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The non-Boussinesq lock-exchange problem.
Part 1. Theory and experiments
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The results of an experimental study of the non-Boussinesq lock-exchange problem
are described. The experiments were performed in a rectangular channel using water
and either a sodium iodide solution or a sodium chloride solution as the two fluids.
These combinations of fluids have density ratios (light over heavy density) in the range
0.61 to 1. A two-layer hydraulic theory is developed to model the experiments. The
theory assumes that a light gravity current propagates in one direction along the top
of the channel and a heavy gravity current propagates in the opposite direction along
the bottom of the channel. The two currents are assumed to be connected by either a
combination of an internal bore and an expansion wave, or just an expansion wave.
The present results, previous experimental results and two-dimensional numerical
simulations from a companion paper are compared with the theory. The results of
the comparison lead to the conclusion that the theory without the internal bore is the
most appropriate.

1. Introduction
The so-called lock-exchange experiment is simple in concept. In a closed horizontal

channel insert a vertical barrier. On one side of this barrier fill the channel with fluid
and on the other side fill the channel with another fluid of different density. Then
remove the barrier and watch the resulting flow. Despite the simplicity of execution
of this experiment it results in a wide variety of flow phenomena, some of which
still defy definitive theoretical explanation, that serve as prototypes for a variety of
geophysical and industrial flows. In simplest terms the removal of the barrier results
in a gravity current of the lighter fluid propagating at constant speed along the upper
surface of the channel into the heavy fluid and in the opposite direction a gravity
current of the heavier fluid propagating also at constant speed along the bottom of
the channel.

A large number of laboratory experiments have been performed for this type of
flow. Most of these experiments were for fluids with only slightly different densities –
the Boussinesq case – which is representative of most geophysical flows. Among these
experiments are those reported by Keulegan (1958), Barr (1967), Simpson & Britter
(1979), Rottman & Simpson (1983), Huppert & Simpson (1980) and Shin, Dalziel &
Linden (2004). The lock exchange problem for Boussinesq fluids has been simulated
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numerically by Daly & Pracht (1968), Klemp, Rotunno & Skamarock (1994) and
Härtel, Meiburg & Necker (2000).

In this paper we are concerned with lock exchange involving fluids with large
density differences – the non-Boussinesq case. Non-Boussinesq gravity currents are
important in releases of dense gases into the atmosphere. These gases are often stored
as liquids at low temperatures and on release have densities more than twice that of
the ambient air. Fires in semi-enclosed spaces, such as a tunnel or a room, produce
gravity currents when the hot combustion products reach the ceiling and then flow
horizontally. Temperatures can easily reach 1000 K, and so densities are significantly
less than air. Pyroclastic flows from volcanic eruptions often take the form of gravity
currents. The density within the flow is a result of suspended ash and hot rocks, and
is often many times larger than the surrounding air.

The first experiments on non-Boussinesq gravity currents were with air and water
(Gardner & Crow 1970; Wilkinson 1982; Baines, Rottman & Simpson 1985), but more
recently a few laboratory experiments covering the entire range of density differences
have been reported by Keller & Chyou (1991) and Gröbelbauer, Fanneløp & Britter
(1993). The working fluids in these latter experiments were a gas and a liquid or some
combination of exotic gases.

Even in the simplest idealized situation in which the effects of friction can be ignored,
there remains a dispute over what the speeds and depths of the two counterflowing
gravity currents should be. For the Boussinesq case, Yih (1965) proposed that the
depths of the two currents are equal and have the value of half the channel depth
along their entire lengths, and that the speeds of both gravity currents are the same
and have the value of Benjamin (1968)’s energy-conserving gravity current speed.

Klemp et al. (1994) have argued, based on shallow-water theory, that the idealized
energy-conserving gravity current first proposed by Benjamin (1968) cannot be realized
in the lock-exchange initial-value problem. Their reasoning is that the speed of this
current would be faster than the fastest characteristic speed in the channel predicted
from shallow-water theory. They argue that the inviscid gravity current depth can
never be greater than 0.3473 of the channel depth, at which depth, according to
Benjamin’s theory, the gravity current has its fastest speed. Although they were
mainly concerned with Boussinesq fluids, they commented that their arguments carry
over to the extreme case of air and water.

However, the air and water experiments of Gardner & Crow (1970), Wilkinson
(1982) and Keller & Chyou (1991) clearly show that the air cavity has both the
shape and speed, when surface tension and viscous boundary-layer effects are taken
into account, predicted by Benjamin’s energy-conserving gravity current. Klemp
et al. (1994) argue that the differences in speeds between the fastest allowable
current and Benjamin’s energy-conserving current are too small to discriminate in an
experiment. This may be true, but the difference in current height is measurable and
the measurements come much closer to the energy-conserving value than to the fastest
allowable gravity current. Furthermore, the fastest allowable gravity current is also
the current with the most dissipation, and the experimental results show very little
in the way of dissipation for the air cavity propagating into water. Shin et al. (2004)
have shown that energy-conserving gravity currents are generated by Boussinesq
lock-exchange flows. Therefore, we conclude that despite the theoretical appeal of
Klemp et al. (1994) arguments, previous large-density-difference and Boussinesq lock-
exchange experiments do not support them.

Keller & Chyou (1991) formulated a hydraulic theory for the complete density ratio
range. Their theory assumes that for small density differences both gravity currents
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Figure 1. A sketch of the lock-release tank, showing two fluids of densities ρ1 and ρ2, each
having a depth of H and separated by a removable lock gate. The tank was fitted with a rigid
lid to make the boundary conditions identical at the top and bottom of the tank.

are energy conserving and they are connected by a combination of a long-wave
of expansion and an internal bore. For large density differences, they assume that
the light current is energy conserving and the heavy current is dissipative and that
the gravity currents are connected only by a long-wave of expansion. Attempts to
validate this theory with experimental observations have so far been incomplete. Keller
& Chyou’s (1991) comparisons of their theory with their own experimental results are
complicated by the small scale of their experiments which makes viscous effects and
(for the case of immiscible fluids) surface tension important. A comparison between
Keller & Chyou’s (1991) theory with the experiments of Gröbelbauer et al. (1993) are
also inconclusive. In particular, it is unclear from these experiments if, in fact, a bore
exists in any of the observed flows.

In the present study, we discuss the lock-exchange problem over the full density
difference range. We carry out a derivation of the theory proposed by Keller & Chyou
(1991), discussing at length the different theories that can be used to describe the
internal bore and we discover that there is another solution of the lock-exchange
problem that involves only an expansion wave connecting the two gravity currents
over the full range of density ratios. We perform laboratory experiments on both
Boussinesq and non-Boussinesq gravity currents at high Reynolds numbers. The
results of our experiments and those of the two-dimensional high-resolution numerical
simulations described in a companion paper, Birman, Martin & Meiburg (2005,
hereinafter referred to BMM), indicate that the theory without the bore gives the best
agreement.

In § 2, we describe the experimental techniques and present some qualitative as well
as some representative quantitative results. In § 3, we derive two hydraulic theories for
the lock-exchange flow. A comparison between the theory, experiments and numerical
simulations is given in § 4. A stability analysis of both the heavy and light current
fronts is reviewed in § 5 to explain the observed striking differences in the stability of
these two interfaces. A summary and discussion of the main results is given in § 6.

2. Experiments
A schematic diagram of the lock exchange apparatus is shown in figure 1. Fluid of

density ρ1 is separated by a vertical barrier at the mid-point of a rectangular channel
from fluid of density ρ2, with ρ1 > ρ2. The channel was 182 cm long, 23 cm wide
and was filled to a depth of H = 20 cm. The upper boundary consisted of two sheets
of Plexiglas in contact with the fluid surface, and separated by a thin gap to allow
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Run γ = ρ2/ρ1 ρ1 (g cm−3) UL/
√

(1 − γ )gH UH /
√

(γ −1 − 1)gH Re

NaCl runs
A 0.993 1.0051 0.43 0.45 10 800
B 0.974 1.0247 0.43 0.46 21 200
C 0.953 1.0477 0.42 0.42 26 600
D 0.950 1.0507 0.41 0.43 28 200
E 0.907 1.1000 0.45 0.48 43 200
F 0.870 1.1468 0.46 0.48 52 200

NaI runs
G 0.701 1.4243 0.46 0.48 89 400
H 0.681 1.4663 0.46 0.49 95 500
I 0.677 1.4742 0.47 0.48 94 000
J 0.661 1.5106 0.46 0.50 102 400
K 0.647 1.5418 0.48 0.50 104 800
L 0.619 1.6111 0.50 0.49 108 400
M 0.607 1.6432 0.43 0.49 110 800

Table 1. Experimental parameters and measured values of UL and UH . The water depth
H = 20 cm in all runs.

the lock gate to be removed. The flow was started by rapidly removing the lock gate
vertically through the gap.

The flow was visualized using a shadowgraph, created by covering the face of the
tank with tracing paper and positioning two 300 W projectors evenly spaced 4 m
behind the tank. Video and still photographs were taken of the flow, which were used
to measure the depths and front positions of the gravity current interface. The video
images were digitized with a spatial resolution of 580 pixels in the horizontal and
350 pixels in the vertical, giving a spatial resolution of about 0.5 cm for a 180 cm
horizontal field of view. The time resolution was 1/30 s.

The less dense fluid ρ2 was freshwater and the denser fluid ρ1 was either a solution
of sodium chloride (NaCl) or sodium iodide (NaI). After exposure to air, a sodium
iodide solution becomes slightly yellow, and this colouration can be observed in the
images. For the sodium chloride runs with slight density differences (and consequently
slight refractive index differences), blue food dye was added to distinguish the two
fluids. With these solutes, density ratios γ = ρ2/ρ1 in the range 0.6 < γ < 1 were
achieved. Densities were measured using a density meter with an accuracy of 10−5 g
ml−1. The experimental parameters are given in table 1. The Reynolds number
Re = UH/ν, is based on the speed of the heavy current, the depth of the channel and
the kinematic viscosity of fresh water (0.01 cm2 s−1). The values of Re achieved in these
experiments are considerably larger than those obtained in previous experiments.

Results of two typical experiments are shown in figures 2 and 3. These figures show
a series of shadowgraph images and plots of the positions of the light and heavy
fronts for two density ratios. Figure 2 shows a Boussinesq case γ = 0.993 and figure 3
shows a non-Boussinesq case γ = 0.681. In both graphs the distance is plotted in
units of the fluid depth, and time is non-dimensionalized by

√
H/g′, based on the

reduced gravity g′ = g(1 − γ ) and the fluid depth H . Note that there is some blurring
of the fronts owing to parallax since the camera is stationary and not moving with the
fronts. The front positions were determined by analysing the digital images, based in
relation to reference marks on the front of the tank. We estimate that the maximum
error due to this parallax effect is about 0.5 cm.
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Figure 2. A Boussinesq lock exchange flow with γ = 0.993: (a) a sequence of shadowgraph
images, and (b) a plot of the horizontal position relative to the position of the lock gate of the
heavy front (filled circles) and light front (open circles) as a function of time after the removal
of the lock gate (t = 0 corresponds to the time when the lock gate completely left the water).
In these plots t∗ = t

√
(g(1 − γ )/H ) is the dimensionless time. The error in measuring the front

position is about 0.5 cm or 0.03 in non-dimensional units and the error in measuring the time
is 1/30 s or 0.006 in non-dimensional units.
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Figure 3. As for figure 2, but a non-Boussinesq lock-exchange flow with γ = 0.681. The
non-dimensional time error is 0.04.

For the Boussinseq case in figure 2, the speeds of the light and heavy currents
are constant and nearly the same. There is a slight offset as the vertical removal
of the gate allows the heavy current to start first, but the slopes of the lines are
indistinguishable within experimental accuracy. The flow is symmetrical about the
centreline, with the leading part of each current occupying about half the depth. The
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slight oscillations in the front position shown in figure 2 are due to sloshing in the
tank caused by the removal of the lock gate.

For the non-Boussinesq case (figure 3), the speeds are again constant, but now the
heavier current travels significantly faster than the light current. The light current
travels at about the same non-dimensional speed as the Boussinesq current shown in
figure 2. The symmetry of the Boussinesq case is lost, but the depths of the leading
parts of the two currents are again close to the half depth of the fluid, with perhaps
the heavy current front in this case slightly below this depth. The depth at the lock
gate is close to mid-depth. Note that there is a patch of mixed fluid in the upper
current just to the left of the gate position (most clearly seen at non-dimensional
times 2.4 and 3.3). This is the result of mixing induced by imperfect gate removal. The
gate was removed by hand which for the non-Boussinesq cases required considerable
dexterity because of the very rapid motion of the currents. A similar mixed region
does not appear in the Boussinesq case because the currents move much more slowly
and, accordingly, made the gate removal easier to control.

In addition to the different speeds in the non-Boussinesq case, there is another
significant asymmetry shown in figure 3. This is the formation of a region behind the
heavy current front where there is a significant decrease in the depth of the dense
layer. Associated with this is evidence of turbulence and mixing – see times t∗ > 3.3
in figure 3.

It is clear that the symmetric flow seen in the Boussinesq case (figure 2) violates
volume conservation if the two layers have the same depths but different speeds. In
the non-Boussinesq case (figure 3), the volume flux carried to the right by the heavy
layer would be greater than that carried to the left by the light layer. Hence the depth
of the dense layer must decrease, as observed, to conserve volume. The experiments
show that both the heavy and light fronts are moving at constant speeds with the
depth of the light current downstream of the front close to half the channel depth,
while the depth of the heavy current downstream of the front is shallower.

3. A theory for lock exchange flows
For Boussinesq fluids, both gravity currents in a lock exchange flow propagate at

very nearly the same speed and have the same depth. For non-Boussinesq flows, the
heavy current propagates faster than the light current and conservation of volume
requires that the interface depth cannot be constant between the two fronts. In
hydraulic theory, the change in interface depth can be accounted for by an expansion
wave, a hydraulic jump or both. Keller & Chyou (1991), based on observations of
their laboratory experiments, suggest that there are two possible flow configurations
for the non-Boussinesq lock-exchange flow. These two possible flows are sketched in
figure 4. The flow configuration illustrated in figure 4(a) is observed when γ ∗ < γ � 1
and that in figure 4(b) when 0 < γ � γ ∗, in which γ ∗ is a critical density ratio which
is, as yet, to be determined.

In figure 4(a), a light energy-conserving gravity current of depth hL = H/2
propagates to the left along the top of the channel with speed UL, given by (3.1), and
a heavy energy-conserving gravity current of depth hH = H/2 propagates to the right
with speed UH , given by (3.3). Connecting these two gravity currents is a combination
of a long wave of expansion and a two-layer bore (or hydraulic jump). The bore
propagates to the right with speed CB , with CB < UH , and has an upstream depth
(where it joins with the expansion wave) of hB . The speed of the bore relative to the
heavy current speed is assumed to increase as γ decreases such that when γ = γ ∗ the
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Figure 4. A schematic diagram of the two categories of lock-exchange flows: (a) a
left-propagating energy-conserving light current and a right-propagating energy-conserving
heavy current, connected by a long wave of expansion and a bore, and (b) a left-propagating
energy-conserving light current and a right-propagating dissipative heavy current, connected
by an expansion wave.

two speeds are the same. Any further decrease in γ produces the flow configuration
shown in figure 4(b).

In figure 4(b), a light energy-conserving gravity current propagates to the left along
the top of the channel with speed UL and depth hL, as in the previous case, but
the heavy current propagating to the right along the bottom of the channel has a
dissipative current front with speed UH , given by (3.30), for some depth hH such that
0 < hH < H/2. In this case, the two gravity currents are connected by a simple long
wave of expansion without a bore.

The quantitative aspects of the theory for these two flow configurations, including
an estimate of the value of γ ∗, are described in the following subsections. The main
features of this theory are the description of the long wave of expansion and the
two-layer bore.

Another possibility we have discovered, which Keller & Chyou (1991) did not
describe, is that the flow configuration shown in figure 4(b) can apply for the full
range of γ . This situation also is described in the following subsections.

3.1. Density ratios near unity: γ ∗ < γ � 1

Using Benjamin’s energy-conserving gravity current theory, the speed and height of
the left-propagating current in figure 4(a) are given by

UL = 1
2

√
(1 − γ )gH, (3.1)

hL = 1
2
H, (3.2)

and the speed and height of the right-propagating heavy current are

UH = 1
2

√
(1 − γ )

γ
gH, (3.3)
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hH = 1
2
H. (3.4)

A detailed derivation of these results can be found in Rottman & Linden (2001).
Note that, since γ < 1, (3.1) and (3.3) imply that the heavy current travels faster than
the light current, consistent with observations.

As described earlier, these two fronts are assumed to be connected by a long wave
of expansion and an internal bore. In the following subsections, the expansion wave
will be described first, followed by the internal bore.

3.1.1. Expansion wave

Following Rottman & Simpson (1983) and Keller & Chyou (1991) the shallow-
water equations for two-layer flow with zero total volume flux can be reduced to two
partial differential equations for u1 and h1, the fluid speed and depth of the lower
layer,

∂h1

∂t
+ h1

∂u1

∂x
+ u1

∂h1

∂x
= 0, (3.5)

∂u1

∂t
+ a

∂u1

∂x
+ b

∂h1

∂x
= 0, (3.6)

in which

a =
u1(h2 − γ h1) + 2γ u2h1

(γ h1 + h2)
, (3.7)

b =
−γ (u1 − u2)

2 + (1 − γ )gh2

(γ h1 + h2)
, (3.8)

where u2 and h2 are the fluid speed and depth of the upper layer,

h2 = H − h1, (3.9)

u2 = −u1h1

h2

. (3.10)

The partial differential equations (3.5) and (3.6) can be expressed in the characteristic
form

du1

dh1

=
b(x, t)

u1(x, t) − λ±(x, t)
(3.11)

on
dx

dt
= λ±, (3.12)

in which λ± are the characteristic speeds

λ± = 1
2
(a + u1) ± 1

2

[
(a + u1)

2 − 4(au1 − bh1)
]1/2

. (3.13)

With this formulation we can obtain the fluid speed in the lower layer as a function
of the lower-layer depth by integrating (3.11) from the left-propagating energy-
conserving solution, where h1 = H/2, to h1 = 0 along the λ+ characteristic. The
actual values of h1 and u1 at the endpoints of this calculation are determined by
matching this solution with either the internal bore, described in § 3.1.3, or directly
with the dissipative gravity current front condition, as described in § 3.2.

A plot of u1 as a function of h1 computed in this way, for various values of γ , is
shown in figure 5. As shown in this figure, the fluid speed in the lower layer increases
as the lower-layer depth decreases. Also, we find that λ+ becomes imaginary for some
values of h1 when 0.95 � γ < 1. In the figure, the curves stop when λ+ becomes
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Figure 5. The speed u1 of the fluid in the lower layer in the expansion wave as a function of
the lower layer depth h1 for γ = 0.001, 0.333, 0.667 and 0.998. The characteristic speed λ+ is
imaginary for values of h1 where no values of u1 are plotted.

imaginary. As can be seen, λ+ becomes imaginary for small h1 when γ ≈ 0.95, and the
range of h1 over which λ+ is imaginary increases as γ → 1, such that λ+ is imaginary
for all h1 when γ = 1. An imaginary λ+ implies that the interface is unstable. The
stability of the interface is discussed in more detail in § 5.

3.1.2. Internal bore

To complete the description of the flow shown in figure 4(a), we have to patch a
two-layer internal bore between the right-propagating expansion wave and the right-
propagating energy-conserving heavy current front. This requires a hydraulic theory
for a two-layer bore that propagates into a shear flow.

As described, for example, in § 3.5 of Baines (1995), the application of the principles
of conservation of mass in each layer and the overall conservation of momentum
through the jump does not produce a closed problem, as it does in the limiting case of
a free-surface hydraulic jump. This is because it is unclear how the necessary energy
dissipation should be distributed between the two layers. There have been several
attempts to resolve this ambiguity within the context of hydraulic theory.

Yih & Guha (1955) close the problem by making the additional assumption that the
pressure remains hydrostatic through the jump. This theory predicts an overall energy
loss through the jump, although, as shown by Wood & Simpson (1984), one of the
layers experiences an energy gain. Numerical simulations and laboratory experiments,
as described, for example, in Baines (1995) have confirmed that this theory is valid
for small-amplitude bores propagating into two-layer fluids at rest, but is inadequate
for larger-amplitude bores.

Chu & Baddour (1977) and independently Wood & Simpson (1984) proposed
that a better approximation would be to replace the assumption that the pressure
is hydrostatic through the bore with an assumption about energy conservation in
each fluid layer through the bore. Specifically, they assumed that the energy must
be conserved in the contracting layer and that energy must be lost in the expanding
layer. This idea is based on earlier results of hydraulic flow in a one-layer fluid
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with boundary-layer, separation. This new theory produced results that are almost
indistinguishable from those of Yih & Guha (1955) and in particular the new
theory was not any better at predicting large-amplitude bores. Lane-Serff, Beal &
Hadfield (1995) successfully used this approach to develop a theory for two-layer
bores propagating into a shear flow established by a gravity current.

Keller & Chyou (1991) proposed a model for a two-layer bore propagating into
a shear flow produced by a lock-exchange flow. In their model, the hydrostatic
pressure assumption is replaced with the assumption that the difference between the
static pressures upstream and downstream of the bore is proportional to the difference
between the stagnation pressures upstream and downstream of the bore. The constant
of proportionality, Λ, was argued on physical grounds to have values in the range
0 < Λ � 1.

Klemp, Rotunno & Skamarock (1997) suggested that the assumption of energy
conservation in the expanding layer and energy dissipation in the contracting layer
is consistent with the Benjamin (1968) theory of gravity currents in the limit of very
large-amplitude bores. This assumption is opposite to that of Chu & Baddour (1977)
and Wood & Simpson (1984), but it is the same as the theory proposed by Keller
& Chyou (1991) when Λ = 1. Lane-Serff & Woodward (2001) applied this theory
to internal bores produced by exchange flows over sills. Klemp et al. (1997) gave
physical arguments for why their theory should be approximately correct for bores
propagating into a fluid at rest. Similar arguments suggest that this theory will not
be accurate for bores that are propagating into a shear flow, as would be the case for
a two-layer hydraulic jump that forms in the lee of a hill. In this case, the upstream
vorticity field makes the internal jump behave more like the hydraulic jump in a
free-surface flow.

In the present work, we implemented all the theories described above to represent
the bore that is assumed to exist in the non-Boussinesq lock-exchange flow. In most
cases, we found only small differences between the results of the different theories. The
largest differences were between the theories that assume all the energy is dissipated
either in the expanding layer or the contracting layer. Here, for brevity, we will limit
discussion to these two theories. We will derive the theory for non-Boussinesq fluids
with an upstream shear flow using either assumption, and use these results to bound
the possible outcomes, particularly to bound the possible values for γ ∗. We note
that it is possible, though unlikely, that these existing theories do not bound all the
possible flows.

Figure 6 shows a sketch of the two-layer bore and the heavy gravity current front.
This figure defines the nomenclature used in this section. In particular, note that
PA and PB are the pressures at the top of the channel at stations upstream and
downstream of the bore, respectively, and that pA and pB are the pressures on the
bottom of the channel, related to the pressures at the top of the channel by the
hydrostatic relations:

pA = PA + ρ1ghA + ρ2g(H − hA) (3.14)

and

pB = PB + ρ1ghH + ρ2g(H − hH ). (3.15)

The conservation of mass in each layer and the conservation of horizontal
momentum of the fluid moving through the bore requires

(uA − CB)hA = (UH − CB)hH , (3.16)
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Figure 6. A sketch of the right-propagating two-layer bore and the right-propagating
energy-conserving heavy front: (a) in the laboratory reference frame and (b) in the reference
frame in which the bore is at rest. In (b), the vertical dashed lines represent the upstream
and downstream edges of the control volume over which the integral form of the horizontal
momentum equation is applied, as described in § 3.1.2.

(UA − CB)(H − hA) = (UB − CB)(H − hH ), (3.17)

and

1

ρ1

(PB − PA)H = 1
2
(1 − γ )g

(
h2

A − h2
H

)
+(uA − CB)2hA − (UH − CB)2hH

+ γ [(uA − CB)2(H − hA) − (UB − CB)2(H − hH )]. (3.18)

Given UH and hH , we can use these three equations to determine uA, hA and CB if
we can specify an additional equation for the pressure drop across the bore.

As we discuss above, the determination of the pressure drop across a two-layer
bore has been a source of controversy, because it is unclear how the necessary energy
dissipation should be distributed between the two layers. Since this issue remains
unresolved, we will consider the two extreme cases as a way of bounding the possible
solutions.

Chu & Baddour (1977) and independently Wood & Simpson (1984) make the
assumption that all the energy dissipation occurs in the expanding layer, which is the
lower layer in our case, so that energy in the contracting layer is conserved. Using
this approximation in the present case, we can use Bernoulli’s equation along the top
of the channel to obtain a relationship for the pressure drop across the bore,

1

ρ1

(PB − PA) = 1
2
γ (UH − CB)2

[
1/4

H − hA

− H

]
. (3.19)

Substitution of (3.19) into (3.18) and the use of (3.16) and (3.17) to eliminate the
other variables produces a single quadratic equation for CB

q(1 − 2
√

γC∗
B)2 + r(1 + 2

√
γC∗

B)2 + s = 0, (3.20)
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where

q =
1

γ

(
1

2

H

hA

− 1

)
, (3.21)

r =
1

2(1 − hA/H )

[
1 − 1

2(1 − hA/H )

]
, (3.22)

s = 4
(
h2

A

/
H 2 − 1

)
, (3.23)

and

C∗
B =

CB√
(1 − γ )gH

. (3.24)

Klemp et al. (1997) make the opposite assumption, considering the best ap-
proximation to be that all the energy is dissipated in the contracting layer, which is
the upper layer in the present case. In this case, we can use Bernoulli’s equation along
the bottom of the channel to obtain the relation

1

ρ1

(pB − pA) = 1
2
[(uA − CB)2 − (UH − CB)2]. (3.25)

Using the hydrostatic relations (3.14) and (3.15) to relate pA and pB to PA and
PB , respectively, and substituting into (3.18), (3.16) and (3.17), we obtain again an
equation of the form (3.20), but with the coefficients given by

q =
1

γ

(
1

2

H

hA

− 1

)
− 1

γ

(
H 2

4h2
A

− 1

)
, (3.26)

r =
1

2(1 − hA/H )
− 1, (3.27)

(3.28)

and

s = 4(1 − hA/H )2 − 1. (3.29)

Equation (3.20) is a simple quadratic equation that is easy to solve for C∗
B as a

function of hA/H .

3.1.3. Matching

In order to determine the strength and speed of the bore in this flow, we have to
match uA and hA of the bore with u1 and h1 from the expansion wave. Plots of uA

and u1 as functions of h1 (setting hA = h1) are shown in figure 7. Where these curves
intersect are solutions that patch the expansion wave to the two-layer bore.

A plot of the bore speed predicted in this way, for each of the two theories, is plotted
in figure 8 as a function of γ . Also plotted in this figure is the speed of the heavy
energy-conserving gravity current front. Note that the bore speed predicted by the
theory based on the approximations made by Wood & Simpson (1984) is slower than
the gravity current speed except at γ = 0 where it equals the gravity current speed.
The bore theory based on the approximations of Klemp et al. (1997), on the other
hand, is slower than the gravity current speed for high density ratios 0.3 � γ < 1, and
greater than the gravity current speed for low density ratios 0 < γ � 0.3. In this latter
case, our hypothesized form of the lock-exchange flow depicted in figure 4(a) must
be wrong, and the lock exchange flow must have the form depicted in figure 4(b).
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Figure 7. The speed u1 in the expansion wave (from figure 5) and the speed uA downstream
of the bore at depth h1 = hA. The solid line is the fluid speed in the expansion wave, the
dashed lines are the speeds of the bore according to the theory of Klemp et al. (1997, KRS)
and the dotted lines are from the theory of Wood & Simpson (1984, W&S) (for both theories,
thin line widths represent the positive branches and thick line widths the negative branches of
the theoretical solutions): (a) γ = 0.30, (b) γ = 0.60 and (c) γ = 0.90.



Non-Boussinesq lock exchange. Part 1 115

0 0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

1.6

2.0

(C
B
, U

H
 o

r 
U

W
)/

√(
(1

 –
 γ

)g
H

)

γ

UH, energy-conserving
CB, KRS + branch
CB, KRS – branch
CB, W&S + branch
CB, W&S – branch
wavefront speed
BMM wavefront data

Figure 8. A plot of the bore speed CB as computed using the theory of Klemp et al. (1997,
KRS) (dotted lines, thin for positive branch and thick for negative branch) and using the
theory of Wood & Simpson (1984, W&S) (dashed lines, thin for positive branch and thick for
negative branch) compared with UH the heavy energy-conserving gravity current speed (solid
line). The negative branch solution of Klemp et al. (1997) intersects the gravity current speed
curve at γ = 0.2810, whereas all the other bore speed curves intersect the gravity current speed
at γ = 0, although they remain very close to this curve for γ < 0.2. Also plotted in this figure
as a dash–dot line is the theoretical expansion wave-front speed, as well as measurements of
this speed from the numerical simulations of BMM (triangles).

Since we do not know which bore theory is most correct in this shear-flow situation,
we can say only that the transition from one form of the lock-exchange flow to the
other, if it occurs, occurs for some value of γ = γ ∗ in the range 0 < γ ∗ � 0.3.

3.2. Density ratios near zero: 0 < γ � γ ∗

The structure of the flow in this regime is depicted in figure 4(b). In this case, the
expansion wave is patched to one of Benjamin’s dissipative gravity current fronts
directly. The speed of this kind of front as a function of the current depth hH is given
by the formula

UH =
√

(1 − γ )gH

[
1

γ

hH

H

(
2 − hH

H

)
1 − hH/H

1 + hH/H

]1/2

. (3.30)

We can determine the matching conditions by calculating UH from (3.30) as a
function of hH/H = h1/H , and comparing the values with the speeds shown in
figure 5. In this case, the current adjusts to carry the flux supplied from the rear.

4. Results
The values we measured for the speed of the light current over a range of

density ratios are shown in figure 9. Included in figure 9 are results from other
experiments and also the numerical simulations of BMM which cover a larger range
of density ratios than we were able to achieve in our experiments. Our Reynolds
numbers are much higher than those achieved in the previous experiments (mainly
because their lock-exchange tanks were much smaller) and generally higher than
obtained in the numerical simulations. Based on the observed speed and depth of
the channel, the Reynolds numbers Re in our experiments varied from 10 000 for the
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Figure 9. The light current: a comparison of the theoretical front speed UL, as a function
of the density ratio γ , with measured values in the laboratory and computed values from the
direct numerical simulations of BMM. The theoretical energy-conserving speed given by (3.1)
is plotted as a solid line and the measured values as symbols. �, present experimental results;
�, Gröbelbauer et al. (1993) results; �, Keller & Chyou (1991) results; �, BMM numerical
simulations.
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Figure 10. The light current: a comparison of the theoretical front height hL (solid line),
as a function of the density ratio γ , with computed values (triangles) from the numerical
simulations of BMM.

Boussinesq currents to over 100 000 for the non-Boussinesq currents (see table 1). The
results of our experiments are consistent with the earlier experiments and with the
numerical simulations, showing that, over this Reynolds-number range, the speeds
are independent of Re and the energy-conserving front speed (3.1) fits the measured
front speed well, over the full range of γ .

The heights of the light currents determined from the numerical simulations of
BMM are compared with the theoretical front height in figure 10. (Unambiguous
measurements of the current height are difficult to make in experiments. Our
qualitative observations are consistent with the theoretical values, but we do not have
quantitative information from our own or from other experiments.) The agreement
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Figure 11. The heavy current: a comparison of the theoretical front speeds, as a function
of the density ratio γ , with measured values in the laboratory and computed values from
the numerical simulations of BMM. The theoretical results are plotted as lines and the
measured values as symbols. The energy-conserving theory is plotted as a dashed line, the
theory of Keller & Chyou (1991) (using the negative branch of the Klemp et al. (1997)
internal bore theory) is plotted as a solid line, and the theory using only a dissipative
gravity current and expansion wave as a dotted line. �, the present experimental results;
�, Gröbelbauer et al. (1993) results; �, Keller & Chyou (1991) results; �, BMM numerical
simulations.

is good over the full range of density ratios. The observed speeds are generally a few
per cent below the theoretical prediction, and this discrepancy is believed to be a
result of dissipation at the top and bottom boundaries and mixing at the interface.
The results from the numerical simulations for the height are remarkably close to the
theoretical value, except near γ = 1. The light current interface is observed, in both
the experiments (see figure 3a) and the numerical simulations (see figure 5 of BMM),
to be stable with little mixing for all values of γ away from γ = 1. We suspect that the
mixing that does occur for γ near unity has contaminated the height measurements
in that parameter regime. Further comments about the interface stability are given
in § 5.

The values we measured for the speed of the heavy current over a range of density
ratios are shown in figure 11 and the numerical values for the heights of the heavy
current are shown in figure 12. Again, results from other experiments as well as from
the numerical simulations of BMM are included in these figures. As for the light
current, the experimental and numerical values for the speed of the heavy current are
in good agreement with the hypothesized theory, both with and without the bore, but
they clearly are not consistent with the energy-conserving theory for small values of γ .
Note that the difference between the theory with and without the bore is smaller than
the experimental error and so we cannot use the measurements of the gravity-current
front speed alone to determine which of these theories is the correct one.

The predicted speed of the expansion wavefront that connects with the heavy
gravity current, as illustrated in figure 4(b), is plotted in figure 8. This speed is given
by (3.13) evaluated with the speed and height of the heavy gravity current for each
value of γ . As can be seen in the plot, this speed is always less than that of the
heavy gravity-current front for all γ except γ = 0 where the two speeds are the same.
We attempted to identify this expansion wavefront in the experiments and numerical
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Figure 12. The heavy current: a comparison of the theoretical front height, as a function
of the density ratio γ , with the computed values from the numerical simulations of BMM.
The theoretical results are plotted as lines and the measured values as symbols. - - -, the
energy-conserving theory; —, the theory of Keller & Chyou (1991) (using the negative branch
of the Klemp et al. (1997) internal bore theory); . . . , the theory using only a dissipative gravity
current and expansion wave. The numerical results of BMM are shown as triangles for the
measured front height and squares for the measured height of the current where the expansion
wave meets the gravity current.

simulations by associating it with the point where there is a sharp decrease in the
heavy current interface, as can be seen in figure 3(a). This was easier to do with the
numerical simulations than with the experimental results. The speeds obtained by
plotting the position of this point as a function of time in the numerical simulations
are plotted in figure 11 and show very good agreement with the theory. This result
strongly suggests that the theory without the bore is more representative of the
observations.

The plots of the heavy-current height strengthen the conclusion that the theory
without the bore is more appropriate. In the experiments, the height of the heavy
current is difficult to measure because of the mixing that occurs along the interface
in the neighbourhood of the heavy front. However, in the numerical simulations, a
quantitative measure of the interface height can be made, as described in BMM, and
this result is plotted in figure 12. The plotted results are for the height of the heavy
gravity current as well as the height of the interface at the point associated with the
expansion wavefront. In the theory, these two heights should have the same value and
the measured heights fall closely on either side of the theoretical curve. The results
show that the numerical simulations are more in agreement with the theory without
the bore than the one with the bore. Clearly, the height of the measured heavy current
decreases steadily as γ decreases, and does not show the behaviour (i.e. the height is
constant when 1 > γ > γ ∗) predicted by the theory that includes a bore.

Comparisons between the theoretical shape as calculated by Benjamin (1968) and
the observed currents when γ = 0.993, 0.681 and 0.001 are shown in figure 13. The
theoretical shape, which is strictly valid only near the front, has been extended by
a straight horizontal line at mid-depth to join the two fronts. The agreement with
the observed currents appears very good for the cases with γ = 0.993 and 0.681 and
not very good for the case with γ = 0.001. Note that in this latter case, we show
only the heavy current front in the photograph; the air cavity front that is off the



Non-Boussinesq lock exchange. Part 1 119

(a)

(b)

(c)

Figure 13. Shadowgraph images of lock-exchange flows for three different density ratio
values: (a) γ = 0.993, (b) γ = 0.681 and (c) γ = 0.001. The dashed lines represent the
theoretical shape of an energy-conserving gravity current. In the case with γ = 0.001, only the
heavy current front is shown.
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Figure 14. The theoretical interface shape (solid line) compared with the computed shape
(dotted line) from the simulations by BMM for the case with γ = 0.7 at t∗ = 6.0: (a) using
the theory with a bore and (b) using the theory without a bore (note: there is no theory for
the front shape of the dissipative current so a square front is shown in the diagram). Compare
these two plots with figure 13(b).

left-hand side of the photograph is represented well by Benjamin’s energy-conserving
current shape, as we know from previous studies (e.g. Wilkinson 1982). We would
expect very good agreement for both fronts in the first case. In the second case, we
expect the light current front to be represented well by the energy-conserving theory,
but we expect the heavy current front height to be less than half the channel depth,
as indicated in figure 12. Because of mixing at the interface it is difficult to make an
undisputed estimate, but the heavy current front height in this case appears to be, on
average, slightly less than half-depth. The last case, with γ = 0.001, is the dam-break
problem for which we do not expect Benjamin’s energy-conserving theory to be valid
for the heavy front.

A comparison of the full interface shape predicted by both theories, with and
without the bore, with that obtained from the numerical simulations of BMM for the
case with γ = 0.7 is shown in figure 14. With the large fluctuations of the interface



120 R. J. Lowe, J. W. Rottman and P. F. Linden

in the simulations, which are mostly an artefact of the two-dimensionality of the
simulations, even for this value of γ , it is still difficult to determine which theory is
the more correct. Note that in figure 14(b), the theoretical dissipative heavy front, for
which there is no theory for the front shape, is represented as a rectangle.

5. Interface stability
As can be observed in figures 2(a) and 3(b), in general, the light gravity-current

interface is more stable and has less mixing than does the heavy gravity-current
interface, and this is especially true for the smaller values of γ . Similar differences
between the light and heavy fronts are observed in the numerical simulations of
BMM. Benjamin (1968) comments on this aspect of the lock-exchange flow and
presents a linear stability theory that explains the observations. We briefly review his
findings here and add a few additional results from the stability theory.

Benjamin (1968) considers two layers of fluid separated by a sharp density interface.
The fluid velocity in each layer is assumed to be uniform and horizontal. The densities,
depths and velocities are denoted by ρi, hi and Ui , where i = 1, 2 correspond to the
lower and upper layers, respectively. The undisturbed position of the interface is at
z = 0 and the lower and upper boundaries are at z = −h1 and z = h2, respectively,
with H = h1 + h2. The fluid is assumed to be inviscid, and the velocities are uniform
so that the undisturbed flow is irrotational, except at the interface, which is a vortex
sheet.

Consider a small perturbation of the interface of amplitude a of the form

η = aei(kx−ωt) = aeik(x−ct), (5.1)

travelling in the x-direction with speed c = ω/k, in which ω is the frequency and k

is the wavenumber of the wave. A relationship between c and k can be found using
potential theory in each layer and the linearized forms of the kinematic and dynamic
boundary conditions at the interface. This relationship is given by

ρ1k(c − U1)
2 coth kh1 + ρ2k(c − U2)

2 coth kh2 − g(ρ1 − ρ2) = 0. (5.2)

This is a quadratic equation for c. Instability of the interface is indicated by complex
conjugate roots of this equation with Im(c) > 0, taking k to be positive and real. The
requirement for this to be true is

γ tanh(kh1) + tanh(kh2) <
γ

1 − γ

(U1 − U2)
2

g/k
. (5.3)

For an energy-conserving light current

h1 = h2 = 1
2
H (5.4)

and

(U1 − U2)
2 = (1 − γ )gH, (5.5)

and instability occurs when

tanh(kH/2) <
γ

1 + γ
kH. (5.6)

Since 0 < γ < 1 and k is taken as positive, this inequality is satisfied for a range of
wavenumbers k > kc, where kc decreases as γ decreases, as illustrated in figure 15(a).
Thus the interface is unstable to short waves, but stable to long-wave perturbations.
For a cavity, when γ = 0, the interface is stable for all wavelengths.
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Figure 15. The wavenumber kc as a function of the density ratio γ for which the gravity
current interface is neutrally stable according to linear stability theory, which separates (k, γ )
space into stable and unstable regions: (a) the light gravity current and (b) the heavy gravity
current. Note the different vertical scales in (a) and (b).

For the heavy current in our lock-exchange flow

h2 = H − h1, (5.7)

where h1 is the depth of the current, and

(U1 − U2)
2 = g

1 − γ

γ
h1

(
2 − h1

H

)[
1 −

(
h1

H

)2]−1

, (5.8)

and instability occurs when

γ tanh(kh1) + tanh[k(H − h1)] <

(
2 − h1

H

) [
1 −

(
h1

H

)2]−1

. (5.9)

Using the relationship between h1 and γ for the heavy current as determined in § 3
for the lock-exchange flow without a bore, this inequality is satisfied for the range of
wavenumbers k > kc, where kc is plotted in figure 15(b). In this case, the interface is
unstable to short waves, but stable for very long wave perturbations. When the lock
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exchange is Boussinesq, γ = 1, or when it is a dam break, when γ = 0, the interface
is unstable for all wavelengths.

These results imply that the interface above the heavy current is unstable to a
larger range of wavelengths than the interface below the light current, especially in
the non-Boussinesq (small γ ) case. The reason for this difference is that, although the
(stabilizing) density difference across the interface is the same, the higher speed of the
dense current gives a greater shear across the interface. Our observations (figure 3a)
are consistent with these predictions.

6. Conclusions
The results of an experimental and theoretical study of the non-Boussinesq

lock-exchange problem have been presented. The experiments were performed in
a rectangular channel using water and either a sodium iodide solution or a sodium
chloride solution as the two fluids. These combinations of fluids have density ratios
(light over heavy density) in the range 0.61 to 1. A two-layer hydraulic theory is
developed to model the experiments. The theory assumes that a light gravity current
propagates in one direction along the top of the channel and a heavy gravity current
propagates in the opposite direction along the bottom of the channel. The theory
assumes that the two currents are connected by either a combination of an internal
bore and an expansion wave, or just an expansion wave. The present results and the
results of two previous non-Boussinesq sets of lock-exchange experiments, both of
which used two different gases or a gas and a liquid as the two fluids (with density
ratios in the range 0.1 to 1), and with the two-dimensional numerical simulations
(with density ratios in the range 0.001 to 1) of BMM are compared with the theory.

The conclusion from a comparison of the proposed theories with our experimental
observations and the high-resolution, two-dimensional numerical simulations of BMM
is that the theory in which the two gravity currents are connected by a simple wave
of expansion without an internal bore is most representative of non-Boussinesq lock
exchange flows. In this case, the light current is an energy-conserving gravity current
that occupies half the depth of the channel for all values of γ , whereas the heavy
current is what Benjamin (1968) calls a dissipative current with a height that decreases
with decreasing γ . This conclusion contradicts the description of the non-Boussinesq
lock-exchange flow given by Keller & Chyou (1991), who concluded that the heavy
current is energy conserving and connected to the light current by an expansion wave
and an internal bore for 0.3 � γ � 1.

The theory developed here assumes that, at long times, there are two gravity currents
connected by an expansion wave. The front conditions for the currents are analogous
to hydraulic jump conditions, and they require a particular relationship between the
local value of speed and height. These values have to adjust within these constraints
in order to match up with the expansion wave. This matching ensures that mass and
momentum are conserved. We assume that the light current is an energy-conserving
Benjamin current that is locally steady. In taking this long-time approach, we have
to abandon some information about how the flow sets itself up, and therefore have
to postulate that the light current is energy conserving and steady.

It seems possible that both current fronts could be unsteady. In that case, the
long-time solution procedure would break down since all parts of the flow would
be unsteady. Fortunately, the experiments and numerical simulations show that our
assumptions about the light current are approximately correct. Since the expansion
wave connects the two fronts, it is, therefore, necessary for the heavy current to adjust
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to the flux supplied to the lower layer from the rear. This flux is set by the light
current and so the energy-conserving front controls the flow on both sides of the lock.

The model proposed in this paper of an energy-conserving light current connected
to a dissipative dense current by an expansion wave is supported by calculations of
the dissipation given in BMM. They show in their figure 13 that the fraction of the
potential energy loss that is converted to dissipation increases with time and reaches
a maximum of about 12 % by the end of the simulation. In the Boussinesq case, the
energy loss in the light and dense fluids is about the same (BMM, figure 10). Much
of this dissipation is associated with the billows that form on the interface (which is
why the fraction of the potential energy dissipated increases with time), and in the
non-Boussinesq case is significantly larger, by a factor of about 4 for γ = 0.2, for the
dense current (i.e. to the right-hand side of the lock) than for the light current (see
BMM, figure 12). Thus the light front is close to energy conserving for all density
ratios. Figure 16 of BMM also shows that the energy loss reduces with Re. Since our
experiments are generally at much higher Reynolds numbers than the simulations,
we expect the light front in the experiments to be close to energy conserving.

We acknowledge the productive collaboration with V. K. Birman, J. E. Martin and
E. Meiburg. We thank Yi-Jiun Lin for helpful comments on an earlier draft of this
paper. This work was supported by the National Science Foundation under Grant
CTS-0209194.
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