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A B S T R A C T  

We re-examine the problem of natural ventilation of a room containing afire, 
in the light of recent results obtained by Rooney and Linden (1996) concern- 
in9 the similarity solution for non-Boussinesq plumes. We consider the case of 
a steadyfire in a compartment with openings atfloor and ceiling levels, and 
obtain expressions for the depth and density of the homogeneous ceiling layer 
maintained by the fire plume. Taking the limit of a large lower opening area, 
we compare our results with experiments performed by Thomas et al. (1963). 
We also perform a sample calculation to estimate the size of the difference 
between the weakly and strongly buoyant cases. © 1998 Elsevier Science Ltd. 

NOTATION 

A 'Effective area' in Boussinesq ventilation model, see eqn (24) 
,4 'Effective area' in non-Boussinesq ventilation model, see eqn (28) 
A I Area of floor covered by base of fire 
a Area of vent 
B Plume buoyancy flux 
b Plume radius 
c r Specific heat capacity at constant pressure 
D Diameter of fire source 
d Upper-layer depth 
F Scaled density deficit, a conserved quantity with units of buoyancy flux, 

see eqn (15) 
9 Gravitational acceleration 
9' Reduced gravity 

* Author to whom correspondence should be addressed. 
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H Height of compartment  ceiling 
h Height of two-layer interface 
K Upper-vent discharge coefficient (less than unity) 
k Lower-vent pressure-loss coefficient (less than unity) 
L Dimensionless constant in similarity solution, eqn (8) 
l Flame length 
M Dimensionless constant in similarity solution, eqn (9) 
N Dimensionless constant in similarity solution, eqn (10) 
p Length of perimeter of fire base 
() Convective power of fire 
0, Total (convective and radiative) power of fire 
r Radial distance from plume axis 
To Ambient temperature 
V Plume volume flux 
W Plume mass flux 
w Vertical velocity 
z Vertical distance above floor level 
zv Virtual-origin depth 

Greek 

dp 

0 

P 
1)1 
Po 
l)1 

letters 
Plume entrainment constant 
Plume/ambient density difference 
Ratio of upper-to-lower fluid densities, see eqn (26) 
Fractional interface height, see eqn (23) 
Density of plume 
Density of large-fire plume 
Density of ambient (lower-layer) fluid 
Density of upper-layer fluid 

Subscripts 
A Lower vent 
B Interface 
C Upper vent 

1 I N T R O D U C T I O N  

The toxic combustion products from accidental fires in modern buildings are 
a major hazard, and efficient removal of smoke from populated sections of 
a building is essential for safe evacuation in the event of such a fire. One means 
of smoke removal employed is natural (passive) ventilation, wherein smoke 
and fumes are vented to the atmosphere using the driving force of their own 
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buoyancy. For the venting of smoke from a building, 'displacement' ventila- 
tion is desired. 

The essential point about displacement ventilation is that little or no mixing 
takes place between the contaminated air being removed and the fresh air 
which displaces it, and this is achieved through the thermal buoyancy of the 
contaminated air. This buoyancy, firstly, causes the contaminated air to 
collect in a layer in the upper part of a compartment  (with fresh air below it 
forming a second layer) and, secondly, inhibits mixing by stabilizing the 
interface between the layers. Displacement ventilation therefore operates in 
a 'two-layer' system, with fresh air entering through vents lower than the 
interface, and contaminated air leaving from vents higher than the interface. It 
is clear that, in the absence of any other mechanism, the interface will move 
upward as the upper layer drains. (The vents should therefore be located as 
near to the floor and ceiling of the compartment  as possible, so that displace- 
ment may occur for a range of interface heights.) If a fire continues to burn in 
the compartment ,  however, then the buoyant plume from the fire will pass 
through the interface and continually replenish the upper layer with combus- 
tion products. The entrainment of fresh air by the plume in the lower layer 
thus provides a means of mass transfer across the interface and, as entrain- 
ment causes the plume mass flux to increase with height, the height of the 
interface will determine the mass flux to the upper layer. 

The absence of toxic fumes and blinding smoke from the lower layer makes 
it a useful clear passage for the evacuation of personnel, and facilitates the 
movement  of fire fighters. The stable interface between the layers, which 
inhibits mixing between them, may be disrupted by fluid motions of sufficient 
kinetic energy to overcome the stabilizing influence of the buoyancy force. In 
this regard, it has been suggested 1 that natural ventilation may be better than 
forced ventilation, in which there is a danger that the displacing air may be 
pumped in at too great a rate, thus lowering the stability of the interface. If 
natural displacement ventilation is to be seriously considered as an option in 
building design for fire-safety, it is important  to have a good quantitative 
understanding of its efficiency of operation. To contribute to this understand- 
ing, we here consider the application of a non-Boussinesq plume model to 
displacement natural ventilation, as a model of the ventilation behaviour of 
fires in buildings. 

2 SMALL FIRES AS STRONGLY BUOYANT PLUMES 

2.1 Large and small fires 

We begin by briefly looking at the distinction between large and small fires. 
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In the work by Thomas et al., z hereafter referred to as Paper I, a distinction 
is made between 'small fires' and 'large fires', depending solely upon the aspect 
ratio of the fire plume in the lower layer. More specifically, if the fire covers an 
area Af of the floor, and the free plume extends to a height h above the floor 
before plunging through the interface, then Paper I states that small-fire 
theory applies for A1/Z/h < 0'5, and large-fire theory applies for A~/Z/h > 0"5. 

2.1.1 Large  f ires 
For large fires, Paper ! gives the total mass flow W of entrained air into a fire 
of source perimeter p and density pt, between the level of the source and height 
z a s  

w = o.096ppo(gP  "2z3 '2 11t 
\ P 0  / 

based on assumptions about the mean vertical velocity and entrainment 
behaviour of large fires. 

Following Paper I, the mass flux W in kg s - '  from a (large) fire is widely 
taken to depend on the source perimeter length p and the height above the 
source z, both in m, as 

W = 0"188pz s/2 (2) 

obtained from eqn (1) by substituting values for the fire and ambient densities, 
and for the gravitational acceleration g.3 

Hinkley a presents comparison of the large-fire equation, eqn (2), with five 
sets of experimental results from four different experiments, with excellent 
agreement. Indeed, he reports the best line fit through the data considered as 
having the equation 

W = 0"189pz l s  (3) 

the data taken from fires having convective heat outputs per unit area in the 
range 34 1800 k W m  2, and perimeters in the range 0-7-16-2m. This paper 
remarks upon the ease of application of the large-fire equation due to its 
independence of the strength of the fire and suggests that the limit of applica- 
tion of the large-fire equation be extended to cover fires in the range 
Al!/2/h > 0-1. 

Thomas s comments  upon use of the large-fire equation that 'a theoretical 
justification is still awaited for this widely exploited extension of a simple 
flame correlation'. 

In contrast  to Hinkley's 4 excellent agreement, Dembsey et al. ~' compare 
data from experiments by nine different experimenters with a large-fire equa- 
tion, obtained from the mass flux expression, eqn (1), by assuming values 
of the plume and ambient densities similar to those given by Drysdale. 3 
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They find poor agreement between this model and the experiments con- 
sidered, and suggest including a suitable virtual origin in the model as a means 
of correction. The suggested expression for the offset of the virtual origin 
depends on both the power of the fire and the source diameter, however. 

2.1.2 Small fres 
For small fires, Paper I quotes the plume volume flux from the plume 
similarity solution by Yih, v who gives the volume flux for the Boussinesq 
case as 

v = 0.153 (4) 

where 

(5) 

is the (non-specific) buoyancy flux. In Paper I, the buoyancy flux in the 
Boussinesq case is related to the total (convective and radiative) power 0t of 
the fire by 

B_ Qtg (6) 
p pocpTo 

where the subscript 0 denotes ambient values, assumed constant. It is then 
conjectured that the non-Boussinesq volume flux may be obtained from 
the relationship given by Yih 7 by replacing the ambient density in eqn (6) by 
the plume density, although it is acknowledged that 'there is some uncertainty 
about the effect of significant departures' from the Boussinesq approximation. 
This replacement leads to an expression for the mass flux, 

W=O'153p( (JQ~t ~1/3 z5/3 (7) 
\cppToJ 

where the height z includes the depth of the virtual origin. This mass flux 
has the same dependences on height and buoyancy flux as a conventional 
Boussinesq plume model. 8 

2.1.3 Near and far field 
More recently than Paper I, the data presented by McCaffrey 9 or Delichat- 
sios lo suggest that a fire begins to show plume-like (small fire) behaviour at 
the top of the flaming region, rather than at a fixed multiple of the base 
diameter. The flaming region is commonly termed the 'near field', and the 
region above this, the 'far field'. The flame length in buoyancy-dominated fires 
is a function of both the source diameter and the power output  (see eqn (18)), 
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and so the height above which a fire may be deemed small would then depend 
on the burning rate and material as well as the geometry. This flaming 
region in buoyancy-dominated  fires normally extends a few source diameters 
vertically. 

In the near field, the fire may depart  from the similarity behaviour predicted 
by the plume model for several reasons. For example, the diameter of the fire is 
non-negligible compared with the height of the near field and so introduces 
a new length scale into the problem, and in the combusting region the 
buoyancy flux is not a conserved quantity but increases with height. Attempts 
to model the flow above non-point sources in the near field using plume 
conservation equations 11 are unreliable because of uncertainty as to profile 
shape and entrainment behaviour in this region. More simply, the plume- 
similarity model is often applied close to the source using a 'virtual-origin' 
height correction, of the order of the source length scale, to compensate for 
disparities from the similarity form. The position of the virtual origin of a fire 
plume has been the subject of several previous studies (see, e.g. the summaries 
of Gupta  12 and Cox and Chitty 13). The variety of correlations leads Gupta  12 
to suggest that there is no single correlation which is applicable to all 
situations, and that the correlations available cannot be generalized. These 
observations together indicate that more work needs to be done to adequately 
understand the behaviour of fires in the near field. 

2.2 Present model 

It is shown by Rooney and Linden ~4 that the similarity solutions for the mean 
vertical velocity w, radius b and reduced gravity y' of a non-Boussinesq plume 
are given by 

w = LFl"Bz " 1:3 (8) 

b M z ( ~ )  1/2 
= ( 9 )  

\Po  

~t, = N F 2 / 3  z 5,'3 (10) 

where z is the height above the (virtual) origin. F is a conserved quantity with 
the units of buoyancy flux (the dimensions of F are IF ]  = L 4 T  3), and L, M 
and N are constants related to each other and to the entrainment constant 

by 

N I L  2 4 --3 (11) 

L M 2 N  = l,/Tr (12) 

M = 6~/5 (13) 
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so that 

N 1 = rc2/3 6~(9~)1/3 (14) 

This solution may be related to the far-field plume from a fire using the plume 
equations a4 to give 

V - 9Q (15) 
2cppoTo 

where Q is the convective power of the fire. 
The similarity solution, eqns (8)-(10), tends to the Boussinesq solution as 

P/Po--* 1, and from the expression of eqn (10) for the reduced gravity 
9' = 9Ap /p  it is easily seen that this will occur when 

Z5/3 >~ N F2/3 (16) 
g 

or, from eqns (14) and (15), 

( 0~-~ ) 1/5 0 2/5 z >> 0.003 = 0-01 (17) 

for height in m and 0 in W, and taking typical values of the other parameters. 
Given that the flame length I in m has been correlated with the power output  
in W and the source diameter D in m by 3 

1 ~ 0"01507/5 -- l'02D (18) 

we see that the fire plume may not be Boussinesq until a height of several 
flame lengths above the source. 

The similarity solutions for reduced gravity and plume velocity in the 
strongly buoyant (non-Boussinesq) case are consistent with experimental 
observations for the centreline mean temperatures and velocities in strongly 
buoyant plumes outside the burning region, summarized by Delichatsios.l° It 
is also interesting to note that the solution for the strongly buoyant plume 
radius agrees with Heskestad's 15 interpretation of Morton's  16 radial trans- 
formation. 

The mass flux in the plume is then given by 

z 5/3 (19) W = rtpbZw = N lpo 2 c ~ o T o  

Note that this expression is different in density dependence from the mass flux 
of eqn (7) conjectured in Paper I, but does, however, agree with the expression 
for the mass flux in Cetegen et al., 17 

W 0-21po ( g o t ) 1 / 3  ~--- 7- 5/3 (20) 
\Cppo To 
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2.3 Entrainment 

G. G. Rooney, P. F. Linden 

Comparing the coefficients in eqns (7) and (20) with eqn (19), we find using 
eqn (14) that the numerical constant in eqn (7) corresponds to a value of the 
entrainment constant in the present model of ~ = 0.124, and the constant in 
eqn (20) (incorporating the estimated 25-30% difference between total and 
convective heat output) corresponds to a value of the entrainment constant of 

= 0.20. Data  for the Boussinesq case, as summarized by Turner, TM suggest 
a value for the entrainment constant of ~ = 0"083. Thus, while the various 
values of ~ are all of the same order of magnitude, the non-Boussinesq/fire- 
plume entrainment  constant is observed to be larger by a factor of approxim- 
ately 2. 

This discrepancy may be due to the experimental method of Cetegen e t  al .  17 

They report, firstly, that fire-plume entrainment  is subject to increase by 
ambient disturbances and, secondly, that their method of measuring plume 
mass flux is likely to overestimate because of the additional air entrained into 
the upper layer in the hood by disturbances at the interface, as the fire plume 
plunges through the interface into the upper layer. It is worth pointing out 
here that, in the measurements  of entrainment by Ricou and Spalding, ~9 the 
plume/jet was enclosed by a porous cylinder, with entrainment being esti- 
mated from the mass flux through the cylinder required to remove the 
pressure difference across it. These experiments led to an estimated value of 

~ 0'08 for jets, with a higher (unspecified) value for plumes, and, signifi- 
cantly, reduced entrainment for the case of combusting plumes/jets (mainly in 
the pre-mixed case). This experimental method would presumably lack most 
of the error associated with the hood method, the porous cylinder shielding 
the plume from ambient disturbances, and the absence of an upper layer 
discounting any possibility of excess entrainment.  

3 N A T U R A L  V E N T I L A T I O N  OF SMALL FIRES 

3.1 Previous work 

Relevant previous work in natural ventilation has been performed in Paper I, 
and by Linden et  al., 2° hereafter referred to as Paper II. Paper I considers the 
natural ventilation of a compar tment  above a small fire. The compar tment  
consists of a horizontal ceiling containing a single vent, with a vertical screen 
around its perimeter extending downwards from ceiling level to some distance 
above the floor. The fire is at floor level, and the buoyant  gases it produces rise 
and collect in the compartment ,  forming a hot layer. Figure 1 gives a sche- 
matic of this configuration. The hydrostatic pressure imbalance between the 
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ceiling I vent, area A v 

hot layer 

)~)~)~ power Qf 

I . ,, 
re  ' 

e 

screen 

Fig. 1. Paper I experimental configuration. 

inside and outside of the compartment ,  caused by the lower density of this 
layer, drives a flow through the compartment .  After a short time this flow 
settles to a steady state, so that the depth of the hot  layer becomes constant. 
Paper  I considers both the case where the level of the hot  layer is higher than 
the edge of the screen, so that all flow out of the compar tment  is through the 
vent and the flow between the screen and the floor is inward only, and the case 
where the level of the hot layer is lower than the edge of the screen, with fluid 
from the hot layer leaving the compar tment  below the screen as well as 
through the vent. In this second case, the flow between the screen and the floor 
is bidirectional, with hot  gases leaving the compar tment  at the top of the gap, 
and ambient  air flowing into the compar tment  lower down. Only the first case 
is relevant to our present study, so we will neglect those parts of Paper  I which 
pertain to the second. 

Data  are presented from experiments performed on a rig as described 
above, with three settings of the vent area, and three settings of the screen 
depth. The fire is from a ring gas burner. The dimensions of the ceiling and the 
fire parameters  are set out in Table 1. As stated previously, we are only 
concerned with the case where the hot layer is above the edge of the screen, 
and hence we omit the screen depth from our considerations. 

The analysis in Paper  I may be described as follows. A hydrostatic balance 
is performed on a box partially filled with buoyant  fluid to obtain the 
hydrostatically driven mass flux through the opening. The interface height 
may then be predicted by matching this flux to the mass flux of a buoyant  
plume within the box (given by eqn (7)), which is the only mechanism of fluid 
transport  across the buoyant /ambient  interface. 

The expression for the hot-layer depth d thus obtained (eqn (31) in Paper I), 

K a d  1/2 = 0"043(Zv + H -- d) 5/2 (21) 
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TABLE 1 
Paper I Experimental Parameters 

Symbol Quantity Paper I value S.I. equivalent 

hc Ceiling height 18 in 0'46 m 
Ceiling length x width 24 x 36 in-' 0"61 x 091 m z 

A, Vent areas 16, 24, 40 in 2 0.010, 0"016, 0.026 m 2 
Qf Heat output 2"1 Btus 1 2"2 kW 
rg Depth of virtual origin 6 in 0-15 m 

depends only upon the effective area of the top opening (Ka,  where K is 
a constant less than unity), the room height H, and the depth Zv of the virtual 
origin of the fire. F rom consideration of the aspect ratio of a pure Boussinesq 
plume, it is stated that the depth of the virtual origin may be taken as 
a constant  proport ion of the horizontal dimension of the fire (i.e. the square 
root of the floor area covered by the fire). Therefore, based on this analysis, the 
depth of the hot layer is governed only by geometrical factors, and has no 
dependence on the power of the fire. 

Paper I uses the plume mass flux in conjunction with the assumption that 
heat is conserved in the plume to obtain an expression for the temperature of 
the ceiling layer in terms of heat output,  layer depth, ceiling height, and depth 
of the hot layer. It also states the form of the expression (similar to eqn (24)) to 
replace the vent area a in eqn (21) in the case where the screen becomes so low 
that the area of the gap between the screen and the floor also becomes one of 
the controlling factors in the system. 

Paper  II (and extensions thereof 21'22) considers natural ventilation in the 
Boussinesq case, for a box of height H with small openings top and bo t tom 
such as that shown in Fig. 2. It contains analysis similar to that described 
above, using Bernoulli's theorem and the Boussinesq plume similarity solu- 
tion to obtain an expression for the interface height h of 

N-3:2 = _ _  
_ H 2  ( 2 2 )  

where 

= h /H  (23) 

is the fractional height of the interface, and 

K61A¢I C 
z A [½((K2/k ) a2 + a~)],/2 (24) 
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C ~  z = H  

A t  
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z = h  

z = O  

Fig. 2. Steady-state natural ventilation. 

245 

is the 'effective area', which is a function of the top and bot tom opening 
areas, ac and aA. A also depends upon a pressure-loss coefficient k, 
which accounts for vent-edge effects on the inflow at A, and a discharge 
coefficient K which parameterizes the effect of the vena c o n t r a c t a  at the outlet 
C. Expression of eqn (22) is used to examine the interface behaviour in the 
case of a single plume, multiple plumes, and plumes of different strengths. 
Vertically distributed sources of buoyancy within the box are also considered. 
The flow is again assumed to be steady, and fluid leaves the box by the top 
vent only. Comparisons are made with experiments recreating the above 
situations. 

Notice that the interface position expression in Paper I, eqn (21), is the same 
as that in Paper II, eqn (22), for the limit of large lower-opening area, aA -* ~,  
if the interface height includes the depth of the virtual origin, and the 
upper-opening area includes a discharge flow-contraction coefficient. 

3.2 Natural ventilation of a non-Boussinesq plume 

We may use the model ~4 of a non-Boussinesq fire plume to re-examine the 
problem of natural  ventilation in the non-Boussinesq case. We refer to Fig. 2 
for a schematic of the flow considered. This consists of a plume in a box of 
height H with openings at the top and the bottom. The plume within the box 
maintains a layer of fluid lighter than ambient (in the positively buoyant  case) 
in the upper part  of the box. Ambient fluid enters the box at A, is entrained by 
the plume, crosses the density interface as plume fluid at B, and leaves the box 
at C. The flow we consider is steady, so that the interface is at a fixed height 
z = h above the floor. Using such a model means we tacitly assume that the 
fluid in the system is inhomogeneous in density and may change its density by 
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simple mixing, but by no other means, i.e. the fluid is incompressible every- 
where except at the point of the plume source. 

As detailed in the Appendix, we may show that the hot layer is homogene- 
ous, and obtain expressions for the fractional height ~ of the interface, and the 
density P l of the upper layer, 

1 - ~ = g ~  (25) 

and 

where 

and 

( )-' N F2/3 5,'3 0(~)  (26) P-~= 1 + ~  ~- . 
Po g H  " 

= h /H  (27) 

O) 1/2gaAa c 
= [½ ( (K2/k)a  2 + a2/0)]1/2  (28) 

The relationship, eqn (25), represents the dependence of the fractional height 
of the interface upon the plume properties, the power of the fire and the 
geometry of the box. The plume properties are represented by N, which 
depends upon the entrainment constant c~. The dependence upon the box 
geometry is contained in A / H  2. The non-Boussinesq nature of the flow, as 
represented by the power of the fire, is contained in O, the new term in this 
model compared with the Boussinesq case, eqns (22)-(24). Note that in the 
Boussinesq limit, O ---, 1, the power ceases to become a factor and A / H  2 is 
a purely geometrical term, representing the dependence of the interface height 
on the box height and the effective areas of the top and bot tom openings. In 
this limit, the model is identical to that for one plume by Cooper and 
Linden.21 

3.3 Comparison with Paper I 

We now let aA --* oC to compare the above model with the experiments in 
Paper I. In this limit we have that 

.~ = x ~  K O ac 

so that eqn (25) becomes 

(29) 

Kac  
H2 (30) 



Strongly buoyant plume similarity 247 

TABLE 2 
Cases Considered in Model  Simula- 

tions 

H 

0"46 m 0"61 m 

0"083 1 2 
0"124 3 4 
0"20 5 6 

This equation is different from the expression in Paper I, eqn (21), in that it 
contains the term O which is a measure of the non-Boussinesq nature of the 
fire plume. 

We may solve eqns (30) and (26) simultaneously for the various values of the 
entrainment constant ~ obtained from Paper I (~ = 0.124), Cetegen e t  al. 17 

(~ = 0"20), and Turner 18 (~ = 0"083), and the effective enclosure height, H, as 
either the actual enclosure height in Paper I (H = 0.46 m), or the height used 
in Paper I as obtained from the enclosure height plus the depth of the virtual 
origin (H = 0"61 m). We cannot estimate the virtual-origin depth from the 
expression given in Cetegen e t  al.17 as the flame height of the fire in Paper I is 
not recorded. The cases we may therefore consider are listed in Table 2. 

The best results for temperature vs. depth of the hot layer, and for hot-layer 
depth vs. upper-opening area, as compared with the experimental results of 
Paper I, are those for cases 2 and 3. These results are presented in Figs 3 and 4, 
together with the results of the Paper I small-fire theory outlined above. 
Case 2 shows good agreement with both temperature and depth for smaller 
ceiling-layer depths, whereas case 3 accurately predicts the upper-layer 
temperature, but underpredicts the layer depth. It may be seen from these 
figures that the Boussinesq model of Paper I gives results of similar accuracy 
to the non-Boussinesq model, and it is interesting to note from Fig. 4 that both 
the present model and the model of Paper I predict a continual increase of 
layer depth with vent area, whereas the data points seem to show a gradual 
levelling-off of layer depth, despite the increase in vent area. This interpreta- 
tion of the data is somewhat uncertain as the size of the possible errors are 
unknown, however, it may indicate a more complicated behaviour at the vent 
than the simple flow contraction parameterized by K. 

3.4 Parameter optimization 

We may further consider optimizing the present model parameters to obtain 
the best fit to the Paper I data. The results of solving the present model with 
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no virtual origin for varying values of the entrainment constant 0~ are present- 
ed in Figs 5 and 6. It can be seen that attempting to optimize the fit with the 
other parameters at their present values will lead to a bad fit on both graphs. 
That is, the range of  entrainment constant 0.11 < ~ < 0"15 contains the 
opt imum fit to the data of  temperature difference vs. layer depth, but only 
begins to touch on the data of layer depth vs. area. To two significant figures, 
the best fit on temperature difference (Figure 5) comes from a value of the 
entrainment constant of e -- 0-13, with zero virtual origin. 

A possible cause for the poor fit of  the vent area vs. layer depth at this value 
of e may be the value of the discharge coefficient K. The value of K = 0.6 has 
been chosen in Papers I and II as representing the value for a laminar vena 
contracta, but it is likely that additional turbulent dissipation at the outlet in 
the Paper I experiments imply a lower value than this. We may therefore hold 
the entrainment constant at the opt imum value (for the temperature data) of 

= 0-13 and seek to obtain a better fit to the vent-area data by varying K. 
Clearly, additional dissipation will lead to a smaller outflow through the 
vent, and so we should consider values of  K less than 0-6. A lower value of  
K will reduce the effective upper-vent area Kac, which should therefore lead 
to a greater layer depth (lower interface) for the same actual vent area ac. 
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The curve for ~ = 0'13 on Fig. 6 shows that an increase in depth is indeed 
required to produce a better fit. We find that, to one significant figure, the 
optimum value of the discharge coefficient is found to be K = 0.4, and the 
results of the simulation with these values (0~ = 013,  K = 0-4, no virtual 
origin) are presented in Figs 7 and 8. 

When considering optimization w.r.t, the vent-area data, greater emphasis 
has been placed on the data points for the two lower vent-area values. This 
is because, between the middle and largest-area sets of points, the value of 
the vent area has increased by more than half without the measured layer 
depth changing by any great amount. This is possibly due to the actual flow 
departing from our ideal picture as the layer depth decreases and the vent area 
increases, e.g. by the momentum with which the plume enters the upper layer 
having some effect on the upper-layer flow. We therefore expect the datapoints 
at lower vent areas to better represent the flow in the present model. 

3.5 Comparison with Boussinesq ventilation 

We may now make a sample comparison of our model with its Boussinesq 
limit, in order to obtain an estimate for the magnitude of non-Boussinesq 
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effects in a particular natural ventilation problem. We will firstly use the 
parameters from case 3 above, i.e., we will take the entrainment constant to 
have a value of ~ = 0' 124, and omit virtual-origin corrections. We take this to 
be the best case for the parameter  values obtained by previous workers. 

Our  sample comparison is performed for a compar tment  2-5 m high, with 
openings top and bo t tom each of area I-0 m 2, and for fires in the range 1-50 
kW, a range in which fires may still be thought of as 'small' for this size 
of enclosure. (While a small fire is so-called solely on account of its geomet- 
rical dimensions, the empirical correlation between flame length, source dia- 
meter, and power, eqn (18), indicates that the above range is representative of 
a small fire in the size of enclosure considered.) The results are presented in 
Figs 9 and 10. The ambient temperature has been specified as 10~'C, and so this 
is added in the temperature plot, Fig. 9. We see that the layer depth does 
increase, but  fractionally by very little, approximately 5 cm difference in a 
2.5 m enclosure. 

We may carry out the same simulation using the parameter  values of 
= 0-13, K = 0.4 obtained by optimizing the model. The results for this case 

are presented in Figs 11 and 12. Again, we see that the layer depth, while lower 
than in the other case, is little affected by departures from the Boussinesq 
value. 
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Therefore, with either set of parameters in this case, the method in Papers 
I and II of calculating the upper-layer temperature from conservation of heat 
flux or reduced gravity, and calculating the layer depth from the Boussinesq 
interface expression, ought to give reasonably accurate results. 

4 CONCLUSIONS 

We have considered the natural ventilation of fires in enclosures, using the 
non-Boussinesq plume theory developed elsewhere. This is an important 
concern, as previous models of natural ventilation have incorporated non- 
Boussinesq corrections either incorrectly (based on conjecture), or not at all. 
We have therefore applied our present model to the problem, and compared it 
with experimental data from Thomas et al .  2 From this comparison, the most 
appropriate value of the entrainment constant has been selected, and used in 
the simulation of a model problem of small fires in a room-sized, ventilated 
compartment. We have also optimized the entrainment constant and the 
output discharge coefficient to obtain a best fit to these data, and used these 
values to simulate the model problem. 
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Optimizing the entrainment constant, rather than using the most accurate 
laboratory measurement, is permissible given the observations of Cetegen 
et al. 17 and others that small ambient disturbances can greatly increase the 
mass flux in a plume. As it is unlikely that an accidental fire in a ventilated 
building will proceed in a completely quiescent ambient, the best procedure 
when making predictions of ventilation behaviour is probably to ensure that 
model estimates of ceiling-layer temperature and depth are accompanied by 
clearly stated likely errors arising from the possible range of variation of ~. 
Secondly, it can be seen from Figs 9-12 that varying the discharge coefficient 
K results in a similar fractional change in the layer depth (~40%) ,  but a much 
smaller change in temperature, as the layer-depth change is still small com- 
pared to the plume length. Opimizing K (or even possibly introducing a func- 
tion depending on outlet area and/or velocity, say) will undoubtedly lead to 
a more accurate model. 

Finally, although we have shown that the non-Boussinesq region of a fire 
plume may extend several flame lengths into the far field, the model simulation 
indicates that the non-Boussinesq departures from Boussinesq ventilation 
values are small, and so Boussinesq theory can be applied with reasonable 
confidence when simulating the natural ventilation of small fires. As stated 
previously, the term 'small fire' refers solely to the geometry of the fire plume, 
and imparts no information about the power output  of the fire. However, for 
a fire with a convective power output  such that non-Boussinesq effects would 
significantly alter the ventilation behaviour, it seems that the likely geometri- 
cal size of such a fire would render a 'small-fire' model of the type used here 
inappropriate. 
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A P P E N D I X  

We refer to Fig. 2 for the posit ions A, B, C etc. in the vent i la t ion system. 
For  the s teady-state  case with the presence of a plume, we must  replace the 

conserva t ion  of vertical volume flux with the conservat ion of vertical mass 
flux, i.e. the vertical mass flux W th rough  any  hor izonta l  plane must  be 
constant ,  and  in part icular,  

W A = W B : W C (A1) 
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We note the difference that the presence of the plume makes. It provides 
a mechanism for transferring fluid from the lower layer to the upper whilst 
keeping the interface steady. Without the plume, the interface would have to 
move, and we would be forced to have conservation of volume flux. We may 
interpret the change to the conservation of mass flux in, e.g. the case of thermal 
buoyancy as showing that the ambient air is heated at the plume source and 
expands by a significant amount, so that a greater volume flux is needed at the 
exit to maintain the steady state. 

Paper II uses the conservation of buoyancy flux between B and C to 
demonstrate that the density of the upper layer is uniform. We may obtain the 
same result here, either from the conservation of buoyancy flux or the 
conservation of 'pseudo-buoyancy flux' F, 

F B = F c ,  W B = W c = ~ p B = p c  

~P[h<_z<_H = PI, const (A2) 

i.e. the upper layer is of uniform density P l equal to the plume density at B. 
We may also use Bernoulli's theorem to obtain a relationship between the 

entry and exit velocities and the hydrostatic head, 

w 2 = 2g'(H - h) w 2 Po (a3) 
k Pl 

where k( < 1) is a pressure loss coefficient to account for vent-edge effects upon 
the inflow at A. This is almost identical to the Boussinesq case, except for the 
factor of Po/Pl on the r.h.s., which would be unity in that case. 

If we denote the area of an opening by a, we have from eqn (A1) that 

w~ = w~ \ K a c p ,  ( aapo )2 (a4) 

where K is a discharge coefficient, as used in Paper I and by Cooper and 
Linden. z~ Combining this mass balance with eqn (A3) gives 

2g'(H -- h) (A5) 
w2 = (1/k)(po/pl)  + (aApo/KacPx) 2 

We may now obtain the interface height from the plume similarity solution, 
eqns (8)-(10) by matching the mass flux in the plume at B with the mass flux at 
A obtained from the velocity at A. 

Rearranging eqn (10) gives the expression for the ratio of plume to ambient 
densities, 

p 1 
Po 1 + (NFZ/3/g) z- 5/3 (A6) 
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and so the ratio of the densities in the upper and lower layers is given by 

Pl _ P = 1 
Po Po z=h 1 + ( N F Z / 3 / g ) h  - s/3 = O(h) ,  say (A7) 

This is equivalent to obtaining the upper-layer temperature from conserva- 
tion of heat flux in the plume, which is the method used in Paper I, or to 
obtaining the reduced gravity of the upper layer from the reduced gravity of 
the plume, as in Paper II. 

We may also obtain the mass flux at B, which is given by 

Wn = 7zwb2p[z=h = N - l p o F 1 / 3 h S / 3  (A8) 

Hence, from eqns (A1), (10), and using 

W 2 p0 2 2 2 (a9) ~-- WAa A 

eqn (A5) becomes the expression for the interface height, 

( ~5 )1/2N-3/2 ~1 
= (AIO)  

where 

= h / H  (A 11) 

is the fractional height of the interface, and 

----  01/2KaAac (A12) 
[½((K2/k )a  2 + ( a ~ / O ) ) ] ' / 2  


