing region is greater still, as shown in figure 5(c) for Experiment C, coherent



236 B. R. Sutherland and P. F. Linden

–15

–10

–5

–0.03 0 0.03N2
t (s–3)(c)

z 
(c

m
)

100 120 140 160

t (s)
60 80

0

–15

–10

–5

–0.06 0 0.06N2
t (s–3)(b)

z 
(c

m
)

0

–15

–10

–5

–0.02 0 0.02N2
t (s–3)(a)

z 
(c

m
)

0

–20

–20

–20

Figure 6. Vertical time series of the N2
t field as in figure 5 but for a vertical cross-section 15 cm

downstream of the barrier shown from 100 s to 200 s after the motor is turned on, and extending
from the top of the barrier to 20 cm below it.

structures in the wake of the barrier are shed at frequencies greater than the buoyancy
period. The base of the mixing region is strongly perturbed between 100 and 120 s
but propagating IGW are not excited. At later times weak IGW excitation occurs for
waves of smaller frequency.

For the same three experiments, the behaviour of the waves further downstream is
demonstrated in figure 6, which shows a time series of the N2

t field for a vertical slice
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15 cm downstream of the barrier. The fields are shown for times from 100 to 200 s
after the motor is turned on and at depths between the top of the barrier and 20 cm
below it. In each case, even though the mixing region at this distance downstream
of the barrier is spanwise incoherent, IGW wavepackets generated at the base of the
mixing region continue to be excited, propagating downward while the phase lines
move upward. Figure 6(a) shows that weak IGW wavepackets are excited transiently,
the waves occurring in bursts between 110 and 150 s and again after 170 s. The waves
that occur in Experiment B, as shown in figure 6(b), are excited continuously once they
are generated after 110 s, although their frequency and vertical phase speed decreases
somewhat in time. The waves are directly excited from the mixing region until 150 s
after which time the excitation is weaker near the base of the mixing region and the
peak amplitudes occur at depths between 10 and 15 cm. Note that the grey scale is
shown in this experiment for |N2

t | 6 0.06 s−3. Figure 6(c) shows the propagation of
a wavepacket well below the mixing region in Experiment C. In this case, coherent
structures 15 cm downstream of the barrier excite IGW between 120 to 140 s. At
later times IGW of approximately half the amplitude and longer period are excited.

In summary, instabilities in the lee of the barrier lead to quasi-periodic deformations
of the base of the mixing region. When the mixing region initially is weakly stratified
the frequency at which the deformations occur is sufficiently small to excite IGW in
the deep fluid. When the mixing region is more strongly stratified the base of the
mixing region deforms at a greater frequency and IGW are excited by superharmonics
and smaller structures that evolve on slower time scales in the well developed flow.

3.3. Long time behaviour

Mixing downstream of the barrier acts in time to reduce substantially the stratification
in the mixing region. For example, figure 7(a) shows successive profiles of N2(z) in
Experiment C, determined from periodic traverses of a conductivity probe 35 cm
downstream of the barrier. The light vertical dashed lines in the diagram indicate
where N2 = 0 for each profile. The first profile is taken 60 s after the motor is turned
on and profiles are taken approximately every 56 s thereafter. The seventh profile
taken at 397 s and the fifteenth profile taken 848 s after the motor is turned on are
explicitly indicated for comparison with figures 7(b) and (c). A single traverse is taken
over 3 s at a sampling rate of 100 Hz. The profiles show the development of a strong
thermocline after approximately 350 s at a depth approximately 3 cm below the top
of the barrier. In time, the stratification of the thermocline increases as its depth
increases 2 cm during the course of the experiment. As the thermocline becomes
more strongly stratified, it deepens on average at a slower rate. The density profile in
the mixing region varies greatly between measurements but, over all, the stratification
is reduced between 1 and 3 cm depth. The measurements are taken sufficiently far
downstream that the turbulence has almost fully collapsed in the sense that the flow
is statically stable almost everywhere, and the N2 profiles exhibit spatial variations
no smaller than 1 cm (an order of magnitude larger than the probe resolution).

The thermocline development is consistent with the results of mixing box ex-
periments, in which grid-generated turbulence mixes fluid that is initially uniformly
stratified (Thorpe 1966; Linden 1975). In particular, Linden explained that the mixing
layer should deepen at a power law rate due to the action of the turbulence present at
the bottom of the mixing region alone. However, unlike the mixing box experiments,
here the source of the turbulence is localized horizontally as well as vertically, and
therefore the deepening of the mixing layer should not necessarily follow the same
behaviour. Indeed, following the development of the thermocline we observe that the
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Figure 7. For Experiment C: (a) successive profiles of N2 taken every 56 s, 35 cm downstream of
the barrier, (b) vertical time series of the ∆N2 field, and (c) vertical time series of the N2

t field at
a position 35 cm downstream of the barrier. The cross-sections extend from 5 to 20 cm below the
top of the barrier and are shown between 360 to 860 s after the motor is turned on.

mixing region on average deepens by no more than 1 cm over 20 minutes, and that
the depth of the thermocline occasionally decreases (typically by 0.5 cm over several
minutes) due to transient unsteady motions in the lee wave and due to wave motions
on the scale of the tank itself.

Although the experiments are performed in a recirculating tank, for flow speeds
' 0.5 cm s−1, the fluid would take ' 1400 s to travel once around the tank, a time
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longer than the duration of a single experiment. Nonetheless, the velocity profile
varies on the scale of minutes, which presumably occurs due to large horizontal-scale
wave motion propagating upstream of the barrier and downstream from the mixing
region. In response to these velocity changes, transient bursts of IGW may occur.

Figures 7(b) and (c) show time series of the ∆N2 and N2
t fields, respectively. The

fields are shown between 360 and 860 s at a distance 15 cm downstream and from 5
to 20 cm below the top of the barrier. To enhance the image, a low pass filter has been
applied to each column of figure 7(b) to reduce noise that is an artifact of the schlieren
grid lines, though some horizontal banding remains. The field shows dominant motion
on two time scales. On the short time scale IGW propagate downward with periods
of approximately 15 s; on the long time scale wave modes on the depth scale of the
tank occur with a period of approximately 200 s. The latter motions are filtered by
examining the time derivative of the field N2

t that, in figure 7(c), resolves a series of
IGW wavepackets.

It is interesting to note that in all three experiments and, in particular, at later
times in Experiment C, IGW of similar frequency occur. This feature is most striking
in figure 7(c), in which wavepackets of similar frequency are continually generated
even though the stratification of the mixing region changes significantly.

Some implications may be drawn from these observations. It appears that large-
amplitude IGW propagate preferentially with frequencies in a limited range. Because
linear theory for IGW propagation predicts no such preference, it seems this behaviour
is determined by the manner in which the waves are generated: when large-amplitude
IGW are excited at frequencies close to the buoyancy frequency of the deep fluid,
they act back upon the mixing region in a way that further enhances their excitation.
In brief, it might be said that such IGW are not passively, but actively generated.
The quantitative evidence presented in §§ 4 and 5 supports this assertion.

3.4. Weakly stratified deep water

Though not the main focus of this study, qualitative analyses were performed for
experiments run with a faster motor speed (for which we measure L ' 2 cm and
U ' 2.0 cm s−1) to compare the effects of weak and strong stratification well below
the mixing region (Jdeep < 1 and Jdeep > 1, respectively). Potassium permanganate dye
placed on top of the barrier is used to visualize the flow in the mixing region in these
experiments. In general, the dye reveals that the vortices are spanwise coherent over
most of the width of the tank and these periodically deform the base of the mixing
region for one to two turnover times before they break up turbulently.

Figure 8 shows the results of an experiment in which the flow over the barrier is
unstratified with Jmix ' 0 and the deep water is strongly stratified with Jdeep ' 1.5.
The initial N2 profile is shown in figure 8(a). In this case, a recirculating wake
develops in the lee of the barrier and, superimposed on it, small-scale vortices are
quasi-periodically shed. During the experiment the perturbation density at the base
of the mixing region and of waves in the deep fluid is measured using a conductivity
probe. The probe is situated 14 cm downstream and continuously measures the
conductivity for one minute at successive levels 2.5, 7.5, 12.5 and 17.5 cm below the
top of the barrier. This method does not reveal information about the structure or
evolution of IGW but does measure their amplitude and frequency which can be
compared with dye-visualization and synthetic schlieren images. Figure 8(b) shows
the fluid vertical displacement at successive depths determined from conductivity
measurements. figure 8(c) shows the power spectra determined for each time series.
The frequency and width of the spectral peaks with non-zero power, as indicated by
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Figure 8. (a) Initial N2 profile, (b) vertical displacement of fluid due to internal waves at four
different depths 2.5, 7.5, 12.5, and 17.5 cm below the top of the barrier, and (c) spectra determined
from each time series. The error bars in (a) are centred about the squared frequency of the peaks
indicated by arrows in (c), and the width of the error bars are determined from the width of the
peaks.

the arrows, are used to compare the squared frequency of IGW with the background
squared buoyancy frequency, which are shown in figure 8(a) as error bars at the
respective depths of each measurement. In this case, although the peak frequency
of disturbances at the base of the mixing region is greater than the local buoyancy
frequency, IGW with a narrow range of frequencies propagate in the deep water. At
each depth, and for all times of the measurements the frequency of the waves is found
to be close the buoyancy frequency.

Figure 9 shows the results of an experiment in which the mixing region is strongly
stratified with Jmix ' 1 and the deep fluid is weakly stratified with Jdeep ' 0.5. As
in figure 8, the diagrams show the initial background squared buoyancy frequency,
vertical displacements in time at four depths, and power spectra of these displacement
records. In this experiment vortices are quasi-periodically shed in the lee of the barrier
and vortex pairing frequently occurs. However, the frequency of vortex shedding is
greater than the buoyancy frequency Ndeep of the deep fluid, and therefore IGW of the
same frequency as the disturbances in the mixing region cannot propagate downward.
Nonetheless, as shown in figure 9(c), IGW of approximately half the forcing frequency
propagate below the mixing region into the deep fluid. The frequency of the waves in
the deep fluid, which are presumably subharmonically generated, is again comparable
to the buoyancy frequency.

4. Quantitative analysis
Although the conditions under which IGW are generated varies greatly, in general

we observe that IGW occur within a limited range of frequencies close to the
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Figure 9. As in figure 8: (a) the initial N2 profile, (b) vertical displacement in time at the same four
depths and (c) corresponding spectral peaks. In this experiment, IGW at the base of the mixing
region have frequency larger than the buoyancy frequency of the deep fluid. Nonetheless, IGW of
half the frequency propagate downward.

buoyancy frequency of the fluid below the mixing region. A measure of the frequency
and horizontal wavelengths of IGW is given by constructing space–time plots from a
horizontal cross-section of the N2

t field at a fixed depth below the mixing region. For
example, figure 10(a) shows this field over 150 s beginning 100 s after the motor is
turned on in Experiment B. The cross-section is taken at a level 10 cm below the top of
the barrier between 4 and 27 cm downstream. Figure 10(b) shows the power spectrum
of this field, as determined from the squared discrete Fourier coefficients |Fkxω|2. The
figure demonstrates that most of the energy of the wavepacket is concentrated in a
narrow band of wavenumbers and frequencies.

Such time series are constructed for Experiments A, B, and C, the qualitative
behaviour which was discussed in detail in §3. The first four rows of table 1 list
the relevant parameters of each experiment. L and U are length and velocity scales,
respectively, characterising the shear depth at the base of the mixing region. Jmix and
Jdeep are buoyancy parameters characterising the stratification in the mixing region
and deep fluid, respectively. The wavelength and period of IGW are determined from
the horizontal time series such as that shown in figures 10(a). The IGW characteristics
are given for Fourier modes corresponding to non-zero kx(= 2π/λx) and ω(= 2π/T )
with the largest peak power. The phase tilt Θ of the waves with the vertical is
calculated from the IGW frequency and buoyancy frequency of the deep fluid. Note
that the wavelength of the strongest IGW is λx ' 7.7 cm in all three experiments and
their period is such that these waves have phase tilt ranging between 45◦ and 60◦.

To estimate the drag upon the mixing region due to IGW excitation, the amplitude
as well as the spatial extent and duration of wave emission needs to be measured.
To this end, we employ the wavelet analysis developed by Alexander (1996), who
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Figure 10. Experiment B: (a) horizontal time series of the N2
t field and (b) its power spectrum.

The N2
t field is shown for a cross-section 10 cm below the top of the barrier from 4 to 27 cm

downstream and between 100 and 250 s after the motor is turned on. Grey scale from black to
white corresponds to values ranging from −0.06 to 0.06 s−3. Contours 1× 10−5.

used this technique to estimate the amplitude of IGW generated by convection in
numerical simulations.

In general, for any wavepacket (whether spatially or temporally defined) the am-
plitude A of waves of a particular spatial frequency k can be estimated from its
discrete Fourier transform, Fk . If the waves are periodic over the whole domain,
the amplitude is A = 2 |Fk|. If the wavepacket is compact, however, a multiplicative
factor must be introduced which corrects for the way in which Fourier transforms
average power over the domain and for bias which spreads power over a broader
frequency range. Explicitly, the corrected amplitude is

A ' 2C|Fk|
(
Ld

Xw

)
, (4.1)

in which Ld is the extent of the domain, Xw is the width of the wavepacket for waves
of frequency k, and the order 1 calibration constant C that we use for our analyses
is determined empirically.

In general, the definition ofXw and C is somewhat arbitrary. For example, consider a
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Gaussian wavepacket defined explicitly by exp(−x2/2σ2) cos(2πx), which is composed
of waves of wavelength λx = 1 and amplitude A = 1. Assuming the wavepacket width
is much smaller than the domain size (i.e. σ � Ld), we find that

F2π =
σ

Ld

(
1
2
π
)1/2

[1 + exp(−8π2σ2)]. (4.2)

Putting this in equation (4.1) gives

C =

(
(2π)1/2 σ

Xw

[1 + exp(−8π2σ2)]

)−1

. (4.3)

The equation shows that the value of C depends in general upon the wavepacket width
Xw . However, as shown below, with a consistent definition of Xw , C is approximately
constant if the width of the wavepacket is much larger than the wavelength (i.e.
σ � λx). In particular, if we set Xw = σ in equation (4.3), and we assume σ � 1, then
C ' 1/(2π)−1/2.

For the analytically defined wavepacket in the above example, it is natural to chose
Xw = σ. However, in experiments wavepackets may be composed of waves spanning
a broad frequency spectrum, and it is therefore convenient to perform a wavelet
analysis in order to estimate the width of the wavepacket enveloping waves of a
specific frequency. A wavelet transform is a compromise between a real function, with
perfect spatial but no spatial frequency information, and the corresponding Fourier
transform, with perfect spatial frequency but no spatial information. For a particular
wavelet mode, a wavelet filtered function has non-negligible amplitude only over
regions of space where the function has comparable frequency with the mode. We
use the Daubechies wavelet filters with 20 coefficients (Press et al. 1993).

The width of a particular mode i is defined by

Li = 2(
〈
x2
〉
Ei
− 〈x〉Ei2)1/2, (4.4)

in which the angle brackets denote the domain average weighted by the energy of
wavelet mode i. This definition, though different from that used by Alexander (1996),
is useful in our study since we find that the wave amplitude is more accurately
predicted for a variety of envelope shapes. Finding the energy-weighted least-squares
fit line through Li as a function of the spatial frequency of each mode i, the extent,
Xw , of the wavepacket of frequency k is determined.

In order to determine the calibration constant C, the widths and amplitudes of
analytically defined wavepackets are calculated using equations (4.1) and (4.4), and the
results are compared with the actual amplitude of the waves. Specifically, we examine
wavepackets of half-width σ defined by exp(−x2/2σ2) sin(2πx), exp(−x2/2σ2) cos(2πx),
and H(σ − |x|) sin(2πx), where H(x) is the Heaviside function: H(x) = 0 for x < 0;
H(x) = 1 for x > 0. The functions are defined at a discrete set of 512 points, with
x ranging from −10 and 10, although the results are not sensitive to these values
provided the waves are sufficiently well resolved. The third and fourth columns of
table 2 show the calculated values of Xw and 2 |F2π|, respectively. Substituting these
values in equation (4.1) gives values of C, which are found to be approximately
constant if λx � σ � Ld. Based on this information, to determine the amplitude of
the wavepackets observed in experiments, we set C = 0.59 as our calibration constant
in equation (4.1). As a check on the accuracy of this choice, the amplitudes of the
three types of analytically defined wavepackets are calculated and compared with
the correct value of 1. The results, which are listed in the fifth column of table 2,
show that the amplitudes are correctly predicted to within 3% of their actual value
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Wavepacket definition σ Xw 2 |F2π | A

H(σ − |x|) sin 2πx 1 1.66 0.1 0.719
2 2.57 0.2 0.918
4 4.61 0.4 1.024
6 7.05 0.6 1.005

exp(−x2/2σ2) sin 2πx 1 2.44 0.13 0.605
2 3.28 0.25 0.902
4 5.80 0.50 1.008
6 7.99 0.68 1.004

exp(−x2/2σ2) cos 2πx 1 2.04 0.13 0.726
2 3.09 0.25 0.958
4 5.81 0.50 1.006
6 7.93 0.68 1.011

Table 2. Results of wavelet analysis of analytically defined wavepackets of half-width σ composed
of waves of (spatial) frequency 2π and amplitude 1 (see text). The wavepacket width calculated by a
wavelet analysis is Xw . For plane IGW of period 2π, 2|F2π | is the correct IGW amplitude in terms
of the discrete Fourier coefficient F2π . For localized wavepackets, an estimate A of the actual wave
amplitude is determined in terms of the ratio of Xw to the domain size.

provided the wavepacket envelope is more than five times as large as the wavelength.
For envelope widths comparable to the wavelengths, the calculated amplitudes are
moderately under-predicted.

In our analysis of experimentally generated IGW, we simultaneously determine
the spatial and temporal extent of a horizontal time series of the N2

t field. For
Experiments A, B and C, the calculated horizontal extent Xw and duration Tw of
IGW wavepackets determined according to (4.4) are given in table 1. The peak of the
power spectrum of the N2

t field gives the wavenumber kx and ω of the waves, and
the corrected amplitude of the (kx, ω) mode is

AN2
t
' 1

2
C2|Fkxω|

(
LxLt

XwTw

)
, (4.5)

in which Lx (Lt) is the spatial (temporal) extent of the domain.
Only a small number of wavelet modes of the spatio–temporal fields have a

component with significant energy. For example, applying the wavelet transform to
the field shown in figure 10(a), it is found that 66% of the total energy of the field is
contained in the particular wavelet mode shown in figure 11.

From linear theory, amplitudes of other fluctuation quantities can be deter-
mined from AN2

t
. For monochromatic IGW described by the streamfunction ψ =

A cos(k · x− ωt) = A cosφ,

N2
t = N2kxkzA cosφ+

dN2

dz
kxA sinφ. (4.6)

If N2(z) varies sufficiently gradually with z, the second term can be ignored. The
amplitudes of the horizontal velocity (Au), vertical velocity (Aw), and vertical displace-
ment (Az), in terms of the amplitude AN2

t
of the N2

t field are

Au = AN2
t
/(kxN

2),

Aw = AN2
t
/(kxN

2 tanΘ),
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Figure 11. The N2
t field for the wavelet corresponding to the mode (3,5) containing 66% of the

energy of the field shown in figure 10(a). The field is shown over the same extent and duration and
over the same scale as the original horizontal time series.

Az = AN2
t
ω/(kxN

4 tanΘ),

in which Θ = cos−1(ω/N). Values for these amplitudes are shown in table 1.
As a check on these results, the amplitude of the horizontal velocity field is estimated

by observing the horizontal motion of a vertical dye line at a depth 10 cm below the
top of the barrier. For example, in Experiment B, dye lines situated approximately
7 cm and 11 cm downstream of the barrier were observed to oscillate with the same
frequency as the radiating IGW when strong wave excitation occurred between 100 s
and 250 s after the motor was turned on. Because the IGW wavelength is 7.3 cm and
the dye lines are separated by almost half that distance, the oscillations of the two lines
are approximately 180◦ out of phase. Typical peak-to-peak horizontal displacement
of the lines was 2Ax ' 0.2 cm, as shown in figure 12(a). By fitting a cubic spline to
these curves and time differentiating, the fluctuation horizontal velocity is determined
as shown in figure 12(b). The amplitude determined in this way is Au =' 0.05 cm s−1,
which is the same order as the value 0.03 cm s−1 predicted from the analysis of the
N2
t fields. The comparison implies that the amplitudes listed in table 1 moderately

under-predict the actual values. The discrepancy is attributed to signal filtering and
because the horizontal extent of the wavepacket is comparable to the IGW horizontal
wavelengths, leading to bias in the wavelet analysis, as discussed above.

The second to last row of table 1 gives the Reynolds stress per unit mass, 〈u′w′〉 =
− 1

2
AuAw , which is related to the vertical flux of horizontal momentum across the

width Xw of the wavepacket. Integrating this flux in time and assuming IGW are
generated over the characteristic length L of the shear flow at the base of the mixing
region, an estimate of the local deceleration of the flow due to IGW excitation is
given by

〈∆u〉 ' 〈u′w′〉Tw/L. (4.7)

This is given as a percentage of the average flow over the shear depth, U/2, in the
last row of table 1. Values for the change in flow speed are given as a fraction of the
characteristic flow speed. In Experiment B, in particular, the analysis shows that the
mean flow over the extent of the wavepacket is decelerated by approximately 7% of
its characteristic flow speed over the time of the wavepacket excitation.
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Figure 12. Experiment B: (a) horizontal displacement of dye lines 7 cm (solid line) and 11 cm
(dotted line) downstream of the barrier at a depth 10 cm below the top of the barrier. The second
dye line is dropped only 183 s after the motor is turned on. The corresponding horizontal velocity
for each dye line is shown in (b).

Indeed, in video images of the mean flow over this time, deformations of the base
of the mixing region are observed to move initially with the speed of vortices shed
from the barrier, but as disturbances grow and radiating IGW increase in amplitude,
the behaviour of these deformations appears to be controlled in part by the waves
themselves, so that disturbances at the base of the mixing region move more slowly
than the speed of coherent structures in the turbulent region above it.

5. Numerical simulations
The experiments suggest that strong IGW excitation, when it occurs, significantly

affects the mean flow. We examine this in more detail numerically using a code
developed by Smyth & Peltier (1989). Specifically, we solve the primitive equations
for two-dimensional Boussinesq flow in terms of the vorticity Ω and fluctuation
density ρ:

DΩ/Dt = −gρ+ FΩ(x, z, t) + ν∇2Ω, (5.1)

Dρ/Dt = (ρ00/g)N2w + κ∇2ρ. (5.2)

Here D/Dt is the material derivative, FΩ is an external forcing to the vorticity field, w
is the vertical velocity, g is the acceleration due to gravity, and ρ00 is a characteristic
value of the density. The kinematic viscosity ν is set so that the Reynolds number
Re = UL/ν = 100, in which U and L are characteristic velocity and length scales,
respectively. The diffusivity κ is given by setting κ = ν. In fact, the diffusivity of salt
water is many orders of magnitude lower than the kinematic viscosity, but stability
of the numerical integration prohibits more realistic values. Nonetheless, the shear
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generation of IGW is relatively insensitive to diffusive effects over the time scales
studied, and the dynamics of interest are well represented. The equations are solved
in a channel geometry that is horizontally periodic with free-slip upper and lower
boundary conditions. The domain itself ranges from −80L to 40L in the horizontal
and from −30L to 30L in the vertical. The domain is set up so that boundaries do not
significantly affect the flow initially and the simulations are terminated when bottom
reflection of IGW occurs or effects of the periodic boundaries become significant.

The background horizontal velocity profile, U(z), and buoyancy frequency profile,
N(z), are prescribed initially. We set U = U tanh(z/L) and N2 = (N2

mix +N2
deep)/2 +

(N2
mix − N2

deep) tanh((z − z0)/R)/2, with z0 = −5L, and R = 0.5L. By analogy with

Experiments A, B, and C, L is the shear half-depth ' 0.5 cm and U ' 0.3 cm s−1

is half the velocity difference between the upper and lower regions. These are only
estimates, since the length scales in the experiments are determined from the well
mixed states, a smaller value of L being more indicative. For the sake of argument,
it is sufficient for the purposes of the illustration here to set L = U = 1 in arbitrary
units. As with the experiments, N2

mix and N2
deep are the buoyancy frequencies in

the shear region and deep fluid, respectively. The corresponding non-dimensional
buoyancy parameters are defined by Jmix = N2

mix(L/U)
2

and Jdeep = N2
deep(L/U)

2
.

Simulations of the growth and development of the most unstable mode to these
analytic basic states were studied by Sutherland (1996). Here, rather than superimpose
the (horizontally periodic) most unstable normal mode initially, we introduce a locally
defined external forcing to the vorticity field about the shear maximum:

FΩ = f(t) exp[−(x2 + z2)/2]. (5.3)

The strength of the forcing is

f(t) =

{
0.05, 0 6 t < 20,

0, t > 20.
(5.4)

This forcing is constant until a vortex develops of strength comparable to the
background vorticity, after which time the system relaxes.

The initial conditions of the simulations are by no means an adequate model of
flow over a thin barrier, except insofar as they demonstrate the interaction between
generated internal waves and the mixing region.

As the simulated vortex forms initially, fluid passing to the right above it and to
the left beneath it is vertically displaced in a manner similar to flow over topography.
Likewise, IGW excitation is expected to occur if the stratification in the far field is
sufficiently strong. With L = U = 1, the forcing frequency is of order 1 and IGW
excitation is expected to occur if Ndeep & 1 is of this order (e.g. Gill 1982, §6.8).

The results are shown in figure 13 of a simulation in which the initial background
stratification is uniform with Jmix = Jdeep = 0.05. The plates show the vorticity field
of the flow every 20 time units beginning at t = 20 when the forcing to the vorticity
field about the origin is turned off and the system begins to relax. In each panel only
a portion of the full domain is shown, horizontally with −40 6 x 6 40 and vertically
with −15 6 z 6 5. The simulation shows how the initial forcing triggers the flow to
become unstable, the centre vortex spawning the development of vortices to either
side that in turn spawn other vortices. The separation between the vortices initially
is approximately 16, moderately larger than the wavelength of the most unstable
mode ' 12.6. As the flow evolves, the spacing between vortices continues to increase,
although the centre vortex remains stationary.
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Figure 13. The vorticity field shown for numerical simulations of a locally forced uniformly
stratified shear flow (Jmix = Jdeep = 0.05) at times (a) 20, (b) 40, (c) 60, and (d) 80.

In comparison, figure 14 shows the results of a simulation with non-uniform
stratification. In this case Jmix = 0.05 as before but here Jdeep = 1, sufficiently large
that IGW excitation is expected. The panels are shown for the times corresponding
to those in figure 13, and the extent of the domain in each plate is the same. The
diagrams show that the mixing region itself evolves quite differently when IGW are
generated. At time 20 the vortex structure is qualitatively the same as that in the
simulation with uniform stratification, although here the development of propagating
IGW is apparent beneath the vortex. At time 40 the waves have grown to larger
amplitude and extend to a greater depth. Meanwhile, the vortices in the mixing
region have developed quite differently from those in the uniformly stratified case. The
upstream vortex (with respect to the flow below z = 0) is more vertically elongated,
the centre vortex is displaced downstream and the downstream vortex is not as
intense and less horizontally displaced from the centre vortex. At later times these
features become more pronounced. The spacing between the downstream vortices,
including the downstream drifting centre vortex, is approximately 13, which is the
same as the horizontal wavelength of radiating IGW. The upstream vortices, a distance
approximately 20 apart, are separated more widely. On average the centre vortex drifts
at about 10% of the speed of the lower leftward flow, an indication of the significant
loss of momentum from the mean flow over the horizontal extent of radiating IGW.
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Figure 14. The vorticity field shown for numerical simulations of a locally forced non-uniformly
stratified shear flow (Jmix = 0.05, Jdeep = 1.0) at times (a) 20, (b) 40, (c) 60, and (d) 80.

The flux of momentum from the centre vortex and other vortices as they develop
varies depending on the stratification of the deep fluid. Figure 15(a) shows the
Reynolds stress at z = −10 as a function of time for three simulations with Jdeep = 0.05
(solid line), 0.25 (dotted line), and 1.0 (dashed line). The stratification in the mixing
region is characterized by Jmix = 0.05 in all three cases. The plots show that momentum
is inefficiently transported away from the mixing region if the fluid is uniformly
stratified (Jmix = Jdeep = 0.05), but that significant momentum is carried away from
the mixing region by IGW if the deep fluid is moderately more stratified (Jdeep = 0.25).
If the stratification is larger still, the momentum flux decreases to a smaller value.

In the case with Jdeep = 0.25, the absolute value of the momentum flux per unit
mass increases to an approximately constant value of |〈u′w′〉max| ' 0.008 after about
two buoyancy periods. In analogy with the experiments setting U ' 0.3 cm s−1 the
momentum flux per unit mass is 7× 10−4 cm2 s2, which is of the same order as that
for the strongly excited IGW observed in Experiment B.

To quantify the effect of drag due to IGW excitation, the momentum loss in the
mixing region is compared with the average momentum of the mean flow over the
shear depth. The transport of momentum across z = −10 is the integral in time of
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Figure 15. (a) Reynolds stress in time determined at z = −10 in numerical simulations with
Jmix = 0.05 and Jdeep = 0.05 (solid line), 0.25 (dotted line), and 1.0 (dashed line). (b) As a function
of Jdeep, the estimated percent change to the average mean flow across the shear depth and over the
horizontal extent of the simulated IGW wavepackets.

〈u′w′〉 at this level. Assuming it is extracted over the shear depth 2L then

〈u〉 =

∫
〈u′w′〉dt/2L (5.5)

is an estimate of the change in flow speed over the shear depth. Note, this expression
differs from equation (4.7) by a factor 2 because L is a measure of the shear
half-depth whereas the experimentally estimated value L is the full shear depth.
Figure 15(b) compares this change as a percentage of the average flow speed over
the shear depth, U, calculated for simulations performed with a range of values of
Jdeep and with Jmix = 0.05. The graph shows that up to 25% of the momentum
is extracted from the mean flow over the horizontal extent of the radiating IGW
wavepacket when Jdeep = 0.2. For successively larger values of Jdeep the relative loss of
momentum decreases monotonically, being approximately 10% for Jdeep = 1, and (not
shown) less than 1% for Jdeep = 5. Although a comparison between the experiments
and numerical simulations can only be speculative, it is nonetheless interesting to
note that when strong IGW excitation occurs the relative loss of momentum from
the mixing region (7% in Experiment B) is comparable to estimates calculated in
numerical simulations for moderate Jdeep.

The numerical simulations clearly show that momentum is extracted from the
mixing region most efficiently for a narrow range of values of Jdeep. If the deep fluid
is too weakly stratified, radiating IGW are not supported; if the deep fluid is too
strongly stratified, IGW are generated but do not pump energy vertically away from
the region on a sufficiently fast time scale. The radiation of IGW, and their effect
back upon the mean flow, occurs most strongly when they propagate away from the
mixing region at frequencies close the buoyancy frequency of the deep fluid.
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6. Discussion and conclusions
The laboratory and numerical experiments demonstrate that significant momentum

can be extracted from the mean flow in the mixing region if it is weakly stratified
and the deep fluid is sufficiently strongly stratified. In an experiment in which large-
amplitude IGW emission occurs, the flux of momentum from the mixing region is
sufficiently large that we estimate the mean flow over the extent of the wavepacket
decelerates by approximately 7% of the average flow across the shear depth during
the emission time. The numerical simulations give values of the same order.

A result of the effect of wave excitation back upon the mean flow is that the
largest amplitude waves are observed with their phase tilting at angles between 45◦
and 60◦ from the vertical. The preponderance of waves with angles about this range
is explained here using linear theory.

For plane IGW, it is well known that the vertical group velocity is a maximum
for waves propagating at 45◦ (e.g. Gill 1982, §6.8). Therefore, if the energy in the
mixing region is evenly distributed across a wide frequency range, we expect that
IGW excited at a frequency ω ' Ndeep/

√
2 are capable of transporting the largest

proportion of energy vertically away from the region. Suppose now that the waves are
of sufficiently large amplitude that the mean flow is decelerated due to transport of
momentum away from the mixing region by IGW. Thus as IGW continue to radiate,
their excitation frequency decreases and their phase tilts more horizontally. If the
forcing of IGW from the mixing region continues to occur at the same amplitude,
energy is removed from the mixing region less rapidly and the feedback is reduced.
Likewise the feedback is less effective if the IGW are forced at a frequency faster
than Ndeep/

√
2. The key to understanding the preponderance of IGW with phase tilts

in an a narrow frequency band appears to be coupling between radiating IGW and
the mixing region which is most pronounced for ω ' Ndeep/

√
2. Although a broad

frequency spectrum of IGW may be excited, the waves close to this frequency extract
energy from the mean flow most efficiently and therefore dominate the observed
spectrum. More than this, it seems that these waves are capable of modifying the
mean flow so that they continue to be excited, and waves of frequencies outside this
band are suppressed. The detailed nature of the coupling between radiating IGW and
the mean flow has yet to be explored in an analytic theory.
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