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This paper describes an experimental and numerical study of an intrusion propagating
along the interface of a two-layer fluid in a channel. We find that when the density of
the intrusion is the depth-weighted mean of the layer densities the interface ahead of the
intrusion is undisturbed, but for other densities the interface ahead of the intrusion is
displaced vertically. We find that this vertical displacement, which takes the form of an
upstream-propagating long wave, depends on the properties of the intrusion and not only
on the relative depths of the two layers. For the case when the interface is undisturbed the
intrusion propagation speed is a minimum. We develop an energy argument that describes
the observed variation of the intrusion speed from this minimum speed as a function of
the intrusion and layer densities and the ratio of the layer depths. We also show that if,
and only if, the layer depths are equal, the speed of the intrusion is independent of the
density of the intrusion.

1. Introduction

An intrusive gravity current (IGC) forms when fluid of one density travels along an
interface between two layers of different densitiest. An IGC can be created in the labora-
tory using a simple lock-release (figure 1) where the density p; of the fluid in the intrusion
is greater than the density py of the upper-layer fluid and smaller than the density pp,
of the lower-layer fluid. When the lock gate is removed, the fluid behind the lock travels
as an IGC along the interface of the two fluid layers, driven by the buoyancy forces.

The first theoretical description of a high-Reynolds number IGC used a hydraulic
approach, in the spirit of Benjamin’s (1968) analysis of a gravity current, in which mass,
momentum and energy are conserved in a control volume moving with the speed of the
current, and the interface ahead of the intrusion is assumed to be undisturbed (Holyer
& Huppert 1980). The cubic governing equation has three possible solutions, which were
compared with three experiments carried out by Dr. J. E. Simpson. It was found that the
solution corresponding to the maximum IGC volume flux gave approximate agreement
with the observed speeds.

Lock-release experiments on the doubly symmetrical case, where p; = 1(pu + pr,) and
h = 1/2H, were carried out by Britter & Simpson (1981). They showed that, in this

1 An IGC will also form if the layers are stratified or if the ambient fluid is continuously strat-
ified. However, here we restrict attention to the simpler case where the effects of stratification
are confined to a single sharp interface.
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case, the interface ahead of the current remained flat and that the IGC propagated at
a constant speed for several lock lengths. Further experiments on the doubly-symmetric
IGC at large Reynolds numbers showed that it can be considered as a gravity current
in one layer and its mirror image in the plane of the interface in the other layer (Lowe,
Linden & Rottman 2002). The measurements of the propagation speed and the shape
of the intrusion were in agreement with Benjamin’s (1968) energy-conserving theory for
gravity currents.

Experiments with equal layer depths, but with the IGC density no longer restricted
to be the average of the layer densities, were carried out by De Rooij, Linden & Dalziel
(1999). They found that relatively dense or light intrusions generated large amplitude
interfacial waves ahead of the intrusion which caused vertical displacements of the in-
terface. Sutherland, Kyba & Flynn (2004) reworked Holyer & Huppert’s (1980) theory,
specializing it for the Boussinesq case. They developed a perturbation solution for small
departures from the doubly symmetric case, again assuming that the interface was undis-
turbed ahead of the IGC. In experiments in which they varied the densities and layer
depths, the measured intrusion speeds were about 5-10% lower than their perturbation
theory predicted. They also observed significant interfacial wave generation ahead of the
IGC when the density of the intrusion was not the depth-weighted mean of the layer
densities, and noted that the exact theory of Holyer & Huppert (1980) significantly un-
derpredicts the intrusion speeds in that case. They attributed this discrepancy to the
generation of the interfacial waves.

Except for the doubly-symmetric IGC, the theories that assume the interface is undis-
turbed give poor agreement with experiments and the role of the interfacial waves in the
dynamics and propagation of an IGC remains unclear. We will show that it is essential
to consider the vertical displacement of the interface in the discussion of the intrusion
dynamics.

In the special case when h = 0, the flow corresponds to a dense gravity current prop-
agating along the bottom boundary underneath a uniform less-dense fluid. In the early
stages of a lock release the current is observed to travel at a constant speed Uy (Rottman
& Simpson 1983), and dimensional analysis predicts that the front speed for a Boussinesq
current takes the form

Uo = F\/giyH, (1.1)

where gi;; = g(p; — pu)/po is the reduced gravity (g is gravity) of the IGC relative to
the upper layer and pg is a representative density. The Froude number F' is, in general, a
function of Reynolds number Re = \/g};;H? /v, where v is the kinematic viscosity, but as
Re increases the Froude number becomes less dependent on Reynolds number (Keulegan
1958, Barr 1967). In the ideal case, where the Reynolds number is infinite, bottom friction
is ignored and energy is conserved, Benjamin (1968) showed that F = 1/2. Experiments
on gravity currents which include bottom stress and some dissipation give values of about
F = 0.48 at high Reynolds numbers (Shin, Dalziel & Linden 2004). Similarly, we can
consider the case of h = H as that of a less dense current propagating with speed Uy at
the surface of a dense fluid.

We non-dimensionalize speeds by the speed \/g}H of long waves on the interface,
where g7 = g(pL — pu)/po is the reduced gravity of the interface, and depths by H.
Dimensionless variables are denoted by a hat. We refer to the case where the density of
the intrusion is equal to the depth-weighted mean density
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FIGURE 1. (a) Schematic view of the initial situation for the intrusive gravity current, where
pu < p; < pr and 0 < h < H. (b) A sketch of the intrusion for the case where the equilibrium

depth (1.3) hr < 0.5.
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as the equilibrium IGC and denote the corresponding interface height (the solution of

(1.2) for given densities) as the equilibrium height hg. In terms of the reduced gravities,
the equilibrium depth, from (1.2), is given by

(1.2)

h_E _ Jiv
H gy
Thus the two limiting cases, the bottom and the surface gravity currents, have dimen-
sionless speeds

! !
UO:FM;],"U = F\/hg and UH:FM;,L" = F\/(1 - hp), (1.4)
LU LU

where g7, = g(pr — pi)/po is the reduced gravity between the lower layer and the lock
fluid.

Since there is no deflection of the interface for the equilibrium IGC, it may be consid-
ered as a combination of an upper and lower gravity current, in the manner of the doubly
symmetric case, in each layer. Thus the normalized speed of the equilibrium IGC is

he

(1.3)
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h !
Up=F ng e g;—U 1—— = F\/hp(l - hg). (1.5)
grv H gLU

Comparison of (1.4) with (1.5) shows that UO > UE and UH > UE, so that the equilibrium
IGC travels more slowly than the surface and bottom gravity currents.

The purpose of this paper is to determine the speeds of an IGC for a range of density
differences and depth ratios, and to investigate the role of interfacial waves and the
interfacial displacement. The paper is organized as follows. The experiments and numerics
are described in § 2, and the results are discussed in § 3. An explanation of the results in
terms of the energetics of the flows is given in § 4 and the conclusions are given in § 5.

2. Experiments and numerics
2.1. Ezxperimental method

The tank was L = 182 cm long, 23 cm wide and 30 cm deep. For all experiments the
total fluid height H = 20 cm and the gate was positioned at L,z = 30 cm from the
end wall (figure 1(a)). Thus the intrusions propagated about 5 lock lengths and so were
expected, and observed, to travel at constant speeds after the initial acceleration from
rest. The flow was recorded with a CCD camera, connected to a PC for image analysis,
and positioned 3.4 m in front of the tank. The back of the tank was covered with tracing
film and illuminated with two 95W fluorescent lamps.

The tank was first filled with a salt solution, of density p; and dyed with green food
colour, to the required height h. A layer of fresh water with density py was carefully
floated on top, until the total height H = 20cm. Then the gate was pushed down and
the fluid behind the gate was stirred. To obtain the desired density p;, salt was added
to the lock, or solution was removed and replaced by an equal amount of fresh water.
Potassium permanganate was used to color this fluid. Densities were measured using an
Anton Paar DMA 5000 density meter to a precision of 1075 g ml~!. Density differences
were less than 1.5%, so that the flows are Boussinesq.

The experiment was started by pulling the gate vertically out of the tank. The flow
images were captured by the camera every 1/24 s, and analyzed using DigiFlow (Dalziel
2004). The attenuation of light passing through the tank was used to determine the
density field in the flow. From this density field, the cross-tank mean density, integrated
vertically in the z-direction, was calculated for every z-position and time ¢. The front
speed of the intrusive gravity current was calculated from the resulting x — ¢ plot (for
further details of this method see Shin et al. 2004).

Initially, three series, A, B and C, of experiments were performed, each with different
fixed values of the densities pr,, py and p;. These had equilibrium depths hg < H/2,hp =
H/2 and hg > H/2, respectively. In each series the interface height h was varied between
its extreme values h = 0 and h = H. Table 1 gives the parameters of the experiments,
with the values and the measured front speeds. We also carried out 6 experiments to
examine the vertical displacement of the interface ahead of the IGC (figures 3 and 4).

After we developed the theory for the speed of the IGC (see (4.6)) we noted that the
theory predicts that, when the two layers had equal depths, the speed of the intrusion is
independent of the density of the intrusion (provided it is between the densities of the
two layers). We then carried out additional experiments with equal layer depths to test
this result. In that case the flow was visualized using a shadowgraph, and the front of
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|Series| 7 | 0 |01]02]03]04]05]|06]07]08]09]10]|

Un | Exp.[0.37]0.38(0.32| - - 10.25] - - 10.26]0.2810.28
Up |Num.|0.38]|0.36]0.31|0.270.25]0.25]0.24|0.24|0.26|0.28 |0.31

Un | Exp. (033|033 - - - 1026 - - - 10.34]0.33
Up |Num.|[0.35]|0.32]0.29|0.26 |0.25|0.25]0.25|0.26 | 0.29 | 0.32 | 0.35

U, | Exp.|024| - |0.23| - - 10.24] - 10.34| - - 1043
Un, |Num.|0.25]|0.23]0.22]0.210.220.23]10.25]0.29]0.33|0.39|0.42

TABLE 1. The dimensionless speeds as measured in the experiments and the numerics. Series A:

pL = 1 0064 g ml™', p; = 1.0032 g ml™ ', hr = 0.61. Series B: pr = 1.0046 g ml™', p; = 1.0014

g ml™ hE = 0.50. Serles C:pr =1 0046 gml™t, p; =0.9998 g ml™! hE = 0.25. In each case
pu = 0. 9982 g ml™

pr |1.0064 [1.0046 [1.0046 | 1.0107 (1.0110 |1.0112|1.0113|1.0108 |1.0109 | 1.0061 | 1.0058
pu [0.998210.998210.9982 | 0.9987 [0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988
pi [1.00321.0014 [0.9998 | 1.0051 | 1.0086 | 1.0082 | 1.0038 | 1.0024 [ 1.0030 | 1.0025 | 1.0016

Un| 025 | 026 | 024 | 025 | 022 | 023 | 023 | 0.23 | 0.23 | 0.25 | 0.24

TABLE 2. Densities (g ml™!) and measured dimensionless velocities for experiments with two
layers of equal depths.

the intrusion was timed between two locations 50 cm apart. The parameters are given in
table 2

2.2. Numerical method

The governing equations are the two-dimensional Boussinesq equations with vorticity
and density as prognostic variables. These equations are given in (13)-(15) in (Hértel,
Meiburg & Necker 2000). The viscosity (0.01 ecm2s~!) and diffusivity (1.5 x 107° cm2s~1)
appropriate for salt water were used. Zero-flux boundary conditions were imposed on the
density field at all boundaries. The velocity field satisfied no-normal flow and no-slip
conditions at the boundaries, except at the bottom boundary where either a slip or
no-slip condition is applied. Initially, the fluid was at rest, and domain was stratified
as in figure 1(a), using the same values of the density as in table 1. The density vari-
ation across the interface was given by a smooth function, and the interface thickness
was less than 0.05H. The equations were discretized using spectral transforms in space
(Catuno, Hussaini, Quarteroni & Zang 1988) and the leap-frog method in time. For the
no-slip boundary condition, the vorticity at the bottom was modified based on the finite-
difference analogue (Weinan & Liu 1996). The numerical domain was the same size as
the experimental tank and had 1024 and 256 grid points in the horizontal and vertical
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FIGURE 2. Snap shots at ¢ = 20s of intrusive gravity currents produced by the simulation and
experiment for Series C. Parameters are he = 0.25, /g7, H = 11.2 cms™" and Re = 22,400. The
length is scaled by the total depth H. The numerical simulations are shown in the left panels and
the experiments in the right panels. From the upper to lower panels, the dimensionless interface
height his 0,0.25, 0.50, 0.75, and 1, respectively.

directions, respectively. With this grid spacing the front speed of IGC was found not to be
sensitive to the resolution. We compared the front speed of the bottom-propagating grav-
ity current in case of a no-slip bottom with the numerical result of Hartel et al. (2000).
The front speed, at a very high Reynolds number (of order 10°), was 0.967U,, taking
F = 0.5 in (1.1), while the front speed calculated by Hértel et al. (2000) was 0.977U,.
This is very good agreement in spite of different numerical approaches.

3. Results

Figure 2 shows images taken from the experiments and the corresponding numerical
simulations for hgy = 0.25, for a range of dimensionless interface heights h = 0, 0.25, 0.50,
0.75 and 1. There is excellent agreement between the experiments and the calculations,
both in the speed of propagation as given by the location of the front and also in the
qualitative features of the flow. The simulations show larger billow structures than are
observed in the experiments, and this is due to the restriction to two dimensions in the
calculations. In practice these are broken down by three-dimensional instabilities (Hartel
et al. 2000). The second panel from the top is the equilibrium case and we observe,
as expected, that the interface ahead of the intrusion is flat. For hg = 0.50 and 0.75,
there is a wave of depression, which is larger in the latter case which is further from the
equilibrium height. In these latter cases the intrusion is less dense than the mean-depth
weighted density and the IGC flows above the undisturbed interface height.

Images from the 6 experiments which examine the displacement of the interface are
shown in figure 3. We see that the interface is elevated when h < hp and depressed when
h > hg. Note, particularly, that this occurs irrespective of the depth of the interface. For
example, for h = 0.75 the interface both falls (figure 4(c) and (d)) and rises (f). Hence,
the motion of the interface is not always in the direction towards the deeper layer. The
magnitude of the deflection 5h is plotted against hg —hin figure 4. The data fit a least
squares straight line §h = 0.30(hg — h), with an uncertainty in the coefficient of about
0.02.
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FIGURE 3. Shadowgraph images showing the deflection of the interface caused by the intrusion.
()h—075 hE=076 (b)h—075 hE—044 ()h—075 he = 0.29, (d) h = 0.75,
he = 0.89, (e) h = 0.25, hg = 0.77, (f) h = 0.25, hg = 0.35. The initial interface height
coincides w1th the top of the black rectangle
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FIGURE 4. The dimensionless interface deflection 67 plotted against the departure he — h from
the equilibrium IGC. The straight line is the least squares linear fit h = 0.30(hg — h).

In figure 5 (a)-(c) the dimensionless front speed U is plotted against the dimensionless
interface height h for each of the three density configurations. The experimental error in
the front speed is about 10%. The numerical results for the front speeds are also plotted
on these figures and they show very good agreement with the experimental results.
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FIGURE 5. (a)-(c): plots of the dimensionless front speed U, as a function of dimensionless

interface height h for Series A - C, respectively. The open circles are the experimental results
and the closed circles are the numerical results. The curve in each graph is the theoretical
prediction (4.6). The error bars represent the uncertainty in the experimental measurements.
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4. An energy model

The IGC results from a release of potential energy stored in the original lock config-
uration. After it travels along the interface and all the motion has ceased, the intrusion
eventually leaves three layers. If the layers are formed without any mixing their thick-
nesses from the bottom to the surface are (1 —«a)h, aH and (1 — «)(H — h), respectively,
where @ = Ljyer./L. The available potential energy (APE) AP, per unit length of the
channel, defined as the difference in potential energy between the initial and final state,
is readily calculated as

AP = 1ga(l —a)(h?pr + (H? — 2hH)p; + (H? + 2hH — 1*)py). (4.1)
The minimum value of this APE occurs when ddA—hP =0, i.e. when
h(pL — pu) = H(pi — pu), (4.2)

which is satisfied by the equilibrium depth h = hg (see (1.2)).
Alternatively, we can calculate the APE E, per unit area, due to the horizontal density
difference, taking the interface as the reference level, as

0 H—h
E=g [ (pn-psdztg [ (o= po)eds (4.3)
—h 0

= 19(pL — pi)h* + 19(pi — pu)(H — h)>. (4.4)

It is easily seen that the equilibrium depth given by (4.2) implies that dE/dh = 0, so
that this APE is also a minimum for this depth. Departures from the minimum value
of the APE are quadratic in h — hg, the distance of the interface from the equilibrium
height.

As many have pointed out since the pioneering work of Yih (1965), the kinetic energy
of gravity currents and intrusions comes from the conversion of the APE as the density
field adjusts. Indeed, theories of gravity currents (e.g. Benjamin 1968, Shin et al. 2004)
have assumed that this conversion occurs without any losses. In this spirit, we assume
that the variation of the IGC speed from its equilibrium value can be expressed in terms
of this energy balance. Hence, we write

U2 = U%(a(h — hg)® + b(h — hg) + ). (4.5)
The parameters a, b and c can be determined using the results of the three special
cases, h = 0,h = hp and h = 1. Applying these limits, and using (1.5) and (1.4), gives
a=1/(hg(l1 —hg)), b=0 and ¢ = 1. Hence

Uh :F\/iLQ —Q}AL;LE-FBE. (4.6)

This curve is plotted on figure 5 (a)-(c) for each series of experiments, and it agrees
with the experimental data within the experimental error and with the numerical re-
sults. Given that this model assumes that the interface has zero thickness and ignores
any energy losses due to mixing or friction, this agreement suggests that the first-order
dynamics are captured by this analysis.

An interesting feature of (4.6) is found for the case where the two layers have equal
depths, h = 0.5. In this case U = 1F, and (4.6) predicts that the speed of the IGC is
independent of the equilibrium height hp. This means that the speed of the intrusion
is, in this case, the same for all values of the lock density, py < p; < pr- We were
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FIGURE 6. Uy, plotted against the dimensionless intrusion density LtU = hi. The dashed
line is Uy = LF, with F = 0.5.

surprised by this prediction and subsequently carried out a series of experiments to test
this result (table 2). The results of these experiments are shown in figure 6. If we take
F = 0.5 (Benjamin 1968) then U, = 0.25, shown as the dashed line in figure 6, and the
experiments conform to this hypothesis.

Finally, we return to the role of the interfacial wave ahead of the intrusion. We observed,
as did Sutherland et al. (2004), that the interface in front of the intrusion remained
undisturbed, when the intrusion density was equal to the depth-weighted mean density
(i.e. it corresponded to the equilibrium IGC). The reason for this result, is that, since
the IGC flows at its neutral depth (e.g. it sinks down if it is heavier than the mean of
the densities of the two layers), it satisfies

givhu = grihe. (4.7)

Application of mass, momentum and energy conservation (de Rooij et al. 1999) shows
that, when the interface ahead of the intrusion remains undisturbed, the front speeds in
each layer are related to the downstream intrusion heights hy and hp by

h h
Uy = /29y hu(1 — = fh) and Uy, = \/2g), . hr (1 — TL)’ (4.8)

respectively, where we denote the lower and upper layer speeds by Uy, and Uy, respec-
tively, (figure 1(b)). Since these two speeds must be equal, (4.7) and (4.8) imply that
I}’Eh = hTL, and a little algebra shows that this requires h = hg. Thus a fully consistent
solution with no upstream disturbance of the interface is possible in this case.

Further, (4.8) implies that Uy > Uy, when h < hg, and vice-versa. Since this inequality
in speeds is impossible, the interface ahead of the IGC must adjust to compensate for
this difference in speeds. If we imagine the two parts of the intrusions as gravity currents,
when Uy > Uy, the interface will rise, and vice-versa. This behaviour is consistent with
the observations in figures 3 and 4, and we find that the magnitude of the interface
deflection is proportional to the departure from the equilibrium case.
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5. Conclusions

We have shown that interface ahead of an IGC remains undisturbed only in the special
case when the intrusion density is the depth-weighted mean of the layer densities. In other
cases the interface is either elevated or depressed by a long wave that propagates ahead
of the IGC. This wave is generated by the gravitational adjustment of the lock fluid
when the gate is removed. Previous hydraulic theories that ignore this adjustment and
the consequent deflection of the interface are unable to predict the propagation speed of
the intrusion. We provide a new description of the speed of an IGC, propagating along a
sharp density interface at high Reynolds number, in terms of the conversion of available
potential energy into kinetic energy. Our experimental and numerical results agree with
the predicted speeds, within a few percent. This theory predicts that, in the special case
when the two layers have equal depth, the speed of the IGC is independent of the density
of the intrusion. This prediction is consistent with our experiments.
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