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Gravity currents over porous substrates
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Results of laboratory experiments are presented in which a fixed volume of homo-
geneous fluid is suddenly released into another fluid of slightly lower density, over
a horizontal thin metallic grid placed a given distance above the solid bottom of
a rectangular-cross-section channel. Dense liquid develops as a gravity current over
the grid at the same time as it partially flows downwards. The results show that
the gravity current loses mass at an exponential rate through the porous substrate
with a time constant τ; the front velocity and the head of the current also decrease
exponentially. The loss of mass dominates the flow and, in contrast to gravity currents
running over solid bottoms, no self-similar inertial regime seems to be developed. A
simple model is introduced to explain the scaling law of the loss of mass and the
evolution of the front position. The flow evolution depends on the characteristic time
of the initial (slumping) phase and the time constant τ, related to the initial conditions
and the permeability of the porous substrate, respectively. Qualitative comparisons
with other gravity currents with loss of mass, such as particle-driven gravity currents,
are provided.

1. Introduction
An inertial gravity current is formed by fluid flowing along a boundary under

the influence of gravity into another fluid of different density. The foremost part of
this flow is a characteristic head which is deeper than the following flow and has a
projecting nose a short distance above the ground, and a series of lobes and clefts
which continually change shape. Behind the head the current flows as a shallow layer
with relatively little mixing with the surrounding fluid. Most of the mixing between
the current and the environment takes place at the head via these lobes and clefts and
by Kelvin–Helmholtz billows at the rear of the head. Numerous examples of gravity
currents in the environment and laboratory are described by Simpson (1997).

There are many important situations where gravity currents flow over porous
media with a consequent loss of mass from the current. One example concerns
the motion of internal waves impinging on the continental shelf where the surge
of the wave as it breaks takes the form of a gravity current which can interact
with the sediment on the shelf (Thorpe 1966; Wallace & Wilkinson 1988; Boczar-
Karakiewicz, Bona & Pelchat 1991). The storage of toxic or flammable liquids and
dense gases in containers surrounded by gravel beds constitutes another example.
The actual situation is complicated by evaporation into or chemical reaction with the
ambient fluid, by the form of the underlying surface (see Britter 1989 and references
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therein) and the high density ratios between the released fluid and the surroundings
(Grobelbauer, Fannelop & Britter 1993). In the event of a spill of such a fluid the
material may flow across the gravel as a gravity current.† The most important practical
aspects are the determination of the mass absorbed by the porous media, and the
maximum distance the current travels before stopping (Fannelop & Zumsteg 1986).
Knowledge of this length would be very useful for safety calculations concerning
possible eventual fire or toxic hazards.

A common procedure for generating gravity currents in the laboratory is the sudden
removal of a vertical barrier separating two fluids of different densities in a channel
of rectangular cross-section and solid bottom (lock-exchange experiments) (Keulegan
1957; Simpson & Britter 1979; Huppert & Simpson 1980; Rottman & Simpson 1983;
and Hacker, Linden & Dalziel 1996). Most experiments have dealt with the intrusion
of a saline solution of density ρs into an expanse of fresh water of slightly lower
density ρ, and Reynolds numbers large enough for viscous effects to be negligible.
From these experiments it is well-known that the gravity current so produced passes
through two distinct phases. In the first stage, or slumping phase, the head of the
current maintains nearly constant depth and travels at constant velocity uf given by

uf = C (φ0) u0 (1.1)

where 0.5 6 C (φ0) 6 0.7 (Rottman & Simpson 1983), φ0 = h0/H , h0 is the height of

the dense fluid before release, H is the depth of the surrounding fluid, u0 = (g′h0)
1/2,

and g′ = g(ρs − ρ)/ρ is the reduced acceleration due to gravity. This stage, for which
the initial conditions are important, ends when a bore coming from the rear wall
overtakes the front at a certain distance from the gate of the order of several lock
lengths x0 depending upon φ0 (Rottman & Simpson 1983; Simpson 1997). Starting
from this moment the current decelerates and decreases in depth, tending to a self-
similar regime with the motion determined by a balance between the inertia of the
gravity current and the driving buoyancy force, and by the boundary conditions at
the front (Fay 1969; Hoult 1972; Huppert & Simpson 1980; Grundy & Rottman
1985). The horizontal length xf of the gravity current for this second phase is

xf = η(g′A0)
1/3t2/3, (1.2)

where η = η (φ0) ≈ 1.35 for φ0 = 1 (Huppert & Simpson 1980; Grundy & Rottman
1985; Simpson 1997), A0 = x0h0 is the volume of the dense fluid per unit width
of the channel, and t is the time measured from release. This type of behaviour
is exhibited by similarity solutions of the depth-averaged shallow-water equations
derived by Fannelop & Waldman (1972) and Hoult (1972), and may be extended to
axisymmetric flows in which case xf is proportional to t1/2 instead t2/3 (Fay 1969;
Huppert & Simpson 1980). Grundy & Rottman (1985) showed that these similarity
solutions are stable to linear perturbations and that they are indeed the large-time
limit of the solution of the initial-value problem.

If the Reynolds number of the gravity current drops sufficiently, another phase
occurs in which viscous forces are important. Assuming a balance between buoyancy
and viscous forces in a current of fixed volume, Huppert (1982) (see also Marino et
al. 1996), derived and experimentally corroborated a self-similar solution using the

† The name given to the flow usually depends upon the situation. For example, Britter (1989)
denotes the spreading of a dense gas into ambient air as a plume or puff according to whether the
release is continuous or instantaneous, respectively. Here we prefer to name it a gravity current due
to its physical properties instead of the kind of release (and according to Simpson 1997).
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lubrication approximation theory which gives the front position as proportional to
t1/5 and t1/8 for planar and axial symmetry, respectively. By using the power laws
corresponding to the inertial and viscous self-similar regimes, Huppert & Simpson
(1980) and Grundy & Rottman (1985) determined the critical values of the time and
the front position associated with the transition from one regime to another.

There are many analytical and numerical studies of gravity currents with increasing
mass, which may be related to the problem studied in this paper in which mass is lost
through the base of the current. Maxworthy (1983) performed a series of experiments
in which he pumped salt water at a variable inflow from a source at the origin of
coordinates, so that the volume of the denser fluid in the tank was proportional to
tα (1.5 6 α 6 3) and he observed that the length of the plane current eventually
became proportional to t(α+2)/3. Grundy & Rottman (1986) found that under certain
conditions unique similarity solutions exist for the plane flow for all α > 0, but that no
similarity solutions exist in the axisymmetric case that satisfy the boundary condition
at the axis of symmetry, except when α = 0. Gratton & Vigo (1994) reinvestigated
in detail all possible self-similar solutions generated in the previous conditions for
plane gravity currents by means of the phase-plane technique. They showed that there
is an infinite number of ways to set up a source which gives an inflow tα and the
source must be characterized by another parameter such as the Froude number near
by. Then, new continuous and discontinuous self-similar solutions with and without
hydraulic jumps are found for large ranges of Froude number for the current and near
the source. However, these studies have not been extended to constant or variable
withdrawal corresponding to, for example, the loss of mass from a gravity current
over a porous substrate.

An important case of gravity currents with variable mass is that of the sedimentary
gravity currents (Middleton 1993; Simpson 1997). Turbidity currents are one type of
sediment gravity flow in which the excess density derives from the presence of particles
dispersed throughout the flow which are maintained in suspension by turbulence
generated by the mean flow. They have strong similarities with gravity currents over
porous media, in particular if they have negligible entrainment of the sediment from
the bed. Since the presence of the particles is the cause of the motion, these currents
also are called particle-driven gravity currents. Bonnecaze, Huppert & Lister (1993)
have described them by means of shallow-water equations, obtaining a numerical
solution which compares very well with their experimental results and provides a
good idea of the flow developed. Dade & Huppert (1995) proposed an integral model
whose analytical predictions agree very well with the laboratory observations and the
numerical results of Bonnecaze et al. (1993). They obtained the scaling law for the
front evolution which has two time scales, as is the case in the present work. The
results concerning sedimentary gravity currents are compared throughout the paper,
and are finally summarized in § 4.

Only a few previous experiments concerning gravity currents running over porous
media have been reported to our knowledge. Fannelop & Zumsteg (1986) investigated
the spreading of heavy gases over ground with cavities. In their laboratory experiments
the cavities are simply the open regions between narrowly spaced ribs on the floor of
a two-dimensional channel. A simple integral model is presented but, unfortunately,
no relevant experimental data are provided for comparison. Lionet & Quoy (1995,
see also Simpson 1997, pp. 182–184) carried out preliminary laboratory experiments
by using an experimental set-up analogous to ours. They produced gravity currents
in a rectangular-cross-section tank by the release of salt water into fresh water
over a porous surface modelled by two metallic grids put on of top each other. A
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lock-exchange system with a partial gate opening was used. They measured the front
position as a function of time and showed it is a parabolic decreasing function of time,
which is also obtained by the model introduced in § 4. By using different hypotheses
for the behaviour of the porous substrate and for the height distribution, several
simple integral models were proposed and numerically solved in order to explain the
front evolution.

The aim of the present work is to extend the study of inertial gravity currents to
the case in which the bottom is a horizontal porous surface. In our experiments, the
gravity currents are produced by the instantaneous release of a fixed volume of salt
water into fresh water in a rectangular-cross-section tank. The porous substrate is
formed by thin metallic grids placed a given distance above the solid bottom, thus
separating the tank into two parts. Dense liquid is released over the porous substrate,
developing a gravity current at the same time as it partially flows downwards. The
experimental set-up minimizes the effects of the flow upwards through the grid and an
eventual interaction with the gravity current, as the bottom part of the tank is deep.
The arrangement allows us to determine how, where and when salt water penetrates
the porous surface, and leads to a simplified theoretical treatment of the problem.

An image-processing system, DigImage (Dalziel 1993, 1995; Hacker et al. 1996) is
used for obtaining the density distribution of the gravity current and the mass which
is below the porous substrate. It enables the detailed internal structure of the current
to be measured, and this provides physical insight into the interaction of the gravity
current with the porous substrate.

As this paper is mainly based on experimental results, we describe first the exper-
imental set-up and the measurement techniques used, in order to clarify the details
of the physical phenomenon studied (§ 2). Then we give a qualitative description of
our observations in § 3, in particular the position of the foremost part of the current
(the front) as a function of time for two porous bottoms with different permeability,
the evolution of the Reynolds number at the head, a typical sequence of iso-density
contours and the fraction of the total mass present above the porous surface as
function of time. This allows us to show the exponential decrease of M(t), the ratio
of the salt water mass at time t above the porous surface to the total mass released,
and find the decay time τ which is essential to understand the whole behaviour of
the gravity current. Section 4 is devoted to discussing the results and a simple model
is introduced which allows for the loss of mass from the current in calculating the
velocity and depth. This model indicates that the height profile and the front position
evolution play secondary roles in determining M(t). The results obtained are con-
trasted with those of particle-driven gravity currents. Finally, in § 5 a brief summary
and the conclusions are given.

2. The experiments
Gravity currents were generated in a tank (230 cm long, 15.2 cm wide and 60 cm

deep) with transparent Perspex sidewalls by means of the lock-exchange system
depicted in figure 1. On one side of the tank, fluorescent strip lights and a light-
diffusing screen provided nearly uniform back-lighting. A video camera was placed
at a fixed position far away (300 cm) from the tank. Each experiment was recorded
on a SVHS videotape. The porous substrate was a 0.05 cm thick metallic grid with
0.07 cm diameter holes and 0.2 porosity, located 15.5 cm above the bottom of the tank
extending from the solid bottom of the lock to near the opposite end of the tank. In
one series of experiments, two of these grids were employed together with their holes
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Figure 1. Schematic diagram of the experimental set-up.

partially superposed in order to decrease the permeability of the porous surface. We
found that permeability was not completely uniform throughout the substrate and
the superposition of the grids could not be regulated exactly. However, the results of
these experiments seem to be insensitive to these problems, and they are also reported
in the next section by using an average value of permeability.

The lock was formed using two vertical plates: an endwall which remains fixed
during each experiment, and a gate located at a distance x0 from it, where the porous
surface starts (see figure 1). The tank was filled with fresh water to a depth H above
the porous surface. In all cases a full-depth lock was used with h0 = H = 20 cm. A
known quantity of salt was dissolved into the water of the lock to create a density
difference ρs − ρ. Also, a previously measured quantity of dye was added to the salt
water to provide flow visualization. The experiment starts when the gate is quickly
removed, leaving the dense fluid to flow out along the porous surface. Salt water also
flows downwards through the grid to the lower part of the tank and, as a consequence,
some fresh water needs to flow upwards. In order to limit the interaction between the
flow of fresh water through the porous substrate and the gravity current, a space was
left between the grid and the endwall of the tank (as figure 1 shows). In this way we
find that the most of the fresh water goes upwards through this unrestricted opening
and the residual flow through the grid does not affect the dynamics of the gravity
currents throughout the substrate.

A series of equidistant 5 cm lines on the sidewall of the tank facing the video camera
enabled us to determine the position of the front xf (measured from the endwall of
the lock) as function of time. The fixed position of the video camera introduces a
small error by parallax which is taken into account in the reported values of xf(t).

A set of 46 experiments in three series were carried out in which the gravity current
runs on a solid bottom, a double grid and a simple grid, respectively, by varying
the initial lock lengths x0 (5, 10, 15, 23 and 40 cm) and g′ (9.8, 49 and 98 cm s−2

corresponding to a relative difference of density of about 1%, 5% and 10%).
By analysing digitized images taken from the video-tape, measurements of density

distribution were made using the image processing software DigImage developed at
DAMTP. The light attenuation of the back-lighting due to the dye present in the
salt water allows the cross-current averaged dye concentration to be measured from
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which the cross-current average density may be inferred. By integrating the density
distribution we calculated the salt water mass present above and below the porous
surface, and the total amount of salt (used to check data). The relative quantities of
salt water mass are found to be more precise than absolute amounts due to partially
cancelled errors, and they are reported below.

3. Results
We observe that gravity currents over the porous substrates studied have a head

slightly deeper than the rest of the current with a poorly defined length and whose
foremost point is raised above the surface. The typical instabilities of the inertial
gravity currents are also present, which generate lobes and clefts at the front, and a
mixing region of billows behind the head and above the tail of the current.

Figure 2 presents the evolution of the front positions of gravity currents running
over the solid bottom in order to compare them with those generated over the
porous bottoms under the same initial and boundary conditions, and to test the
experimental system. As usual, the front position is scaled by the initial lock length
x0 and the time after release is scaled with the characteristic time of the slumping
phase tc = x0/(g

′h0)
1/2. Thus, g′ and A0 are included into the space and time scales in

the self-similar stage also. In fact, (1.2) may be written as

xf

x0

= η

(
t

tc

)2/3

. (3.1)

The experimental points show some systematic departures owing to the influence of
the initial conditions and instabilities, but the behaviour for all cases is essentially
the same. As expected, we observe the initial slumping phase (dashed-dot line with
slope 1), and later the self-similar phase (dashed line with slope 2

3
) develops after

approximately 10 lock lengths. Figure 2 shows no evidence of the presence of a
viscous phase because the critical values (time and front position) corresponding to
the viscous transition have not yet been reached.

Figure 3 presents the experimental results from gravity currents running over the
low-permeability substrate formed by two overlapping grids. The same two power
laws shown in figure 2 are also given for comparison. At first sight, the analogy
between the results reported in figures 2 and 3 suggests that the front motion is
little modified by this porous substrate. The solid lines are calculated by the model
introduced in § 4, and they will be discussed in that section.

Greater deviations occur when gravity currents are developing over a substrate
with higher permeability, formed by the simple grid, as figure 4 shows for some
typical cases. During the slumping phase the front velocity is clearly non-constant
and the second self-similar stage is not present. Note the striking variety of behaviour.
The slowing down of the front position is related to the greatest values of the lock
length and of the reduced gravity used. This behaviour resembles that obtained from
particle-driven gravity flows where the length of the current increases more slowly
as g′ increases, for increasing particle size or initial masses of sediment released
(Bonnecaze et al. 1993).

In order to discard viscous effects as responsible for this new phase, we calculate
the Reynolds number at the current head

Re = ufhh/ν, (3.2)
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Figure 2. Front positions in units of the lock length x0 as a function of time from release, for
experiments with different x0 and g′ carried out on a solid bottom. The two phases are well
represented by (xf − x0)/x0 = 0.5t/tc (dashed-dot line), and (xf − x0)/x0 = 1.35(t/tc)

2/3 (dashed
line). The symbols correspond to: g′ = 9.8 cm s−2 (circles), 49 cm s−2 (squares) and 98 cm s−2

(triangles), for x0 ≈ 5 cm (open symbols), 10 cm (dotted symbols), 15 cm (symbols with ×), 23 cm
(symbols with −), and 37 cm (symbols with +).

where uf = dxf/dt, hh is the thickness of the current head, and ν is the kinematic
viscosity.

In our experiments the Froude number F at the head given by

F = uf/(g
′hh)

1/2 (3.3)

is almost constant and approximately equal to unity throughout the range of the
parameters used. This agrees with the results of gravity currents running over solid
substrates whose characteristic parameters have analogous values (Benjamin 1968;
Britter & Simpson 1978; Simpson & Britter 1979; Huppert & Simpson 1980). Equa-
tion (3.3) may be also obtained by simple local energy or momentum balance (see,
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Figure 3. Evolution of the non-dimensional front position for gravity currents running on the
low-permeability substrate formed by two superposed metallic grids. The solid lines represent the
limit curves given by (4.10) for the parameters of the experiments. The symbols correspond to the
same values of the parameters x0 and g′ given in the caption of figure 2.

for instance, Simpson 1997 and Grobelbauer et al. 1993). Since the values of F show
scatter because of the uncertainties in our measurements of uf , g

′ and hh, we prefer
to calculate hh in (3.2) by means of (3.3).

Figure 5(a–c) shows the evolution of Re in the experiments carried out over a single
grid. In spite of the spread of results obtained in figure 4, the Reynolds number as
a function of time collapses onto three different curves according to the value of g′.
The evolution of Re is also smoother than the corresponding evolution of gravity
currents running over a solid bottom or particle-driven gravity currents (Bonnecaze et
al. 1993). These Reynolds numbers are much greater than the critical value Re∗ ≈ 50
(see Appendix), suggesting that the front evolution is determined by the effects of the
decrease of mass of the current rather than by viscous effects. Eventually they reach
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Figure 4. Evolution of the non-dimensional front position for some gravity currents running on
the higher permeability substrate constituted by a single metallic grid. The solid lines are given by
(4.10) for each experiment reported. The symbols correspond to the same values of the parameters
x0 and g′ given in figure 2.

the critical value, but more experimental information is required to investigate the
viscous regime (i.e. Re . 50).

Contours for densities corresponding to ρε = ρ+ ε(ρs − ρ), with ε = 0.05, 0.33 and
0.66 (short-dashed, long-dashed and solid lines, respectively), for a typical gravity
current over the simple grid are shown in figure 6. These contours may be thought as
corresponding to extreme (ε = 0.05), moderate (ε = 0.33) and slight (ε = 0.66)mixing
with the surrounding fluid. In figure 6(a) we observe the contours immediately after
the gate is removed. Inside the lock zone and over a small part of the grid, most
of the salt water is still highly concentrated (ε > 0.66) displaying the beginning of a
gravity current. Inside the lock zone, there is mixed fluid generated during the removal
of the gate. At this stage a small quantity of salt water is detected under the grid
near the gate. The fluid flowing down through the grid becomes important, taking a



248 L. P. Thomas, B. M. Marino and P. F. Linden

101

102

104

1 10 70

(c)

(b)

(a)

Re*

Re*

Re*

s

s

s

Re

103

101

102

103

101

102

103

Re

Re

t (s)

Figure 5. Log–log variation of Re with time for: (a) g′ = 9.8 cm s−2, (b) g′ = 49 cm s−2, and
(c) g′ = 98 cm s−2, when the porous substrate is a single grid. The evolution of Re described by the
solid lines is given by (4.9) for the corresponding parameters.

significant part of the salt water under the grid, while the remaining volume develops
the foremost part of a gravity current (figure 6b). The upper current goes on ahead
while losing more mass (figure 6c) and its foremost part acquires a density value
much smaller than the initial one (figure 6d). Simultaneously the front decelerates (as
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Figure 6. Evolution of the iso-density contours obtained for the experiment with x0 = 15.2 cm and
g′ = 50.47 cm s−2 at (a) t = 1.24, (b) 5.08, (c) 10.36, (d) 18.70 s for which Re = 3800, 1500, 400 and
60, respectively.

seen in figures 4 and 5) until almost all the salt water is below the grid. In figures
6(c) and 6(d) we note that the tail of the current is vanishing leaving only the head.
Observe the well-developed nose at the front of the gravity current in spite of the
loss of mass from the current. Figure 6 suggests that most of the dense liquid is lost
through the porous substrate in the zone near the lock and at the early times of the
gravity current evolution.

The iso-density contours above the porous surface shown in figure 6(a–d) may
be qualitatively compared to those reported by Hacker et al. (1996). They describe
the density structure of gravity currents and present some results for gravity currents
over rigid bottoms generated by the lock-exchange technique in a rectangular channel.
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Figure 7. Evolution of non-dimensional salt water masses M(t) (solid symbols) and Mb(t) (open
symbols), over and below the porous substrate, respectively, for a simple grid, g′ = 49 cm s−2 and
x0 = 6.2 cm (•), x0 = 10.0 cm (H), x0 = 15.2 cm (�), x0 = 22.8 cm (N), x0 = 37.4 cm (�). The
decay time given by the best-fit exponential function (solid line) for the first four cases is τ = 6.53 s.

Figure 6(a) shows a stronger decrease of the fluid height at the endwall because the
porous substrate provides an extra exit for the dense liquid of the lock. The typical
shallow layer of dense liquid behind the head of a gravity current over rigid bottom is
absent in figures 6(b) and 6(c), where highly mixed fluid remains. The head structure
depicted in figure 6(b, c), however, resembles quite closely that obtained for gravity
currents over solid bottoms. On the other hand, figure 6(d) shows no tail at all and
also the density of the head has been reduced appreciably in contrast to the currents
reported by Hacker et al. (1996), but similar to the flow corresponding to the latter
stages of particle-driven gravity currents. From this comparison, it is clear that the
porous substrate influences the motion of the current by extracting fluid directly from
the head, and also from the dense layer behind it.

Figure 7 shows M(t) (and Mb(t)) defined as the ratio between the salt water mass at
time t located above (and below) the porous surface per unit width and the total salt
water mass released for a single value of g′ and a range of lock lengths. Throughout
the range of volumes covered (1.67–12.16 cm3), we see that M(t) coincides pretty well
for the different cases. A small deviation from the general behaviour is observed for
the latest times for the largest volume released (�), probably because the salt water
volume which passed through the grid partially saturates the space below the grid
and modifies the flow there. The evolution of M(t) is well fitted by an exponential
law (solid line) with a time of decay τ = 6.53 s which is of the order of the time
these experiments last. Figure 7 indicates that the flow through the porous bottom is
independent of the volume released, provided there is no saturation under the grid. It
also suggests that the loss of mass of the gravity current does not depend on the depth
of the overlying layer of ambient fluid, in contrast to particle-driven gravity currents.
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Figure 8. Non-dimensional salt-water mass M(t) for some experiments performed using a single
grid as porous surface. The symbols correspond to: x0 ≈ 15 cm and g′ = 9.8 cm s−2 (•), 49 cm s−2

(�), and 98 cm s−2 (N). The best-fit exponential functions have decay times τ = 17.57, 6.53 s and
3.52 s, respectively.

The same behaviour is observed in the double-grid experiments, but the constant of
decay is slightly greater (τ = 8.4 s), corresponding to a smaller permeability.

Figure 8 shows M as function of time for three different values of g′ for a fixed
volume released over a single grid. The evolution of M for these cases are well fitted
again by exponential laws, with characteristic time of decay proportional to g′−0.8.
Therefore, the dynamic similarity for gravity currents with different g′ is broken when
they run over porous media. An explanation of all these results is contained in the
model introduced in the next section.

4. Discussion
The experimental results suggest that gravity currents running over porous surfaces

have, to a first approximation, an exponential decrease of the bulk mass. This
distinctive feature may be understood by means of the following heuristic model.
Consider a homogeneous current of density ρs, and neglect any mixing between the
current and its surroundings. The Reynolds number for the flow through porous
media is defined as Re′ = Ql/ν, where l is some length dimension of the porous
matrix (the hole diameter, for example) and Q is the discharge per unit area. For
all practical cases, the vertical flow through the porous substrate may be described
by Darcy’s law (Bear 1972; Duillen 1979) provided that Re′ does not exceed a value
about 10 which is not exceeded in our cases. Therefore, the vertical component v of
the flow velocity at any horizontal position x is proportional to the pressure gradient
∇p when applied on the d-thickness grid. Thus,

v(x, t) =
k

ν
| ∇p |≈ kg′h(x, t)

νd
=
h(x, t)

τ
(4.1)
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with

τ =
νd

kg′
, (4.2)

where k is the specific permeability, h(x, t) is the height of the dense fluid over the
porous substrate and ∇p is assumed to be hydrostatic, which is the case when the
length of the current is much larger than its depth and vertical accelerations can be
neglected. By using (4.1), the volume Q(t) per unit time and width lost by the gravity
current due to the presence of a porous surface is given by

Q(t) =

∫ xf

x0

v(x, t)dx ≈
∫ xf (t)

0

v(x, t)dx = A0

A(t)

τ
, (4.3)

with

A(t) =

∫ xf

0

h(x, t)dx

A0

. (4.4)

In (4.3) we are supposing that the flux through the bottom of the lock (0 6 x 6 x0)
is negligible even if it were porous. This assumption is valid starting from a short time
after the beginning of the experiments, since the liquid height in the lock is strongly
reduced by the bore coming from the head, as explained in § 1.

The conservation of mass imposes that

1 = A(t) +
1

A0

∫ t

0

Q(t′)dt′ (4.5)

and solving it, we find that

A(t) = e−t/τ. (4.6)

Note that in obtaining (4.3)–(4.6) no assumption about the evolution of the front
position and the height profile h(x) is needed; that is, it does not matter if the whole
volume is uniformly distributed throughout the gravity current or it is concentrated
in a small region near the front. Therefore, under the hypothesis which allows us to
obtain (4.1), the porous bottom introduces a characteristic time τ (not only local but
for the whole flow) unrelated to a particular stage of the gravity current evolution.

Equation (4.6) indicates that A(t) (and M(t) since we have assumed no mixing in
the flow) follows an exponential law with the time of decay τ inversely proportional to
g′ and independent of A0. These analytical predictions agree well with experimental
results foreseen from figures 7 and 8. An additional verification arises from the fact
that the value of k ≈ 1.5×10−6 cm2 obtained from (4.2) using the experimental values
of τ is in agreement with the previous value estimated by Lionet & Quoy (1995), for
the same grids, carrying out specifically designed experiments.

As described in § 1, during the slumping phase of gravity currents running over a
solid bottom, the current head moves with a quasi-constant velocity and the current
height is also constant. At early times of the self-similar regime the height of the
current head also does not vary much. Therefore, for the spreading over porous
substrate we may suppose that the decrease of hh is due to the loss of mass, and then
dhh/dt ≈ −v. By using (1.1),(3.3) and (4.1), we obtain

hh =
C2

F2
h0e
−t/τ. (4.7)

Note that the front condition (3.3) used is a momentum balance at the front.
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Therefore, the drag force associated with the momentum loss due to the transfer
of mass might be taken into account by adopting an effective value for F , as is
usually done for the viscous drag, turbulent Reynolds stresses and entrainment drag
in turbulent flow (see Huppert & Simpson 1980 and Fannelop & Zumsteg 1986).
However, the change in the Froude number due to the grid appears to be negligible
in our situation, because we do not detect any change in the measured Froude number
when using a permeable bottom. More research and specific experiments are needed
to clarify this point.

Thus, the front velocity is given by

uf = Cu0 e−t/2τ (4.8)

and, thus, it can be supposed to be constant only if t� 2τ.

Equation (4.8) also allows us to calculate the characteristic time τ from the front
position evolution, but only in an approximate way due to the scatter of the data
which are sensitive to the initial conditions of the experiments. For example, the
results shown in figure 4, for g′ = 49 cm s−2, give 4.5 s < τ < 9.8 s, while the value
τ = 6.53 s is obtained from figure 8.

From (4.7) and (4.8) the Reynolds number (3.2) can be written as

Re = Re0e
−3t/2τ, (4.9)

where Re0 = Re(t = 0). By plotting (4.9) for the corresponding parameters of figure
5 we obtain the solid lines which reproduce the main temporal dependence of Re.

On the other hand, by integrating (4.8) we find that

xf

x0

= C
2τ

tc

[
1− e−(tc/2τ)t/tc

]
. (4.10)

In contrast to the Reynolds number, the evolution of the front position depends on
the two characteristic times of the problem: tc and τ, which are related to the initial
conditions and the permeability of the porous substrates, respectively (even though
both of them depend on g′). Each experiment has particular values of these times,
and only in a few cases do they combine to give the same value of tc/2τ. Thus, (4.10)
suggests that the front position evolution for different experiments cannot collapse
onto a single curve in a plot of xf/x0 vs. t/tc. For experiments carried out over the
double grid, the respective evolution given by (4.10) corresponding to each experiment
lies between the two limit curves plotted as solid lines in figure 3. Unfortunately, the
finite size of the tank does not allow us to have front positions for more extended
gravity currents in order to verify (4.10) for the lowest permeability substrate. However,
a better comparison is possible for the highest permeability substrate. Figure 4 shows
the agreement reached between the front position evolution for some experiments
performed over a simple grid. Note that (4.10) suggests that the characteristic time
and length scales are τ and x0tc/τ = u0τ = νd(h0/g

′)1/2/k, respectively. Thus, the
length scale represents the distance at which the dense fluid mass over the grid has
decreased by a factor e−1, and does not depends on x0. The points shown in figure 4
are plotted in figure 9 with these scales, and the experimental points fall, as expected,
on a single curve with relatively small dispersion near the curve given by (4.10).

As discussed in § 1, a decrease of the head height takes place as the length of the
gravity current increases, which starts when the front has advanced about 10 lock
lengths, or after a time t′ = 20x0/u0. As we neglected this decrease, t′ has to be greater
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Figure 9. Evolution of the front position for the same currents reported in figure 4, now
non-dimensionalized by the scales suggested by (4.10). The solid line is given by (4.10).

than 2τ for (4.7)–(4.10) to be valid. By using (4.2), we find that this condition requires

k &
νd

10A0

h
3/2
0

g′1/2
. (4.11)

That is, the evolution of the parameters which characterize the front are given by
(4.7)–(4.10) for high-permeability bottoms. Most of the experiments described in § 3
satisfy (4.11), with the exception of some experiments carried out over double grid
for which k is slightly smaller than the value indicated by (4.11).

Now we are able to analyse our findings in the framework given by previous
works related to turbidity gravity currents (or gravity surges) with no entrainment of
the deposited particles. A useful comparison is possible by using predictions of the
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theoretical model provided by Dade & Huppert (1995). Those authors proposed an
integral model in which the current evolves through a series of equal-area rectangles
between the leading and trailing boundaries, both dependent upon time, as the current
propagates downstream over a solid bottom. It allows for the slow variation of g′

due to settling of the particles. The problem has the time scale tc given by the initial
conditions and also another characteristic time scale ts on which the effects of particle

settling become important. The time scale ts is proportional to
(
A2

0/(g
′
0w

3
s )
)1/5

and(
A6

0/(h
2
0g

3
1w

7
s )
)1/13

for deep and shallow surroundings, respectively, where ws is the
average settling velocity of the particles in a monodisperse suspension. Both of those
expressions for ts are due to the fact that gravitational settling is strongly coupled
with the velocity of the current, which depends on the fractional depth φ0 = h0/H ,
as stated in § 1.

Gravity currents over porous substrates also have two time scales: tc and τ = νd/kg′.
As we said after (4.6), this second characteristic time scale does not seems to depend
on the velocity of the current and the height profile. Therefore, the relationship
between τ and the initial spreading parameters is simpler than the corresponding
time scale for gravity surges, with the only difference being between deep and shallow
ambient fluid that comes from the variation of F with φ.

Bonnecaze et al. (1993) described these currents by shallow-water equations derived
from the usual hydraulic assumptions of vertically uniform flow and a hydrostatic
pressure distribution within the current (assumptions also used in the present work).
They give a description of the flow evolution which is quite different from the flow
developed by the gravity currents over porous substrates due to the differences in the
physical processes involved.

(a) In gravity surges the particles are maintained in the interstitial fluid due to,
for example, turbulent mixing, which depends upon the initial parameters. Therefore,
there may be a phase in which very few particles settle out of the current and the loss
of mass of the current is negligible. This occurs especially when the currents have
an initial height comparable to the depth of the surrounding fluid, due to the bore
formed in the slumping phase.

(b) The instantaneous loss of mass in a given position depends upon the current
height h through a quite different relationship. For example, when the sediment
concentration is small in a turbidity gravity current, the rate of loss of particle
concentration is inversely proportional to the depth of the current, while the flux
through the porous substrate is proportional to h. Thus, the particles are preferentially
removed from the rear of the current, due to the smaller height there.

(c) In gravity surges dense mass is loss through the particles settling out, but not
the interstitial fluid which continues its motion even if it is particle-free.

The fact that the particles settle out more rapidly towards the rear of the current
determines that the density and pressure gradient in the tail is reduced more strongly.
Thus, the rearward fluid is not decelerated as much as the front region, and it
accumulates behind the head, still relatively rich in particles. The thinning of the head
region in the slumping regime is followed then by a gradual thickening, and finally
a travelling shock is formed between the head and the tail of the current, which
eventually reaches the front. This phenomenon appears to be completely absent in
the gravity current over porous media, at least for uniform and constant porosity as
studied here.

Thus, the complex interaction between the current and the settlement of particles
determines a different Reynolds number evolution at the front. In particle-driven
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gravity currents there is a drop in the Re values when the initial bore reaches the nose
of the current, and they finally tend to an almost constant value determined by the
particle-free interstitial current (Bonnecaze et al. 1993). This situation is completely
different to that showed by figure 5. Here the loss of mass through the porous
substrate smooths the curves, which are monotonically decreasing with time. Also,
the asymptotic laws for t � tc are completely different. For a gravity surge xf is a
power law of time, while (4.10) suggests an exponential relationship.

5. Concluding remarks
The influence of porous substrates on plane inertial gravity currents was investigated

in experiments varying the lock length, the relative differences of densities between
the fluids used, and by using two porous surfaces with different permeability. There
are many effects to discuss in these experiments, but for clarity we restrict ourselves
to the global behaviour of the gravity currents over porous media.

The results indicate that the mass of the dense fluid is lost through the porous
substrate at an exponential rate with a decay time τ, provided there is no saturation in
the space below the porous surface. The loss of mass dominates the flow, and the value
of τ plays an important role in the evolution of the current. We find that the front
velocity uf and the head height hh also decrease exponentially, and no self-similar
regime is completely developed. The Reynolds number drops more quickly than in a
gravity current running over a solid bottom, and so the viscous regime occurs earlier
in the evolution of the current. All these results are described by a simple model
without adjustable parameters, and which explains the exponential decrease of the
total mass over the porous substrate. Simple local balances near the front are enough
to obtain the front evolution observed experimentally. However, an integral model
such as that presented by Dade & Huppert (1995) or numerical solutions of the
shallow-water equation as given by Bonnecaze et al. (1993) for particle-driven gravity
currents may also provide an alternative description for this problem when adapted
to this situation.

The decrease of hh (or uf) due to the increase of the length may be neglected under
our conditions of strong loss of mass. We may also ignore the momentum equation
in the whole flow and consider only local balances for the front movement. However,
this is not the case for very low permeability of the substrate, where the loss of
mass plays a secondary role in the evolution of gravity currents. Nonetheless, some
of the results found, the model introduced or the ideas discussed above may help to
understand those phenomena. They may also be useful in checking general numerical
codes developed for engineering purposes.

The experimental results reported seem to be insensitive to the mixing between the
current and the surrounding fluid. In our experiments the mixing changes when we
vary the initial conditions (Hacker et al. 1996 ) and the Reynolds number (i.e. varying
the lock lengths and reduced gravity values). However, the data may be understood
without taking the mixing into account, probably because the flow through the porous
substrate (see (4.3)) depends on g′ and A0 through the product g′A0. In fact, mixing
reduces g′ but increases A0, and vice versa. Therefore no strong variation is expected
in g′A0 for mixing and, as a consequence, in the evolution of gravity currents over
porous substrate.

The results concerning the exponential loss of mass of an inertial gravity current
over porous media might be directly extended to axial geometry. We point out,
however, that the extension of the inertial regime is severely reduced in laboratory
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experiments due to the early entrance of the viscous stage, because of the stronger
decrease of the head velocity.

As shown in § 4, the exponential decay of the salt water mass of the gravity current
is obtained if the porous substrate is thin and provided there is no saturation under
it. However, the present work may be considered as a first step towards a thorough
study of gravity currents running over a deep porous media, where those conditions
must be removed.

B.M.M. and L.P.T. acknowledge financial support from Consejo Nacional de In-

vestigaciones Científicas y Técnicas de la República Argentina (CONICET) and
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina.

Appendix
As stated in § 1, several authors have estimated the time for the transition between

the inertial and viscous self-similar regimes for a gravity current of a fixed volume
running over a solid bottom. In experiments over porous substrates, however, we
cannot assume that those regimes are self-similar because of the important influence
of the loss of mass on the flow dynamics. In addition, in many cases we observe that
the tail vanishes at a given time leaving the head only, as figures 6(c) and 6(d) show.
Therefore, it is convenient to obtain a parameter associated with the transition to the
viscous regime, as for instance the Reynolds number value at the current head, by
using only values defined there.

In the initial stage, the front velocity uf is related to the current head height hh
by the Froude number given by (3.3), while in the viscous regime the characteristic
wheel-like shape of the head indicates that (Marino et al. 1996; Marino, Thomas &
Gratton 1997)

uf = λ
g′h2

h

ν
(A 1)

where λ is a constant. By using (3.3) and (A 1), we find the critical value of the
Reynolds number

Re∗ =
F2

λ
≈ 50.
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