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ABSTRACT

We re-examine the problem of natural ventilation of a room containing a fire,
in the light of recent results obtained by Rooney and Linden (1996) concern-
ing the similarity solution for non-Boussinesq plumes. We consider the case of
a steady fire in a compartment with openings at floor and ceiling levels, and
obtain expressions for the depth and density of the homogeneous ceiling layer
maintained by the fire plume. Taking the limit of a large lower opening area,
we compare our results with experiments performed by Thomas et al. (1963).
We also perform a sample calculation to estimate the size of the difference
between the weakly and strongly buoyant cases. © 1998 Elsevier Science Ltd.

NOTATION

‘Effective area’ in Boussinesq ventilation model, see eqn (24)
‘Effective area’ in non-Boussinesq ventilation model, see eqn (28)
Area of floor covered by base of fire

Area of vent

Plume buoyancy flux

Plume radius

Specific heat capacity at constant pressure

Diameter of fire source

Upper-layer depth

Scaled density deficit, a conserved quantity with units of buoyancy flux,
see eqn (15)

QGravitational acceleration

g Reduced gravity
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Height of compartment ceiling

Height of two-layer interface

Upper-vent discharge coefficient (less than unity)
Lower-vent pressure-loss coefficient (less than unity)
Dimensionless constant in similarity solution, eqn (8)
Flame length

Dimensionless constant in similarity solution, eqn (9)
Dimensionless constant in similarity solution, eqn (10)
Length of perimeter of fire base

Convective power of fire

Total (convective and radiative) power of fire

Radial distance from plume axis

Ambient temperature

Plume volume flux

Plume mass flux

Vertical velocity

Vertical distance above floor level

v Virtual-origin depth
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Greek letters

o Plume entrainment constant

Adp  Plume/ambient density difference

® Ratio of upper-to-lower fluid densities, see eqn (26)
¢ Fractional interface height, see eqn (23)

e Density of plume

ey Density of large-fire plume

0o Density of ambient (lower-layer) fluid

01 Density of upper-layer fluid

Subscripts
A Lower vent
B Interface

C Upper vent

1 INTRODUCTION

The toxic combustion products from accidental fires in modern buildings are
a major hazard, and efficient removal of smoke from populated sections of
a building is essential for safe evacuation in the event of such a fire. One means
of smoke removal employed is natural (passive) ventilation, wherein smoke
and fumes are vented to the atmosphere using the driving force of their own
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buoyancy. For the venting of smoke from a building, ‘displacement’ ventila-
tion is desired.

The essential point about displacement ventilation is that little or no mixing
takes place between the contaminated air being removed and the fresh air
which displaces it, and this is achieved through the thermal buoyancy of the
contaminated air. This buoyancy, firstly, causes the contaminated air to
collect in a layer in the upper part of a compartment (with fresh air below it
forming a second layer) and, secondly, inhibits mixing by stabilizing the
interface between the layers. Displacement ventilation therefore operates in
a ‘two-layer’ system, with fresh air entering through vents lower than the
interface, and contaminated air leaving from vents higher than the interface. It
is clear that, in the absence of any other mechanism, the interface will move
upward as the upper layer drains. (The vents should therefore be located as
near to the floor and ceiling of the compartment as possible, so that displace-
ment may occur for a range of interface heights.) If a fire continues to burn in
the compartment, however, then the buoyant plume from the fire will pass
through the interface and continually replenish the upper layer with combus-
tion products. The entrainment of fresh air by the plume in the lower layer
thus provides a means of mass transfer across the interface and, as entrain-
ment causes the plume mass flux to increase with height, the height of the
interface will determine the mass flux to the upper layer.

The absence of toxic fumes and blinding smoke from the lower layer makes
it a useful clear passage for the evacuation of personnel, and facilitates the
movement of fire fighters. The stable interface between the layers, which
inhibits mixing between them, may be disrupted by fluid motions of sufficient
kinetic energy to overcome the stabilizing influence of the buoyancy force. In
this regard, it has been suggested’ that natural ventilation may be better than
forced ventilation, in which there is a danger that the displacing air may be
pumped in at too great a rate, thus lowering the stability of the interface. If
natural displacement ventilation is to be seriously considered as an option in
building design for fire-safety, it is important to have a good quantitative
understanding of its efficiency of operation. To contribute to this understand-
ing, we here consider the application of a non-Boussinesq plume model to
displacement natural ventilation, as a model of the ventilation behaviour of
fires in buildings.

2 SMALL FIRES AS STRONGLY BUOYANT PLUMES
2.1 Large and small fires

We begin by briefly looking at the distinction between large and small fires.
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In the work by Thomas et al., hereafter referred to as Paper I, a distinction
is made between ‘small fires’ and ‘large fires’, depending solely upon the aspect
ratio of the fire plume in the lower layer. More specifically, if the fire covers an
area A; of the floor, and the free plume extends to a height h above the floor
before plunging through the interface, then Paper I states that small-fire
theory applies for A{/?/h < 05, and large-fire theory applies for A¢/2/h > 0-5.

2.1.1 Large fires

For large fires, Paper I gives the total mass flow W of entrained air into a fire
of source perimeter p and density p,, between the level of the source and height
z as

1/2

W = 0096 p po <f’ﬂ> 2302 (1)

Po

based on assumptions about the mean vertical velocity and entrainment
behaviour of large fires.

Following Paper I, the mass flux W in kgs™' from a (large) fire is widely

taken to depend on the source perimeter length p and the height above the
source z, both in m, as

W = 0188 pz3? (2)

obtained from eqn (1) by substituting values for the fire and ambient densities,
and for the gravitational acceleration g.*

Hinkley* presents comparison of the large-fire equation, eqn (2), with five
sets of experimental results from four different experiments, with excellent
agreement. Indeed, he reports the best line fit through the data considered as
having the equation

W =0189pz'? (3)

the data taken from fires having convective heat outputs per unit area in the
range 34-1800 kW m ™2, and perimeters in the range 0-7-16-:2m. This paper
remarks upon the ease of application of the large-fire equation due to its
independence of the strength of the fire and suggests that the limit of applica-
tion of the large-fire equation be extended to cover fires in the range
Al /h > 0-1.

Thomas® comments upon use of the large-fire equation that ‘a theoretical
justification is still awaited for this widely exploited extension of a simple
flame correlation’.

In contrast to Hinkley’s* excellent agreement, Dembsey et al.® compare
data from experiments by nine different experimenters with a large-fire equa-
tion, obtained from the mass flux expression, eqn (1), by assuming values
of the plume and ambient densities similar to those given by Drysdale.’
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They find poor agreement between this model and the experiments con-
sidered, and suggest including a suitable virtual origin in the model as a means
of correction. The suggested expression for the offset of the virtual origin
depends on both the power of the fire and the source diameter, however.

2.1.2 Small fires
For small fires, Paper I quotes the plume volume flux from the plume
similarity solution by Yih,” who gives the volume flux for the Boussinesq

case as
Bz5\1/3
V = 0153 <TZ> 4)

where

0

B( = — J‘oo 2nrwgAp dr > 5)

is the (non-specific) buoyancy flux. In Paper I, the buoyancy flux in the
Boussinesq case is related to the total (convective and radiative) power O, of
the fire by

E _ th

P pocyTo
where the subscript 0 denotes ambient values, assumed constant. It is then
conjectured that the non-Boussinesq volume flux may be obtained from
the relationship given by Yih’ by replacing the ambient density in eqn (6) by
the plume density, although it is acknowledged that ‘there is some uncertainty
about the effect of significant departures’ from the Boussinesq approximation.
This replacement leads to an expression for the mass flux,

3 1/3
W =0153p <LQ‘—) z°83 (7)
Cpp TO

(6)

where the height z includes the depth of the virtual origin. This mass flux
has the same dependences on height and buoyancy flux as a conventional
Boussinesq plume model.?

2.1.3 Near and far field

More recently than Paper I, the data presented by McCaffrey® or Delichat-
sios!® suggest that a fire begins to show plume-like (small fire) behaviour at
the top of the flaming region, rather than at a fixed multiple of the base
diameter. The flaming region is commonly termed the ‘near field’, and the
region above this, the ‘far field’. The flame length in buoyancy-dominated fires
is a function of both the source diameter and the power output (see eqn (18)),
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and so the height above which a fire may be deemed small would then depend
on the burning rate and material as well as the geometry. This flaming
region in buoyancy-dominated fires normally extends a few source diameters
vertically.

In the near field, the fire may depart from the similarity behaviour predicted
by the plume model for several reasons. For example, the diameter of the fire is
non-negligible compared with the height of the near field and so introduces
a new length scale into the problem, and in the combusting region the
buoyancy flux is not a conserved quantity but increases with height. Attempts
to model the flow above non-point sources in the near field using plume
conservation equations'! are unreliable because of uncertainty as to profile
shape and entrainment behaviour in this region. More simply, the plume-
similarity model is often applied close to the source using a ‘virtual-origin’
height correction, of the order of the source length scale, to compensate for
disparities from the similarity form. The position of the virtual origin of a fire
plume has been the subject of several previous studies (see, e.g. the summaries
of Gupta'? and Cox and Chitty'?). The variety of correlations leads Gupta'?
to suggest that there is no single correlation which is applicable to all
situations, and that the correlations available cannot be generalized. These
observations together indicate that more work needs to be done to adequately
understand the behaviour of fires in the near field.

2.2 Present model

It is shown by Rooney and Linden'* that the similarity solutions for the mean
vertical velocity w, radius b and reduced gravity ¢’ of a non-Boussinesq plume
are given by

w= LF!3;71/3 (8)
—12
b=M: <~”— ) 9)
Po
g = NF?*3;753 (10)

where z is the height above the (virtual) origin. F is a conserved quantity with
the units of buoyancy flux (the dimensions of F are [F] = L*T 3),and L, M
and N are constants related to each other and to the entrainment constant
o by

N/L? =3 (11)
LM3N = 1/x (12)
M = 63/5 (13)
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so that
N1 =23 8y ()3 (14)

This solution may be related to the far-field plume from a fire using the plume
equations’* to give
99

F=—7%_ 15
2CppOTO ( )

where Q is the convective power of the fire.

The similarity solution, eqns (8)-(10), tends to the Boussinesq solution as
p/po— 1, and from the expression of eqn (10) for the reduced gravity
g = gAp/p it is easily seen that this will occur when

z>3 >EF2/3 (16)
g
or, from eqns (14) and (15),
32 \ 1/5 )
z » 0-003 <och> =0010%° (17)

for height in m and Q in W, and taking typical values of the other parameters.
Given that the flame length [ in m has been correlated with the power output
in W and the source diameter D in m by?

1 ~ 0015025 — 1-02D (18)

we see that the fire plume may not be Boussinesq until a height of several
flame lengths above the source.

The similarity solutions for reduced gravity and plume velocity in the
strongly buoyant (non-Boussinesq) case are consistent with experimental
observations for the centreline mean temperatures and velocities in strongly
buoyant plumes outside the burning region, summarized by Delichatsios.!® It
is also interesting to note that the solution for the strongly buoyant plume
radius agrees with Heskestad’s'® interpretation of Morton’s!® radial trans-
formation.

The mass flux in the plume is then given by

_ 2, _ N1 g9 s
W =npb*w =N p°<2cpp0T0) z (19)
Note that this expression is different in density dependence from the mass flux
of eqn (7) conjectured in Paper I, but does, however, agree with the expression
for the mass flux in Cetegen et al.,!”

9 1/3
W:0-21p0< 99, > 2303 (20)
cppoTo
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2.3 Entrainment

Comparing the coefficients in eqns (7) and (20) with eqn (19), we find using
eqn (14) that the numerical constant in eqn (7) corresponds to a value of the
entrainment constant in the present model of 2 = 0-124, and the constant in
eqn (20) (incorporating the estimated 25-30% difference between total and
convective heat output) corresponds to a value of the entrainment constant of
o = 0-20. Data for the Boussinesq case, as summarized by Turner,'® suggest
a value for the entrainment constant of « = 0-083. Thus, while the various
values of « are all of the same order of magnitude, the non-Boussinesq/fire-
plume entrainment constant is observed to be larger by a factor of approxim-
ately 2.

This discrepancy may be due to the experimental method of Cetegen et
They report, firstly, that fire-plume entrainment is subject to increase by
ambient disturbances and, secondly, that their method of measuring plume
mass flux is likely to overestimate because of the additional air entrained into
the upper layer in the hood by disturbances at the interface, as the fire plume
plunges through the interface into the upper layer. It is worth pointing out
here that, in the measurements of entrainment by Ricou and Spalding,'® the
plume/jet was enclosed by a porous cylinder, with entrainment being esti-
mated from the mass flux through the cylinder required to remove the
pressure difference across it. These experiments led to an estimated value of
o =~ 0-08 for jets, with a higher (unspecified) value for plumes, and, signifi-
cantly, reduced entrainment for the case of combusting plumes/jets (mainly in
the pre-mixed case). This experimental method would presumably lack most
of the error associated with the hood method, the porous cylinder shielding
the plume from ambient disturbances, and the absence of an upper layer
discounting any possibility of excess entrainment.

1‘17

3 NATURAL VENTILATION OF SMALL FIRES
3.1 Previous work

Relevant previous work in natural ventilation has been performed in Paper I,
and by Linden et al.,?° hereafter referred to as Paper 11. Paper I considers the
natural ventilation of a compartment above a small fire. The compartment
consists of a horizontal ceiling containing a single vent, with a vertical screen
around its perimeter extending downwards from ceiling level to some distance
above the floor. The fire is at floor level, and the buoyant gases it produces rise
and collect in the compartment, forming a hot layer. Figure 1 gives a sche-
matic of this configuration. The hydrostatic pressure imbalance between the
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Fig. 1. Paper I experimental configuration.

inside and outside of the compartment, caused by the lower density of this
layer, drives a flow through the compartment. After a short time this flow
settles to a steady state, so that the depth of the hot layer becomes constant.
Paper 1 considers both the case where the level of the hot layer is higher than
the edge of the screen, so that all flow out of the compartment is through the
vent and the flow between the screen and the floor is inward only, and the case
where the level of the hot layer is lower than the edge of the screen, with fluid
from the hot layer leaving the compartment below the screen as well as
through the vent. In this second case, the flow between the screen and the floor
is bidirectional, with hot gases leaving the compartment at the top of the gap,
and ambient air flowing into the compartment lower down. Only the first case
is relevant to our present study, so we will neglect those parts of Paper I which
pertain to the second.

Data are presented from experiments performed on a rig as described
above, with three settings of the vent area, and three settings of the screen
depth. The fire is from a ring gas burner. The dimensions of the ceiling and the
fire parameters are set out in Table 1. As stated previously, we are only
concerned with the case where the hot layer is above the edge of the screen,
and hence we omit the screen depth from our considerations.

The analysis in Paper I may be described as follows. A hydrostatic balance
is performed on a box partially filled with buoyant fluid to obtain the
hydrostatically driven mass flux through the opening. The interface height
may then be predicted by matching this flux to the mass flux of a buoyant
plume within the box (given by eqn (7)), which is the only mechanism of fluid
transport across the buoyant/ambient interface.

The expression for the hot-layer depth d thus obtained (eqn (31) in Paper I),

Kad''? = 0-043(z, + H — d)* Q1)
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TABLE 1
Paper I Experimental Parameters

Symbol Quantity Paper I value S.1. equivalent

h, Ceiling height 181in 046 m

— Ceiling length x width 24 x 36 in’ 0-61 x 0-91 m?

A, Vent areas 16, 24, 40 in®>  0-010, 0016, 0-026 m?>
O Heat output 21 Btus ™! 22kW

iy Depth of virtual origin 6in 0-15m

depends only upon the effective area of the top opening (Ka, where K is
a constant less than unity), the room height H, and the depth z, of the virtual
origin of the fire. From consideration of the aspect ratio of a pure Boussinesq
plume, it is stated that the depth of the virtual origin may be taken as
a constant proportion of the horizontal dimension of the fire (i.e. the square
root of the floor area covered by the fire). Therefore, based on this analysis, the
depth of the hot layer is governed only by geometrical factors, and has no
dependence on the power of the fire.

Paper I uses the plume mass flux in conjunction with the assumption that
heat is conserved in the plume to obtain an expression for the temperature of
the ceiling layer in terms of heat output, layer depth, ceiling height, and depth
of the hot layer. It also states the form of the expression (similar to eqn (24)) to
replace the vent area a in eqn (21) in the case where the screen becomes so low
that the area of the gap between the screen and the floor also becomes one of
the controlling factors in the system.

Paper II (and extensions thereof?':2?) considers natural ventilation in the
Boussinesq case, for a box of height H with small openings top and bottom
such as that shown in Fig. 2. It contains analysis similar to that described
above, using Bernoulli’s theorem and the Boussinesq plume similarity solu-
tion to obtain an expression for the interface height s of

z5 172 ’ A
(1‘-_5> N = (22)

where
&=h/H (23)
is the fractional height of the interface, and

Kaaac

A= KT @ + ]

(24)
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Po

z=0

Fig. 2. Steady-state natural ventilation.

is the ‘effective area’, which is a function of the top and bottom opening
areas, ac and a,. A also depends upon a pressure-loss coefficient k,
which accounts for vent-edge effects on the inflow at A, and a discharge
coefficient K which parameterizes the effect of the vena contracta at the outlet
C. Expression of eqn (22) is used to examine the interface behaviour in the
case of a single plume, multiple plumes, and plumes of different strengths.
Vertically distributed sources of buoyancy within the box are also considered.
The flow is again assumed to be steady, and fluid leaves the box by the top
vent only. Comparisons are made with experiments recreating the above
situations.

Notice that the interface position expression in Paper I, eqn (21), is the same
as that in Paper 11, eqn (22), for the limit of large lower-opening area, a, — oc,
if the interface height includes the depth of the virtual origin, and the
upper-opening area includes a discharge flow-contraction coefficient.

3.2 Natural ventilation of a non-Boussinesq plume

We may use the model'* of a non-Boussinesq fire plume to re-examine the
problem of natural ventilation in the non-Boussinesq case. We refer to Fig. 2
for a schematic of the flow considered. This consists of a plume in a box of
height H with openings at the top and the bottom. The plume within the box
maintains a layer of fluid lighter than ambient (in the positively buoyant case)
in the upper part of the box. Ambient fluid enters the box at A, is entrained by
the plume, crosses the density interface as plume fluid at B, and leaves the box
at C. The flow we consider is steady, so that the interface is at a fixed height
z = h above the floor. Using such a model means we tacitly assume that the
fluid in the system is inhomogeneous in density and may change its density by
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simple mixing, but by no other means, i.e. the fluid is incompressible every-
where except at the point of the plume source.

As detailed in the Appendix, we may show that the hot layer is homogene-
ous, and obtain expressions for the fractional height £ of the interface, and the
density p, of the upper layer,

5 1/2 x
< e, A
<1~5> N 3’227_1»2 (25)
and
Pr_(y F2i3¢-53 _1—@* 26
p—o - + Hfs 3 g (C) ( )
where
&=h/H (27
and
@1"’2KaAac

A=

(KK a2 + a2/0)] ™ 2%
The relationship, eqn (25), represents the dependence of the fractional height
of the interface upon the plume properties, the power of the fire and the
geometry of the box. The plume properties are represented by N, which
depends upon the entrainment constant «. The dependence upon the box
geometry is contained in A/H>. The non-Boussinesq nature of the flow, as
represented by the power of the fire, is contained in @, the new term in this
model compared with the Boussinesq case, eqns (22)-(24). Note that in the
Boussinesq limit, ® — 1, the power ceases to become a factor and A4/H? is
a purely geometrical term, representing the dependence of the interface height
on the box height and the effective areas of the top and bottom openings. In
this limit, the model is identical to that for one plume by Cooper and
Linden.?!

3.3 Comparison with Paper I

We now let ap — o to compare the above model with the experiments in
Paper 1. In this limit we have that

A= /2K0®ac (29)

so that eqn (25) becomes

5 1/2 ) K
(f 5) N7 = /265 (30)
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TABLE 2
Cases Considered in Model Simula-
tions
H

o 046 m 061l m
0-083 1 2
0124 4

020 5 6

This equation is different from the expression in Paper I, eqn (21), in that it
contains the term @ which is a measure of the non-Boussinesq nature of the
fire plume.

We may solve eqns (30) and (26) simultaneously for the various values of the
entrainment constant « obtained from Paper 1 (a = 0-124), Cetegen et al.'”
(o = 0-20), and Turner'® (o« = 0-083), and the effective enclosure height, H, as
either the actual enclosure height in Paper I (H = 0-46 m), or the height used
in Paper I as obtained from the enclosure height plus the depth of the virtual
origin (H = 0-61 m). We cannot estimate the virtual-origin depth from the
expression given in Cetegen et al.!” as the flame height of the fire in Paper I is
not recorded. The cases we may therefore consider are listed in Table 2.

The best results for temperature vs. depth of the hot layer, and for hot-layer
depth vs. upper-opening area, as compared with the experimental results of
Paper I, are those for cases 2 and 3. These results are presented in Figs 3 and 4,
together with the results of the Paper I small-fire theory outlined above.
Case 2 shows good agreement with both temperature and depth for smaller
ceiling-layer depths, whereas case 3 accurately predicts the upper-layer
temperature, but underpredicts the layer depth. It may be seen from these
figures that the Boussinesq model of Paper I gives results of similar accuracy
to the non-Boussinesq model, and it is interesting to note from Fig. 4 that both
the present model and the model of Paper I predict a continual increase of
layer depth with vent area, whereas the data points seem to show a gradual
levelling-off of layer depth, despite the increase in vent area. This interpreta-
tion of the data is somewhat uncertain as the size of the possible errors are
unknown, however, it may indicate a more complicated behaviour at the vent
than the simple flow contraction parameterized by K.

3.4 Parameter optimization

We may further consider optimizing the present model parameters to obtain
the best fit to the Paper I data. The results of solving the present model with



248 G. G. Rooney, P. F. Linden

T T
Paper | experiments &
Paper | theory -
Case 2 -—---
] Case 3 ——
L /
- /
* /
= 200 - b
5 /o
2 &
= /.
% :
0 R
n} (e L
O isp b P - N
5 S
E o
=
= // e
— 2 -
S ot 2% @% .
g T
E ’ ‘/—
o
=
50 1 L 1 1 1
0 005 0.1 0.15 0.2 0,25 03
Depth of ceiling layer (m)
Fig. 3. Ceiling-layer temperature increase vs. depth.
.05 T T T T
Paper [ experiments &
Paper [ theory -~
Case 2 --—-
Case 3 —
=) 0.1 b T
o -
v / “"
— s
> .
e - L
= T
= eis b T : ]
3 e
— // ,,’/ /> s
) / b
= 7 o
a. 8
O
o 02 7
e .
025 T : ! : J
0.005 .01 (.015 0.02 0.025 (.03

Area of ceiling vent (m' )
Fig. 4. Ceiling-layer depth vs. upper-opening area.



Strongly buoyant plume similarity 249

T T T T T

| alpha = .11 — |
240 alpha = .12 ----
alpha=.13 -----
~ alpha = .14
CU 220 alpha = .13 ~-~ |
-~ Paper lexpt. O
% )
5
Zf' 200 / b
— /
St ;
O 0t .
9]
I
=}
£ je0 -
L0
o
b
VIR .
]
=
>
=
£ 10t 4
9]
[oN
g 100 + b
P.(
80 e
1 L i3 Il 1
0.05 0.1 0.15 0.2 .25 03

Depth of ceiling layer (m)

Fig. 5. Temperature vs. depth, varying .

no virtual origin for varying values of the entrainment constant « are present-
ed in Figs 5 and 6. It can be seen that attempting to optimize the fit with the
other parameters at their present values will lead to a bad fit on both graphs.
That is, the range of entrainment constant 0-11 < « < 0:15 contains the
optimum fit to the data of temperature difference vs. layer depth, but only
begins to touch on the data of layer depth vs. area. To two significant figures,
the best fit on temperature difference (Figure 5) comes from a value of the
entrainment constant of = 0-13, with zero virtual origin.

A possible cause for the poor fit of the vent area vs. layer depth at this value
of o may be the value of the discharge coefficient K. The value of K = 0.6 has
been chosen in Papers I and II as representing the value for a laminar vena
contracta, but it is likely that additional turbulent dissipation at the outlet in
the Paper I experiments imply a lower value than this. We may therefore hold
the entrainment constant at the optimum value (for the temperature data) of
o = 0-13 and seek to obtain a better fit to the vent-area data by varying K.
Clearly, additional dissipation will lead to a smaller outflow through the
vent, and so we should consider values of K less than 0-6. A lower value of
K will reduce the effective upper-vent area Kac, which should therefore lead
to a greater layer depth (lower interface) for the same actual vent area ac.
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The curve for « = 0-13 on Fig. 6 shows that an increase in depth is indeed
required to produce a better fit. We find that, to one significant figure, the
optimum value of the discharge coefficient is found to be K = 0.4, and the
results of the simulation with these values (¢« = 0-13, K = 0-4, no virtual
origin) are presented in Figs 7 and 8.

When considering optimization w.r.t. the vent-area data, greater emphasis
has been placed on the data points for the two lower vent-area values. This
is because, between the middle and largest-area sets of points, the value of
the vent area has increased by more than half without the measured layer
depth changing by any great amount. This is possibly due to the actual flow
departing from our ideal picture as the layer depth decreases and the vent area
increases, e.g. by the momentum with which the plume enters the upper layer
having some effect on the upper-layer flow. We therefore expect the datapoints
at lower vent areas to better represent the flow in the present model.

3.5 Comparison with Boussinesq ventilation

We may now make a sample comparison of our model with its Boussinesq
limit, in order to obtain an estimate for the magnitude of non-Boussinesq
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effects in a particular natural ventilation problem. We will firstly use the
parameters from case 3 above, i.c., we will take the entrainment constant to
have a value of & = 0-124, and omit virtual-origin corrections. We take this to
be the best case for the parameter values obtained by previous workers.

Our sample comparison is performed for a compartment 2-5 m high, with
openings top and bottom each of area 1-0 m?, and for fires in the range 1-50
kW, a range in which fires may still be thought of as ‘small’ for this size
of enclosure. (While a small fire is so-called solely on account of its geomet-
rical dimensions, the empirical correlation between flame length, source dia-
meter, and power, eqn (18), indicates that the above range is representative of
a small fire in the size of enclosure considered.) The results are presented in
Figs 9 and 10. The ambient temperature has been specified as 10°C, and so this
is added in the temperature plot, Fig. 9. We see that the layer depth does
increase, but fractionally by very little, approximately 5 cm difference in a
2.5 m enclosure.

We may carry out the same simulation using the parameter values of
o = 0-13, K = 0.4 obtained by optimizing the model. The results for this case
are presented in Figs 11 and 12. Again, we see that the layer depth, while lower
than in the other case, is little affected by departures from the Boussinesq
value.
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Therefore, with either set of parameters in this case, the method in Papers
I and II of calculating the upper-layer temperature from conservation of heat
flux or reduced gravity, and calculating the layer depth from the Boussinesq
interface expression, ought to give reasonably accurate results.

4 CONCLUSIONS

We have considered the natural ventilation of fires in enclosures, using the
non-Boussinesq plume theory developed elsewhere. This is an important
concern, as previous models of natural ventilation have incorporated non-
Boussinesq corrections either incorrectly (based on conjecture), or not at all.
We have therefore applied our present model to the problem, and compared it
with experimental data from Thomas et al.? From this comparison, the most
appropriate value of the entrainment constant has been selected, and used in
the simulation of a model problem of small fires in a room-sized, ventilated
compartment. We have also optimized the entrainment constant and the
output discharge coefficient to obtain a best fit to these data, and used these
values to simulate the model problem.
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Optimizing the entrainment constant, rather than using the most accurate
laboratory measurement, is permissible given the observations of Cetegen
et al.'” and others that small ambient disturbances can greatly increase the
mass flux in a plume. As it is unlikely that an accidental fire in a ventilated
building will proceed in a completely quiescent ambient, the best procedure
when making predictions of ventilation behaviour is probably to ensure that
model estimates of ceiling-layer temperature and depth are accompanied by
clearly stated likely errors arising from the possible range of variation of .
Secondly, it can be seen from Figs 9-12 that varying the discharge coefficient
K results in a similar fractional change in the layer depth ( ~40%), but a much
smaller change in temperature, as the layer-depth change is still small com-
pared to the plume length. Opimizing K (or even possibly introducing a func-
tion depending on outlet area and/or velocity, say) will undoubtedly lead to
a more accurate model.

Finally, although we have shown that the non-Boussinesq region of a fire
plume may extend several flame lengths into the far field, the model simulation
indicates that the non-Boussinesq departures from Boussinesq ventilation
values are small, and so Boussinesq theory can be applied with reasonable
confidence when simulating the natural ventilation of small fires. As stated
previously, the term ‘small fire’ refers solely to the geometry of the fire plume,
and imparts no information about the power output of the fire. However, for
a fire with a convective power output such that non-Boussinesq effects would
significantly alter the ventilation behaviour, it seems that the likely geometri-
cal size of such a fire would render a ‘small-fire’ model of the type used here
inappropriate.

ACKNOWLEDGEMENTS

This work was supported by a research studentship from the Department of
Education for Northern Ireland, and by a CASE studentship from the Health
& Safety Executive.

REFERENCES

1. Kramer, C. & Gerhardt, H. J., Ventilation and heat smoke extraction from
industrial buildings. J. Wind Engng Ind. Aerodyn., 29 (1988) 309-35.

2. Thomas, P. H., Hinkley, P. L., Theobald, C. R. & Simms, D. L., Investigations into
the flow of hot gases in roof venting. Fire Research Technical Paper No. 7, Fire
Research Station, Watford, UK, 1963.

3. Drysdale, D., An Introduction to Fire Dynamics. Wiley, New York, USA, 1985.

4. Hinkley, P. L., Rates of ‘production’ of hot gases in roof venting experiments. Fire
Safety J., 10 (1986) 57-65.



256

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22,

G. G. Rooney, P. F. Linden

Thomas, P. H., On formulae for the movement of smoke in fires. Fire Sci. Tech., 9,
(1989) 1-3

Dembsey, N. A., Pagni, P. J. & Williamson, R. B., Compartment fire near-field
measurements. Fire Safety J., 24 (1995) 383-419.

Yih, C. S., Free convection due to a point source of heat. In Proc. 1st US Nat.
Congr. Appl. Mech., 1952, pp. 941-7.

Morton, B. R., Taylor, G. 1. & Turner, J. S., Turbulent gravitational convection
from maintained and instantaneous sources. Proc. Roy. Soc., A234 (1956) 1-23.
McCalffrey, B. J., Purely buoyant diffusion flames: some experimental results,
National Bureau of Standards, NSBIR 79-1910, 1979.

Delichatsios, M. A., On the similarity of velocity and temperature profiles in
strong (variable density) turbulent buoyant plumes. Combust. Sci. Technol., 60
(1988) 253-66.

Gupta, A. K., Kumar, S. & Singh, B, Plume analysis above finite-size fire sources
In Fire Safety Science, Proc. 3rd Int. Symp., 1991, pp. 445-54.

Gupta, A. K., Fire-plume theories and their analysis. J. Appl. Fire Sci. 2 (1993)
269-98.

Cox, G. & Chitty, R., Some source-dependent effects of unbounded fires Combust.
Flame, 60 (1985) 219-32.

Rooney, G. G. & Linden, P. F., Similarity considerations for non-Bossinesq
plumes in an unstratified environment. J. Fluid Mech., 318 (1996) 237-50.
Heskestad, G., Fire plume air entrainment according to two competing assump-
tions. Proc. 21st Int. Symp. on Combustion, 1986, pp. 111-20.

Morton, B. R., Modelling fire plumes. Proc. 10th Int. Symp. on Combustion, 1965,
pp. 973-82.

Cetegen, B. M., Zukoski, E. E. & Kubota, T., Entrainment in the near and far field
of fire plumes. Combust. Sci. Technol. 39 (1984) 305-31.

Turner, J. S., Turbulent entrainment: the development of the entrainment assump-
tion, and its application to geophysical flows. J. Fluid Mech., 173 (1986) 431-71.
Ricou, F. P. & Spalding, D. B., Measurements of entrainment by axisymmetrical
turbulent jets. J. Fluid Mech., 8 (1961) 21-32.

Linden, P. F., Lane-Serff, G. F. & Smeed, D. A., Emptying filling boxes : the fluid
mechanics of natural ventilation. J. Fluid Mech., 212 (1990) 303-14.

Cooper, P. & Linden, P. F., Natural ventilation of an enclosure containing two
buoyancy sources. J. Fluid Mech., 311 (1996) 153--76.

Linden, P. F. & Cooper, P., Multiple sources of buoyancy in a naturally ventilated
enclosure. J. Fluid Mech., 311 (1996) 177-92.

APPENDIX

We refer to Fig. 2 for the positions A, B, C etc. in the ventilation system.

For the steady-state case with the presence of a plume, we must replace the
conservation of vertical volume flux with the conservation of vertical mass
flux, i.c. the vertical mass flux W through any horizontal plane must be
constant, and in particular,

Wa=Wyg=Wc (A1)
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We note the difference that the presence of the plume makes. It provides
a mechanism for transferring fluid from the lower layer to the upper whilst
keeping the interface steady. Without the plume, the interface would have to
move, and we would be forced to have conservation of volume flux. We may
interpret the change to the conservation of mass flux in, e.g. the case of thermal
buoyancy as showing that the ambient air is heated at the plume source and
expands by a significant amount, so that a greater volume flux is needed at the
exit to maintain the steady state.

Paper II uses the conservation of buoyancy flux between B and C to
demonstrate that the density of the upper layer is uniform. We may obtain the
same result here, either from the conservation of buoyancy flux or the
conservation of ‘pseudo-buoyancy flux’ F,

FBZFc, WB= WC:>pB=pC
= plh<:<n = p1, const (A2)

i.e. the upper layer is of uniform density p; equal to the plume density at B.
We may also use Bernoulli’s theorem to obtain a relationship between the
entry and exit velocities and the hydrostatic head,

2
w2 =2¢/(H — h) — 2220 (A3)
k p1
where k(< 1)} is a pressure loss coefficient to account for vent-edge effects upon
the inflow at A. This is almost identical to the Boussinesq case, except for the
factor of py/p; on the r.h.s., which would be unity in that case.
If we denote the area of an opening by a, we have from eqn (A1) that

2 _ .2 aaPo 2 Ad
wc WA<Kan1) (Ad)

where K is a discharge coefficient, as used in Paper I and by Cooper and
Linden.?! Combining this mass balance with eqn (A3) gives

2g9'(H — h)
(1/k)(po/p1) + (aapo/Kacp1)?

We may now obtain the interface height from the plume similarity solution,
eqns (8)~(10) by matching the mass flux in the plume at B with the mass flux at
A obtained from the velocity at A.

Rearranging eqn (10) gives the expression for the ratio of plume to ambient
densities,

Wi =

(A5)

P 1
po 1+ (NF?3jg)z733

(A6)
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and so the ratio of the densities in the upper and lower layers is given by

pL _ P 1
po " pol-n T NET gy T OB A7
This is equivalent to obtaining the upper-layer temperature from conserva-
tion of heat flux in the plume, which is the method used in Paper I, or to
obtaining the reduced gravity of the upper layer from the reduced gravity of
the plume, as in Paper II.
We may also obtain the mass flux at B, which is given by

Wg = awb?p|,—y = N ™' po F'3h>3 (A8)
Hence, from eqns (A1), (10), and using
W3 = pdwiai (A9)
eqn (AS) becomes the expression for the interface height,
<1€_5§)”2N_3/2=% (A10)
where
¢=h/H (Al1)

is the fractional height of the interface, and

O'?Kazac
[z(K*/k)a¢ + (ax/©))]"?

= (A12)



