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Self-similar plane solutions for the inertial stage of gravity currents are related to
the initial parameters and a coefficient that is determined by the boundary condition
at the front. Different relations have been proposed for the boundary condition in
terms of a Froude number at the front, none of which have a sound theoretical or
experimental basis. This paper focuses on considerations of the appropriate Froude
number based on results of lock-exchange experiments in which extended inertial
gravity currents are generated in a rectangular cross-section channel. We use ‘top-
hat’ vertical density profiles of the currents to obtain an ‘equivalent’ depth, defined
by profiles having the same buoyancy at every position as the real profiles. As in
previous work, our experimental results show that in the initial constant-velocity
phase the Froude number can be defined in terms of the lock depth. However, as the
current enters the similarity phase when the initial release conditions are no longer
relevant, we find that the Froude number is more appropriately defined in terms of
the maximum height of the head. Strictly speaking, the self-similar solution to the
shallow-water equations requires a front condition that uses the height at the rear of
the head. We find that this rear Froude number is not constant and is a function of
the head Reynolds number over the range 400–4500.

1. Introduction
Gravity currents occur when fluid of one density propagates along a horizontal

boundary into fluid of a different density. There are many examples of gravity currents,
both naturally occurring and man made, and a comprehensive set of examples can
be found in Simpson (1997).

Gravity currents have been studied extensively in laboratory experiments since the
1950s, and measurements made of their speed of propagation. The usual form of
these experiments is to place a vertical barrier in a channel and place, say, fresh
water on one side and salt water on the other side. When the barrier is removed
the salt water flows along the bottom of the channel underneath the fresh water in
one direction, while the fresh water flows along the surface above the salt water
in the other direction. This is known as a full-depth lock-exchange flow. The speed
of the two currents can be measured and related to the densities of the fresh and salt
water, the depth of the channel and the viscosity of the fluids.

A discussion of some of the history of these experiments can be found in Shin,
Dalziel & Linden (2004) and will not be repeated here. The salient facts are that,
after an initial acceleration from rest, the speed of the front of the current is observed
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to be constant (within experimental error) for a period and then to decelerate. This
behaviour can be deduced from dimensional analysis. Let U denote the speed of the
front, and suppose that the densities of the two fluids are ρ1 and ρ2 >ρ1. In a channel
of depth H , a velocity independent of time must, if viscous forces are ignored for the
moment, be given by

U = F
√

g′
0H, (1.1)

where g′
0 = g(ρ2 − ρ1)/ρ2 is the reduced gravity and F is a dimensionless constant†.

Measurements of F for full-depth lock exchanges were made by Keulegan (1958) and
Barr (1967) and found to vary between 0.45 and 0.5, for sufficiently high Reynolds
numbers.

In many experiments, the barrier is placed near one end of the tank, in order to give
a long length of channel for measurements of the current to be made. Suppose that the
salt water is placed in this small ‘lock’ and that the rest of the tank is filled with ‘ambi-
ent’ fresh water. The flow initially proceeds as above, but now the fresh water entering
the small lock displaces all the salt water well before the salt current has reached
the other end of the channel. In this case, the finite length L0 of the lock becomes
a parameter that must be considered. Alternatively, we can use the finite volume of
salt water as the parameter, while taking the depth of the ambient fresh water to be
effectively infinite since the current depth decreases when it propagates sufficiently far
from the lock. Hence, the speed of the current now depends on the total mass (per
unit width of the channel), which can be expressed by the initial buoyancy per unit
width B0 = g′

0HL0. Under these circumstances, dimensional analysis implies that

U = cB0
1/3t−1/3, (1.2)

where c is a dimensionless constant, and the current decelerates with time, or distance
along the channel. Values of c have been measured by Hoult (1972) and Huppert
& Simpson (1980), and their data suggest c ≈ 1.0. The initial constant-velocity phase
given by (1.1) and the subsequent, so-called, similarity phase given by (1.2), represent
force balances between buoyancy and inertia. As the current continues to decelerate
and the Reynolds number decreases, viscous effects may become important and
a further dependence of velocity on time occurs. When the buoyancy forces are
balanced by viscous forces, the speed U ∼ t−4/5.

Among others, Fay (1969), Fannelop & Waldman (1972), Hoult (1972), Huppert
& Simpson (1980) and Rottman & Simpson (1983) established the theoretical basis
of the asymptotic self-similar flows originated by instantaneous releases when the
buoyancy force driving the current is balanced by inertia. This assumption leads to
the result that the length (or the radius in an axisymmetric flow) increases as t2/(3+n),
where n= 0 and n= 1 for plane and axisymmetric flows, respectively. In particular,
Fannelop & Waldman (1972) and Hoult (1972) showed that (1.2) results from a
similarity solution of the shallow-water equations, and so the relationship is valid
only after a long time has elapsed since release. Grundy & Rottman (1985) confirmed
mathematically that these similarity solutions are the large-time limits of a class of
initial-value problems associated with the shallow-water equations in which mixing is
neglected and the front region is treated as an abrupt boundary condition. Gratton &
Vigo (1994) further investigated all possible self-similar solutions for inertial gravity

† Strictly speaking, F is a dimensionless function of the density ratio γ = ρ1/ρ2, but we are
concerned with Boussinesq currents where γ ≈ 1, and so γ does not enter as a separate dimensionless
parameter.
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Figure 1. Lock-release gravity current as obtained in the laboratory. The dashed line
indicates the usual approach considered in analytical treatments.

currents by analysing the mathematical properties of a phase plane, and showed that
a family of solutions exists for each value of a dimensionless front velocity.

Based on the measurements of the constant-velocity phase, the front is represented
in the shallow-water framework by a condition that relates the front speed uf to the
local buoyancy force g′

f hf , where the subscript f denotes local values at the front.
This takes the form of a constant local Froude number Ff , obtained by re-arranging
(1.1) and applying it at the front so that

Ff =
uf√
g′

f hf

. (1.3)

This relation is especially pertinent in applications to natural flows. These do not, in
general, occur in channels of finite depth, or from finite releases of known buoyancy,
so the speeds given by (1.1) and (1.2) are not very useful. Theory does not help much
either. The only theories that predict the front speed are for the constant-velocity
phase (Benjamin 1968; Shin et al. 2004). These theories both predict the Froude
number in terms of the ‘fractional depth’ of the current – i.e. the depth of the current
as a fraction of the total depth of the flow. In the often relevant limit where the
ambient fluid is much deeper than the current, these two theories give values that
differ by 40 %. Laboratory experiments such as those reported by Huppert & Simpson
(1980) are also for the constant-velocity phase. We discuss these earlier results in more
detail in § 2.

It is also not obvious that a front condition appropriate to the constant-velocity
phase should be valid in the similarity phase. In the former, the current propagates
as though the dense fluid is supplied continuously from the rear at a constant rate,
while the similarity phase is a direct consequence of the fact that the volume of dense
fluid is finite. Rottman & Simpson (1983) show that the transition to the similarity
phase is initiated by a finite-amplitude disturbance that is reflected at the rear wall of
the lock and propagates to the front of the current.

A major difficulty comes from the complexity of the flow in a real gravity current.
Figure 1 illustrates a gravity current as treated by theory (dashed line contour), and
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as seen in laboratory experiments and in many natural flows. The front of the current,
a region of mixing and unsteady motions, must be represented by some equivalent
depth and density.

Most previous studies have used the front position xf (t), a parameter that is easy to
measure, to test their theories. On the other hand, the measurement of the appropriate
height of the current to calculate the Froude number is difficult because real currents
exhibit a deeper head than the following fluid, and mixing between dense and ambient
fluids prevents the determination of a well-defined boundary. The height profile of
the current is irregular and unsteady.

This paper concentrates on the determination of the front condition for the
similarity phase by comparing the theoretical self-similar solutions with the results
provided by lock-exchange experiments in which inertial gravity currents are generated
in a rectangular cross-section channel starting from a small-length lock. Our goal is to
display the interrelation among the front position evolution, the Froude number at the
front and the height profiles based on the measurements of the density distributions.
By using measured vertical density profiles, the buoyancy and the equivalent height
of the current can be determined objectively and unambiguously.

In § 2, the theoretical framework is discussed further, and a relationship associating
the flow at the front with the Froude number depending on the instantaneous
fractional depth φ(t) = hf (t)/H at the front is suggested. Section 3 contains a
description of the experiments and techniques used to find the ‘equivalent current
height’ that is calculated from the local buoyancy and, as it is unaffected by mixing,
becomes the appropriate parameter to use in comparisons. The experimental results
are presented in § 4 and discussed in § 5. The conclusions are given in § 6.

2. Theoretical framework
2.1. Self-similar solution for a plane gravity current

We are concerned with planar self-similar solutions for gravity currents in the shallow-
water approximation. The currents are generated by the instantaneous release of a
fixed volume of a fluid of density ρ2 into another fluid of lower density ρ1 over a
solid horizontal surface.

Shallow-water theory (Landau & Lifshitz 1987) is based on the fact that the depth
of the current is small compared with the characteristic horizontal scales of the flow.
Then the vertical accelerations of the fluid are small compared to gravity. Thus the
pressure variation is hydrostatic and, for a planar flow, the fluid motion depends on
the horizontal coordinate x and time t , with the horizontal velocity u(x, t) constant
throughout the current depth h(x, t).

Self-similar solutions to the shallow-water equations for gravity currents are
obtained by neglecting mixing and treating the front region as an abrupt boundary
with some specified front condition (Grundy & Rottman 1985; Gratton & Vigo
1994). These solutions represent the intermediate asymptotic solutions in which most
of the parameters and features describing the initial physical situation have become
irrelevant, even though some features of the initial-value problem remain (Barenblatt
1996; Gratton & Vigo 1994).

For the case of the release of a volume concentrated in x =0 at t =0 into an
infinitely deep ambient fluid, the self-similar theory gives the front position xf as a
function of time as

xf = ξ (g′
0A0)

1/3t2/3, (2.1)
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where ξ is a dimensionless constant. The self-similar solution, in agreement with
the result of the dimensional analysis discussed in § 1, depends only on the initial
buoyancy (per unit width) B0 = g′

0A0, where A0 = L0D is the area (volume per unit
width) occupied initially by the dense fluid. Conservation of mass implies that B0

is a constant throughout the motion of the current, irrespective of mixing between
the current and the ambient fluid. We restrict attention to Boussinesq currents with
ρ2 − ρ1 � ρ2. Equation (2.1) describes the asymptotic behaviour for t � tc = L0/u0

where tc is the time taken for a wave propagating with speed u0 =
√

g′
0D to travel the

length L0 of the lock. To facilitate the comparison with the experimental results, it is
convenient to express (2.1) in dimensionless form as

xf

L0

= ξ

(
t

tc

)2/3

. (2.2)

Note that such a solution does not depend on the particular values of L0 and tc.
Differentiating (2.2) with respect to time, the velocity of the front is given by

uf

u0

=
dxf

dt

tc

L0

= 2
3
ξ

( tc

t

)1/3

= 2
3
ξ 3/2

(
L0

xf

)1/2

. (2.3)

As Grundy & Rottman (1985) and Gratton & Vigo (1994) reported, the height
profile for a self-similar plane gravity current is

h(x/xf )

hf

=
xf

x

[
F 2

f

4
+

(
1 −

F 2
f

4

)(
x

xf

)2]
, (2.4)

where

hf =

(
12

12 − 2F 2
f

)(
A0

xf

)
(2.5)

is the current height, and Ff is given by (1.3).
From (2.3), (2.5) and (1.3) it is found that ξ is related to the Froude number by

ξ 3 =
27F 2

f

12 − 2F 2
f

. (2.6)

As demonstrated by Gratton & Vigo (1994), a self-similar solution exists for any
value of Ff <

√
6. Therefore, the Froude number at the front for any particular

situation must be estimated using an additional condition.
As the current propagates, it reduces its velocity and height and, as the Reynolds

number decreases, eventually enters the viscous phase. Huppert (1982) showed that
in this buoyancy-viscous phase the front position is described by the power law

xf = ζ

(
B0A

2
0

3ν

)1/5

t1/5, (2.7)

where ν is the kinematic viscosity and ζ = 1.411 . . . is completely defined by theory.
Note that (2.7) shows that the corresponding front velocity depends only upon B0

and ν. In terms of the scale u0, as needed for comparing the theoretical estimates
with the experimental results introduced in § 4, the non-dimensional velocity is

uf

u0

=
dxf

dt

tc

L0

=
ζ 5

5

(
1

L4
0u0

)(
B0A

2
0

3ν

)(
L0

xf

)4

, (2.8)
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which gives a different curve for each set of initial parameters when the spatial (L0)
and temporal (tc) characteristic scales are used. Note also that the front velocity
(2.8) decreases more rapidly than in the buoyancy-inertial self-similar regime (2.3)
as xf increases. In this asymptotic viscous phase the height profile is given by
(Marino et al. 1996)

h

h0

=

[
1 −

(
x

xf

)2]1/3

. (2.9)

2.2. Froude number at the front for lock-exchange currents

In contrast with the above analysis where the depth of the ambient fluid is assumed
to be infinite, experiments always have a finite depth H of ambient fluid. For lock-
exchange gravity currents at the constant-velocity phase, different relationships for the
Froude number at the front have been proposed. Benjamin (1968) applied hydraulic
theory to the planar flow of an incompressible fluid in a channel in terms of an ‘air
cavity flow’ displacing the fluid beneath it.

Figure 2(a) illustrates this flow in the frame of reference that moves with the front
of the cavity; the original nomenclature has been changed to facilitate comparison
with the relationships obtained by other authors. Benjamin (1968) found that the
Froude number is given by

FB =
u2√
g′

0hB

=

[
(1 − φ) (2 − φ)

1 + φ

]1/2

, (2.10)

where uf = u2, hB and φ = hB/H are the fluid velocity upstream (i.e. the front velocity
in the laboratory frame), the cavity height and the fractional depth, respectively. For
a cavity, g′

0 = g, but Benjamin showed that his result applies to the Boussinesq case
also.

Figure 2(b) illustrates the configuration studied experimentally by Huppert &
Simpson (1980). They observed that initially the current travels at a constant speed
and the Froude number FHS was determined using the height of the current hHS ‘just
behind the head’ and found to fit the empirical relation

FHS =
u2√
g′

0hHS

=

{
1.19 (φ � 0.075),
1
2
φ−1/3 (φ > 0.075),

(2.11)

where φ =hHS/H .
In their solution of the shallow-water equations in a two-layer fluid, Rottman &

Simpson (1983) proposed an empirical front condition by defining the Froude number

FRS =
uf√
g′

0hRS

=

[
β2 (1 − φ) (2 − φ)

2 (1 + φ)

]1/2

, (2.12)

where β is a dimensionless constant to be determined by experiments, hRS is a
theoretically defined height at the front and φ = hRS/H . When β2 = 2, (2.12) gives the
relationship for the front speed derived by Benjamin (2.10).

Shin et al. (2004) have presented a new theory and experiments on gravity currents
in the constant-velocity phase produced by lock-exchange. They suggest that the
energy dissipation inside the flow is unimportant for high Reynolds numbers, and
that long waves may transfer momentum and energy from one side of the lock to
the other, modifying the front velocity. Based on energy conservation in the control
volume depicted with a dashed line in figure 2(c), the authors obtained the following
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Figure 2. Sketches used to define the Froude number at the current front according to (a)
Benjamin (1968), (b) Huppert & Simpson (1980), (c) Shin et al. (2004) and (d) the analysis
presented in this work.
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Figure 3. Froude number F as a function of the fractional depth φ suggested by different
theories for a constant-velocity gravity current. The curve FRS, given by (2.12), is represented
for β2 = 1 as suggested by Rottman & Simpson (1983).

relationship for the Froude number

FSDL =
uf√

g′
0hSDL

= (1 − φ)1/2 , (2.13)

where φ = hSDL/H , and hSDL is the depth of the current measured at the original lock
position.

Figure 3 presents a comparison between the Froude number at the front as a
function of φ calculated from the relations (2.10) to (2.13). Benjamin (1968) and Shin
et al. (2004) demonstrated that in addition to mass and momentum conservation,
energy is also conserved for φ = 0.5, and the two theories give the same value 1/

√
2

for this particular value of φ. However, in the rest of the interval the curves do not
coincide with each other. Huppert & Simpson (1980) and Rottman & Simpson (1983)
do not give the same values at φ =0.5. (Note that values of φ > 0.5 are believed to
be unrealizable in lock-exchange since they require input of external energy into the
flow– see Benjamin 1968; Shin et al. 2004).

These different formulae for F give very different predictions for the limit of
infinitely deep ambient fluids (φ → 0). In particular, Benjamin (1968) predicts FB =

√
2,

Shin et al. (2004) and Rottman & Simpson (1983) have the limit of FSDL =1, and
the empirical relationship of Huppert & Simpson (1980) gives the intermediate
value FHS = 1.19. These values, in turn, give values of the dimensionless similarity
coefficient in (2.6) of ξB 	 1.89, ξHS 	 1.62 and ξSDL 	 1.39. The values of ξ determined
from experiments by Hoult (1972) and Huppert & Simpson (1980) are 1.6 and 1.5,
respectively, as discussed in § 1. Note, however, that these theoretical values of F are
strictly only valid for the constant-velocity phase. There is no guarantee that they are
appropriate for the decelerating similarity phase.
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Run Symbol D (cm) φ0 g′
0 (cm s−2) tc (s) u0 D/v

1 � 10 1 0.944 3.255 2790
2 � 10 1 4.89 1.430 6360
3 � 10 1 8.99 1.055 8620
4 � 10 1 29.22 0.585 15 500
5 � 10 1 98.0 0.320 28 500
6 
 20 1 9.80 0.714 25 500
7 ⊗ 20 1 5.66 0.940 19 300
8 � 20 1 98.0 0.226 80 500
9 �— 30 1 8.50 0.626 43 500

10 �– 40 1 10.50 0.488 74 500
11 � 40 1 98.0 0.160 228 000
12 � 28 1 98.0 0.191 133 000
13 ∗ 27 0.675 9.80 0.615 39 900
14 + 20 0.5 8.80 0.754 24 100
15 — 10 0.25 8.80 1.066 8530
16 | 16 0.4 9.80 0.799 18 200
17 � 22 0.55 27.93 0.403 49 600
18 � 24.5 0.61 29.40 0.373 59 800
19 � 21.5 0.54 8.80 0.727 26 900

Table 1. Main parameters of the experiments.

3. Experiments
Gravity currents were generated in a horizontal and rectangular cross-section

channel 3.00 m long, 0.20 m wide and 0.60 m deep with transparent Perspex sidewalls.
As illustrated in figure 1, the dense fluid (salt water) was initially contained in a lock
with a vertical gate located at a distance L0 from one endwall of the tank. The lock
and the rest of the channel were filled up to a height D with salt water and fresh
water, respectively. A known quantity of dye was mixed in the dense water contained
in the lock to provide flow visualization. Then fresh water was carefully added on
both sides of the lock gate to a total depth H , creating in the lock a clearly defined
horizontal density interface between the salt water and fresh water. The experiment
starts when the gate is removed, leaving the dense fluid to flow along the bottom of
the tank.

As our study is concerned with the evolution of extended gravity currents (xf � L0)
in order to focus on the self-similar regime, L0 is taken as small as possible. In all
cases, the lock length L0 = 10 cm, and the lock aspect ratio D/L0 varied from 1 to
4. Experiments were carried out varying both the initial reduced gravity g′

0 and the
initial depth D of the dense fluid so that the initial fractional depth φ0 =D/H is
in the range 0.25 � φ0 � 1. We refer to experiments with φ0 = 1 as full-depth releases
and those with φ0 < 1 as partial-depth releases. Table 1 gives the parameters of
the experiments. The kinematic viscosity of the salt solution is taken as ν = 1.1 ×
10−6 m2 s−1.

Fluorescent strip lights and a light-diffusing screen on one side of the tank provided
a back-lighting with a spatial variation of intensity of less than 7 %. A COHU 4910
CCD camera was placed at a fixed position (6.00 m) from the other side of the tank
and the images were digitized in real time using the software DigImage (Dalziel 1993,
1995) and stored in a PC. The variation of the back-lighting intensity is corrected to
less than 1 % by standard image-processing techniques. Then the width-averaged dye
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concentration present in the salt water is measured, based on the light attenuation
of the back-lighting, from which the cross-current average density may be inferred.
By integrating the density distribution, the salt-water mass was also calculated for
different times and was found to remain constant within a 2 % error.

In order to determine the local Froude number, it is necessary to measure the
height of the current. Since the hydrostatic pressure determines the dynamics of
the flow in the shallow-water approximation, an equivalent height h for each x-
position is calculated, integrating vertically the instantaneous two-dimensional density
distribution using

h (x, t) =

∫ H

0

ρ (x, z, t) − ρ1

ρ2 − ρ1

dz. (3.1)

Since ρ2 is the original density of the fluid in the lock, in the absence of mixing, h

would correspond to the top of the current. In the presence of mixing, the equivalent
height may be thought of as the height of the current in which the density is
represented as a ‘top hat’ profile with

ρ(z) =

{
ρ2 (0 � z � h),

ρ1 (z > h).
(3.2)

The definition (3.1) provides an objective measure of the depth of the current. In
particular, hydrostatic pressure excess at the bottom of the current is given by g′

0h

even in the presence of mixing, and this product can be used unambiguously in the
definition of the Froude number (see also Shin et al. 2004).

From each equivalent height profile, the front position is chosen as the minimum
value of x for which the equivalent height of the current is zero. The maximum
equivalent height hm of the head is determined by taking the maximum value of h in
each frame. In most cases, the maximum value was constant for several pixels and
was determined unambiguously. The equivalent height hr (located at the position xr )
is the value taken at the rear of the head after a change in the spatial derivative of
the height profile (see figure 2d). The location of the derivative change is somewhat
subjective and where there is significant uncertainty, the values of hr are discarded.
These measurements of the density distribution generate an uncertainty in the height
determination that is less than the pixel size, for the typical heights measured in this
work. Thus the uncertainty of height values is taken as the minimum vertical scale
division (2 mm) in the digitized images.

We estimate that xf is determined with an error less than 0.6 cm and the uncertainty
in the density measurement is less than 1 %.

4. Results
4.1. Qualitative features and front speeds

4.1.1. Full-depth releases

Figure 4 shows eight images after processing and the associated equivalent height
profiles for a typical full-depth release (φ0 = 1). The current is characterized by a
raised head and a shallower following current. Typically, the length of the head is
greater than its height (note that the images and the graph have an exaggerated
vertical scale). Both the irregularity of the contour in the top of the head due to shear
instabilities (Simpson 1997) and the vertical density distribution complicate the height
estimates when they are taken directly from the individual images, as has been done
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Figure 4. Images in false colour for fluid density and the corresponding equivalent depth
profiles for run 8 with fractional depth φ0 = 1 (see table 1), for t =0, 1.48, 3.08, 4.68, 7.08, 9.80,
12.20 and 14.44 s.

in most of the earlier studies. However, equivalent height profiles may be determined
without ambiguity, as can be seen in figure 4.

The dimensionless front positions are plotted against the dimensionless time for
runs 1–12, in which the initial fractional depth φ0 = 1, in figure 5(a). The front
positions are scaled with L0 and time with the characteristic time tc. The dashed line
on this log–log plot has slope 1 and corresponds to the theoretical curve (1.1) for
the constant-velocity phase. This line is a best fit to the data and gives a value of
F = 0.47 ± 0.02, consistent with the previous measurements quoted in § 1. At about
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Figure 5. Dimensionless front position as a function of dimensionless time for full-depth
releases (φ0 = 1). The theoretical front evolution for the constant-velocity phase, the inertial
and the viscous self-similar regimes are indicated by the dashed, solid and dotted lines,
respectively. (b) is a zoom of the region marked with a dotted line in (a). The symbols for the
different runs given here and in figure 8 are used consistently throughout this paper.

8–10 lock lengths (xf − L0)/L0, the front position is no longer a linear function
of time and the currents begin to decelerate. This observation is consistent with the
previous experiments of Rottman & Simpson (1983).

Also indicated in figure 5(a), and shown with more detail in the close up, figure 5(b),
are the curves describing the theoretical similarity phase with values of ξ = 1.3 and
1.6 that limit the span of the data. As the vertical axis represents xf /L0 − 1, the
self-similar curves eventually become linear with the slope 2/3 given by (2.2) for
xf � L0 in this log–log plot.
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Figure 6. Evolution of the front velocity for the same full-depth releases (φ0 = 1) reported in
figure 5. The lines indicate the corresponding power law behaviour for the three phases.

The time origin for the self-similar curves is determined by the theory, that is to say
xf =0 for t = 0. On the other hand, the initial condition of the experiments (xf = L0

for t = 0) and the small time taken to withdraw the gate introduce a time origin
shift of the order of tc in the experimental data. However, any resulting error when
laboratory results are compared with the asymptotic relationship becomes negligible
for t � tc.

The dotted lines in figure 5 are calculated using (2.7) and correspond to the viscous
phase of three cases in which such a stage seems to be reached. The transition between
stages is quite smooth, and only in some cases does the evolution of the front position
pass through all three stages. The self-similar regime, if developed, may be very short.
Particularly when small volumes are released (squares), the current may enter the
viscous stage directly from the constant-velocity phase. Therefore, a determination of
ξ based on the self-similar law in a position vs. time graph may be in error owing to
an early presence of viscous effects.

As an alternative, we plot the front velocity uf = dxf /dt as a function of the front
position xf as shown in figure 6. As expected, the experimental data follow the
straight lines in a log–log graph corresponding to the three typical stages of a gravity
current. The effects of the different values of the dimensionless constant ξ on the
self-similar laws (2.3) are more evident in this plot. In addition, the dashed, solid and
dotted lines show more abrupt changes in trends than in figure 5, partially because
of the use of the front position as the abscissa instead of the time. Consequently, this
representation provides a more sensitive test of the flow regimes.

4.1.2. Partial-depth releases

Figure 7 shows the images after processing and the equivalent height profiles for
an experiment with φ0 = 0.55. Again the raised head and the instabilities and mixing
at the top of the current are visible. In this case, the head is deeper and the following
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Figure 7. Images in false colour for fluid density and the corresponding equivalent depth
profiles for a partial-depth release (run 17) with fractional depth φ0 = 0.55 (see table 1) for
t = 0, 1.71, 3.87, 6.03, 9.15, 12.51, 15.23 and 18.47 s. The (expanded) vertical scale is the same
for all the images; the first panel is higher because of the space occupied by the dense fluid
initially.
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Figure 8. Dimensionless front position as a function of dimensionless time for partial-depth
releases (φ0 < 1). The theoretical front evolution for the constant-velocity phase and the inertial
self-similar regime are indicated by dashed and solid lines, respectively. The two curves in each
case are chosen to bracket the data.

current is shallower than those corresponding to the full-depth release shown in
figure 4. Nevertheless the length of head remains greater than its height.

The evolutions of the dimensionless front positions for runs 13–19, for which the
initial fractional depth is φ0 < 1, are shown in figure 8. As for the full-depth releases,
these currents also exhibit a constant-velocity phase initially. However, in this case
the initial front velocity uf 0 depends on the initial depth ratio φ0. The dashed lines
corresponds to the limit straight lines with slope 1 that bracket the data. Also shown
in figure 8 are the lines describing the theoretical similarity phase with values of
ξ = 1.4 and 1.8 that span the data.

The graph of the dimensionless front velocity as a function of the dimensionless
front position is shown in figure 9. Both the constant-velocity and the similarity
regimes show variations which are associated with the different values of the initial
fractional depth φ0, with higher dimensionless speeds uf /u0 occurring for lower values
of φ0. This behaviour in the constant-velocity regime is consistent with the theories
discussed in § 2, and this trend persists into the similarity regime. (The outlier is run
15 which is influenced by viscous effects.)

Figure 10 shows the initial front velocity uf 0 non-dimensionalized by u0 in the
constant-velocity phase for different initial depth ratios φ0. Also shown in the figure
are experimental results reported by Rottman & Simpson (1983) and Shin et al.
(2004). We see that the data are consistent, and they show a reduction in the Froude
number based on the initial reduced gravity and depth of dense fluid. This reduction
is consistent with the theoretical predictions of Shin et al. (2004). The consistency
of these data show that the initial front speed is independent of the lock aspect
ratio D/L0. For the present experiments 1 <D/L0 < 4, while for Rottman & Simpson
(1983) D/L0 � 1, and D/L0 → 0 in the experiments of Shin et al. (2004).

For φ0 < 1, the constant-velocity regime is maintained for a shorter distance than
the 8–10 lock lengths found for φ0 = 1. Figure 11 shows the distance xs that the
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Figure 9. Evolution of dimensionless front velocity for φ0 < 1. The theoretical estimates for
the constant-velocity phases and the self-similar regimes are indicated by the dashed and solid
lines, respectively.
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Figure 10. The dimensionless front speed during the constant-velocity regime as a function
of the initial aspect ratio φ0 (�). For comparison, data by Rottman & Simpson (1983) (�) and
Shin et al. (2004) (�) are also shown.

front travels before leaving this initial regime as a function of φ0 (solid squares).
The open symbols correspond to the averaged values of the case φ0 = 1; runs 1–3
have been plotted separately (open circles) since the similarity phase seems to be
absent in these runs as observed in figures 5 and 6. Also included in figure 11 is
the transition length determined experimentally by Rottman & Simpson (1983) (solid
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Figure 11. Length in units of L0 at which the front evolution departs from the constant-
velocity phase as a function of the initial fractional depth φ0. The present data for φ0 < 1
are shown as �, while for φ0 = 1 the results are averaged to give � for runs 4–12 and � for
runs 1–3. The results obtained by Rottman & Simpson (1983) (�) and the relation cited by
Hallworth et al. (1996) (dashed line) are also shown.

triangles) and the empirical law based on those results given by Hallworth et al.
(1996), xs/L0 = 3 + 7.4φ0. Except for runs 1–3, our experiments agree well with these
previously reported results.

4.2. Current height profiles

4.2.1. Full-depth releases

A time series of profiles for a full-depth release is shown in figure 12. The current
rapidly develops an elevated head which contains most of the fluid from the lock.
This rapid development of the head is associated with the large aspect ratio D/L0 = 2
of the lock, and has been previously observed by Hacker, Linden & Dalziel (1996).
The depth of the head stays roughly constant until the current has propagated about
10 lock lengths, and then it begins to decrease. In this initial phase, the depth of the
current behind the head stays roughly constant for about 10 head heights back from
the front and then it decreases towards the rear. At later times the depth decreases
more gradually towards the rear and extends further back from the front. These
properties are also observed in the images shown in figure 4.

This transition from a state in which most of the dense fluid is contained in a single
‘head-like’ region to another characterized by a distinct head with a significant ‘tail’
seems to be associated with the fluid left behind as the front propagates. Perturbations
are successively generated at the current front and propagate forwards, but at a speed
significantly less than the front speed itself. In fact in the later stages, these waves
are almost stationary in the laboratory frame. We analyse these profiles by looking,
in turn, at the constant-velocity, similarity and viscous phases of the current.

Figure 13(a) shows equivalent height profiles for a full-depth release during the
constant-velocity phase for different times. In figure 13(b), these profiles are scaled by
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Figure 12. A time sequence of equivalent height profiles for a full-depth release φ0 = 1.
The case shown is run 10.

the front position xf . Initially the depth of the current is approximately constant along
its length. Although as reported above, the speeds of these currents are consistent with
the energy conserving theories of Benjamin (1968) and Shin et al. (2004), the depths
of the current, are below the half-depth required by these theories. Shin et al. (2004)
show that the depths of the currents are altered by different initial conditions in lock
release, and this may be the result of the lock aspect ratios in the present experiments
being large (D/L0 = 1–4). As the ambient fluid enters the lock, the depth of the dense
fluid in the lock decreases and a reflected disturbance propagates forwards out of
the lock towards the head. In front of this disturbance, the height of the current
remains constant. As the disturbance catches up with the front, an elevated ‘head’
region is formed between the front and the disturbance, as can be seen in figure 13(b).
Eventually the disturbance reaches the front and the similarity phase occurs as noted
previously by Rottman & Simpson (1983).

After the onset of the similarity phase, the length of the head remains approximately
constant. Equivalent height profiles for the similarity phase are shown in figure 14.
In this figure, the length of the current has been normalized by the distance xr from
the lock to the rear of the head and the depth has been normalized by the depth hr

at that location. The collapse of the profiles at different times shows that during this
phase the shape of the current behind the head is, indeed, self-similar, as predicted
by Rottman & Simpson (1983) and Gratton & Vigo (1994).

Figure 14 also shows similarity solutions (2.4) of the shallow-water equations, for
three different values of the front Froude number Ff = 1.4, 1.6 and 1.8. Qualitatively,
the current has the same form as these theoretical profiles, with the current becoming
deeper towards the front. It appears that the solution with Ff = 1.8 gives the best fit
to the experimental profiles.
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Figure 13. (a) Equivalent height profiles of a gravity current with φ0 = 1 (run 6) at t/tc = 0,
1.29, 2.74, 4.93, 7.11, 9.30, 11.48, 13.66 and 16.58. (b) The same profiles shown in (a) but with
the abscissa scaled with xf . Times are indicated for profiles represented by solid lines, and
intermediate profiles are plotted with dotted lines.
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Figure 14. Equivalent height profiles for a full-depth release φ0 = 1 (run 8) in the similarity
phase with t/tc = 43.4, 46.9, 49.8 and 56.8. The depth is scaled with hr and the length with the
distance to the rear of the head xr . The profiles depicted by dotted, dash-dotted and dashed
lines correspond to (2.4) for Ff = 1.4, 1.6 and 1.8, respectively. In order to be consistent with
the similarity theory, xf is replaced by the distance to the rear of the head xr .
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Figure 15. Dimensionless equivalent height profiles for run 4 (φ0 = 1) as the current enters
the viscous phase. The profiles are shown at t/tc = 20.2 (thick dotted line), 28.4, 35.9, 43.4, 57.8
and 76.2 (thick solid line). The profile depicted by a dashed line corresponds to the asymptotic
viscous regime (2.9).
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Figure 16. A time sequence of equivalent height profiles for φ0 = 0.675 (run 13).

The equivalent height profiles for a gravity current entering the viscous regime
are shown in figure 15. The depth is scaled with A0/xf and the length with the
distance xf to the front. Note that the height of the head decreases with time and
eventually disappears, and the current shape tends to the theoretical viscous profile
(2.9) indicated by the dashed line.

4.2.2. Partial-depth releases

Similar profiles to those shown in § 4.2.1 were also obtained for the partial-depth
releases. A time sequence of current height profiles for run 13 with φ0 = 0.675 is
shown in figure 16. Comparison with the full-depth release of figure 12, shows that
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Figure 17. (a) Equivalent height profiles for a partial-depth release with φ0 = 0.4 (run 16) in
the constant-velocity phase at t/tc = 0, 1.83, 2.58, 3.33, 4.08, 4.83, 5.58, 6.33, 7.08, 7.83, 8.59,
9.34, 10.09, 10.84, 11.59 and 12.34. (b) The same profiles with horizontal positions scaled with
xf . Times are indicated for profiles represented by solid lines, and intermediate profiles are
plotted with dotted lines.

the current volume is concentrated more towards the front and the perturbations are
less pronounced. The current depth behind the head is more uniform than in the
full-depth case, and the fluid depth in the lock does not decrease as much as for
φ0 = 1. These results are also consistent with the observations of Rottman & Simpson
(1983), who showed that the reflected disturbance from the lock was a bore for large
fractional depths, but took the form of an expansion wave at lower fractional depths.

Profiles for run 16 with φ0 = 0.4 are shown in figure 17. Comparison with the
equivalent full-depth releases in figure 13 confirms the observations mentioned in the
previous paragraph. As for φ0 = 1, we observe that the head height remains constant
while the depth of the following flow decreases with time. It is clear that in both
these cases the fluid volume in the ‘head’ remains approximately constant or decreases
slowly with time, so that the head is not being supplied from the rear by the following
current. This constancy, despite the observed mixing, is a result of the fact that
determining the depth of the current by integrating the density captures all the dense
fluid even when it is mixed with the ambient fluid.

The similarity phase and the approach to the viscous phase for a partial-depth
release are shown in figures 18 and 19, respectively. As for the full-depth releases,
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Figure 18. Profiles for a partial-depth release (run 16) in the similarity phase with t/tc =21.35,
23.60, 25.86, 28.11 and 31.11 (thick solid line). The profiles depicted by dotted, dash-dotted
and dashed lines correspond to similarity solutions to the shallow-water equations with Ff =
1.0, 1.2 and 1.4, respectively.
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Figure 19. Equivalent height profiles of the gravity current shown in figure 18 as it enters
the viscous phase. The profiles are shown at t/tc =31.11 (thick solid line), 36.40, 43.15, 49.91,
57.42 and 79.20. The profile depicted by a dashed line corresponds to the asymptotic viscous
regime (2.9).

the profiles for the currents are self-similar in the similarity phase. After t/tc =31.11,
shown as the thick solid profile in both figures, the head begins to decrease and
the current approaches the viscous phase, and ultimately a good agreement with the
corresponding theoretical profile is observed.

4.3. Froude numbers

During the constant-velocity phase (figures 13 and 17) the gravity current is
characterized by an almost constant depth from the head to the point reached
by the reflected disturbance from the lock. This allows a current depth to be defined
ahead of this disturbance which can be used to determine the Froude number of the
current (Shin et al. 2004). However, once the current enters the similarity phase, there
is a distinct difference between the height of the head and the depth of the current in
the following flow. This variation in the current profile makes it difficult to decide the
characteristic height for determining the Froude number. Consequently, we calculate
the Froude number using depths at different locations in the flow.
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Figure 20. Evolution of the Froude number for the full-depth releases (φ0 = 1) considering
(a) the initial height of dense fluid, (b) the maximum equivalent height and (c) the equivalent
height just behind the head. The vertical dashed line indicates approximately the departure
from the constant-velocity phase. The horizontal line in (b) is the average value obtained in
the similarity regime.

The Froude number, based on the front velocity uf , and three different depths – the

lock depth D, the maximum height of the head hm and the height at the rear of
the head hr – is plotted in figure 20 for the full-depth releases φ0 = 1. In each case,
the lock buoyancy g′

0 is used to estimate the corresponding Froude number.
The Froude number FD (figure 20a) based on the initial lock depth is approximately

constant during the constant-velocity phase (x � 10L0) as expected. The value
FD = 0.45 for the initial phase is consistent with previous measurements (see Shin et al.
2004). After about 10 lock-lengths the similarity phase begins, and the value of FD

decreases.
Figure 20(b) shows the Froude number based on the maximum height of the head

Fh = uf /

√
g′

0hm. (4.1)

During the constant-velocity phase, Fh exhibits some scatter but this scatter is reduced
in the similarity phase. In particular, for xf � 10L0, Fh is approximately constant with
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Figure 21. Evolution of the Froude number for the partial-depth releases (φ0 < 1) considering
(a) the initial height of dense fluid, (b) the maximum equivalent height and (c) the equivalent
height just behind the head. The vertical dashed lines indicate the departure from the
constant-velocity phase, observed to be later for larger φ0. The horizontal line in (b) is
the average value obtained in the similarity regime.

a mean value 〈Fh〉 =0.81 ± 0.10. This measure of the Froude number collapses the
data at large xf , in contrast with FD , which only applies for the constant-velocity
phase. (The outliers are runs 1–3, which have also shown a different behaviour in their
front evolution (figures 5 and 6) because they have the lowest Reynolds numbers –
see table 1.)

The Froude number Fr based on the buoyancy at the rear of the head, plotted in
figure 20(c), shows considerable variation among experiments and tends to decrease
with the distance from the lock.

The Froude numbers FD , Fh and Fr for the partial-depth releases φ0 < 1 are shown in
figure 21. In this case, since uf 0 is a function of φ0 (see figure 10), FD has higher values
and a greater variability in the velocity-constant phase. However, as we discussed in
relation to figure 10, this variation is consistent with previous measurements.

In the similarity phase, the Froude number based on the maximum height of the
head again collapses the data on an approximately constant value whose average
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Figure 22. Evolution of the Reynolds number based on the equivalent height of the head.

value is 〈Fh〉 = 0.86 ± 0.10 (dotted horizontal line in figure 21b). (The outlier is run 15
which also shows a different behaviour in the front evolution, figures 8 and 9, as a
result of its low Reynolds number.) The Froude number Fr based on the buoyancy
at the rear of the head (figure 21c) again shows considerable variation among
experiments as in the full-depth releases plotted in figure 20(c).

Finally, figure 22 shows the Reynolds number Reh = hmuf /ν, based on the
equivalent height of the head and the front velocity, as a function of the distance
along the channel. The experimental data for runs 1 and 15, for which Fh departs from
the general trend in the similarity regime in figures 20(b) and 21(b), and also are cases
where xf and uf are not consistent with the self-similar law in figures 5, 6, 8 and 9,
are associated with Reynolds numbers Re � 1200 (dotted line in figure 22), suggesting
that viscous effects are important in these cases (Simpson 1997). In addition, runs 3–5,
7, 16 and 19 require a more careful analysis because they have only a short stage in
which the front evolution follows the expected similarity power law since the Reynolds
number decreases below 1200. We discuss these special cases in § 5.

5. Discussion
Figure 23 presents the Froude number Fh based on the maximum head height in the

similarity phase shown in figures 20(b) and 21(b) as a function of the fractional depth
φh =hm/H based on the instantaneous head height. The data show some scatter, but
appear to approach a limiting value of Fh for φh → 0. In particular, for φh < 0.15,
the average of all values gives 〈Fh〉 = 0.86 ± 0.10, and this value is taken as the limit
for small factional depths. At larger values of φh > 0.2 there is a decrease in Fh with
increasing φh.

In this figure we also show the curve representing the relationship (2.13) from Shin
et al. (2004) for the Froude number as a function of the initial fractional depth in
the constant-velocity phase. The experimental data lie below this curve in the whole
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Figure 23. Froude number at the front as a function of the instantaneous fractional depth
for the similarity phase. The solid line is given by (2.13) and the dashed line by (2.12) with the
empirical coefficient β2 = 1. The value Fh(φh → 0) = 0.86 (horizontal dotted line) and the solid
line given suggest φeff ≈ 0.26.

range of φh obtained. This difference may result from the depth used in (2.14) being
the depth in the hydrostatic part of the flow, not at the head where non-hydrostatic
processes are significant. The Rottman & Simpson (1983) formulation of the Benjamin
front condition with the parameter β2 = 1 obtained by fitting their experimental data
is also shown in figure 23. This formula passes through the data points, but the
dependence on φh is larger than observed, especially for small φh.

The two-layer theories of Benjamin (1968) and Shin et al. (2004) assume that
there is no stress at the lower boundary and that the velocities in the two layers are
constant with height. When the ambient fluid is much deeper than the current, this
latter approximation is not strictly correct. There will be flow in the ambient close to
the current, but the velocity will decrease with distance above the current.

The effect of the velocity distribution in the ambient fluid can be modelled as
follows. Suppose that only a part z <Heff of the ambient fluid participates in the
hydrodynamic drag on the current. It seems reasonable to suppose that, in the rest
frame of the current, the velocity of the ambient fluid changes from u ≈ u1 for z <Heff

to u ≈ uf for z >Heff with a smooth transition at z ≈ Heff, as indicated by the arrows
in the idealized sketch depicted in figure 24. Dimensional analysis suggests that the
thickness of the ambient fluid layer involved in the form drag should be of the order
of the gravity current depth when the ambient fluid depth H is too large to be a
characteristic depth of the flow related to the dense current.

An estimate of Heff may be obtained by considering u = u1 for z � Heff, and ignoring
the fluid above z > Heff in the local momentum balance in the front region (i.e. taking
u = uf for z > Heff). Replacing F and φ with the values of the Fh(φ → 0) and

φeff = hm/Heff, respectively, (2.13) becomes

φeff =
[
1 − F 2

h (φh → 0)
]
. (5.1)
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Figure 24. Flow around the gravity current for a deep ambient fluid in the frame of
reference moving with the head.

Thus the suggested experimental value Fh(φ → 0) ≈ 0.86 provides an estimate of
φeff ≈ 0.26 and then Heff ≈ hm/0.26 ≈ 3.85hm. According to this estimate, the depth of
the ambient fluid layer involved in the drag is about four times the depth of the
gravity current head, in agreement with the above dimensional considerations.

This value of φeff ≈ 0.26 is shown in figure 23. For smaller values of φh the front
Froude number Fh is approximately constant, while for larger values Fh decreases,
in a manner consistent with (2.13). This behaviour supports the idea that a local
momentum balance applies at the head during the similarity phase.

While the Froude number based on the local head height is constant during the
similarity phase, the value for a deep ambient fluid, Fh(φh → 0) ≈ 0.86, implies that
the similarity coefficient in (2.6) is ξ ≈ 1.24. This value is small when it is compared
with those obtained from figures 5, 6, 8 and 9. Consequently, the self-similar flow
described in § 2.1 seems to be connected with the depth of the current behind the
head, and not with the head height in a direct way.

In the similarity phase, (2.6) shows that ξ is an increasing function of the front
Froude number Ff . Figure 25 shows values of ξ , determined from the front positions,
plotted as functions of Fh and Fr . The value of ξ is not uniquely related to the Froude
number Fh, but increases with the Froude number Ff taken as the Froude number

Fr based on the height hr at the rear of the head. This trend is consistent with (2.6),
but the dependence is not as strong as the theory suggests. The error bars for Fr

are mainly determined by the uncertainty in the measurements of hr resulting from
variations in depth owing to flow perturbations such as those shown in figure 12.

While the variations in the value of ξ are correlated with the Froude number Fr

based on the depth at the rear of the head, we also find the values vary with the
Reynolds number of the head. This relationship is shown in figure 26 which shows
that ξ increases with Reynolds number. This correlation implies that Fr increases
with Reynolds number, while Fh remains constant.
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Figure 25. Coefficient ξ of the self-similar law for the front position evolution as a function
of the Froude number calculated with hm and hr . (Symbols are associated with runs indicated
in table 1.)
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Figure 26. Coefficient ξ of the self-similar law as a function of the Reynolds number
calculated with hm.

Figures 25 and 26 include the values of ξ for runs 3–5 which have only a short
similarity phase before the currents enter the viscous regimes and for these cases
400 <Reh < 1000. The corresponding data points are consistent with the rest of the
results. For runs 7, 16 and 19 this phase is also short, but the corresponding Re
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is higher (Re 	 1000). Figure 26 suggests that the lower limit ξ ≈ 1.24 cited above
corresponds to currents with low Reynolds numbers, and which may be entering the
viscous phase.

Unfortunately, our results do not allow us to infer whether ξ and Fr have asymptotic
values for large Reynolds numbers or not. If these asymptotic values exist, the
corresponding experiments seem to be out of the range of our experiments. Studies
at higher Reynolds numbers are needed to elucidate this point.

6. Conclusions
We have presented the first objective measurements of the shape and buoyancy of

a gravity current during its successive phases when it is generated by a lock release.
As a consequence, we have been able to measure the Froude number of the currents
as they evolve in space and time.

It is well established that when dense fluid is released from a lock, the motion of
the ensuing current has three phases. In the initial constant-velocity phase, the speed
of the front is constant and the depth of the current increases from the front to a
constant value. The Froude number FD based on the initial lock depth D is constant
during this phase and can be derived from energy-conserving theory (Shin et al. 2004).

This constant-velocity phase persists until the finite volume of the lock becomes
significant. This transition occurs when a disturbance (either a bore or an expansion
wave depending on the lock geometry) reflects from the back wall of the lock and
catches up with the front. From that point, the current tends to a self-similar profile,
in which the current depth increases towards the rear of the head. The head itself
retains an almost constant height, and has an abrupt reduction in depth at its rear.

In the similarity phase, the current shape behind the head is consistent with a
similarity solution of the shallow-water equations, with the current depth increasing
towards the head. A remarkable feature of the current during this phase is that
the Froude number Fh based on the maximum height of the head is approximately
constant with a value of 0.86. Thus the current undergoes a transition from an initial
regime when the Froude number based on the initial conditions (the lock depth) is
constant to one in which the current head is in a local balance.

The constancy of the Froude number Fh based on the head height in a deep
ambient fluid is consistent with a local momentum balance in the similarity phase. In
this case, our measurements suggest that the effect of the current on the ambient fluid
extends to about four times the height of the head. Above that height the ambient
fluid is unaffected by the current.

Finally, there is a viscous phase in which the buoyancy forces are balanced by
viscous drag. Our experiments show that the head decreases in height and eventually
disappears and that the profiles are consistent with lubrication theory (Huppert 1982).

We now return to a major issue of the application of gravity current theory to
practical situations. These often involve similarity solutions of the shallow-water
equations and solutions to simpler integral models where the shape and structure of
the current is assumed a priori. Both approaches require the specification of a front
condition, and this usually takes the form of the specification of the front Froude
number as a function of the fractional depth. Since there is an inertial-buoyancy
balance in both the constant-velocity and similarity phases, the Froude number for
the constant-velocity phase (both theoretical, e.g. Benjamin 1968; or experimental,
e.g. Huppert and Simpson 1980) has been applied. However, there is no justification
for this assumption.
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On the contrary, our results suggest that using only a front Froude number
based on the head height is, strictly speaking, not appropriate for applications
to similarity theories for the shallow-water equations. As shown in figure 25, the
similarity coefficient ξ correlates with the Froude number Fr based on the buoyancy
at the rear of the head. Unfortunately, Fr is not a constant and thus the ratio between
both Froude numbers has to be related with an additional characteristic parameter
of the flow, such as the Reynolds number (see figure 26). More work is required
to obtain the relationship that relates both Froude numbers and the characteristic
parameters of the flow.
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