
Chapter 4

Dimensional analysis

4.1 Independence of units

The governing equations of physics relate quantities with the same dimen-
sions. The dimensions of any quantity may be expressed in terms of a fun-
damental set of units. We shall use the SI system, in which the fundamental set
that concerns us is mass (kilogram – kg), length (meter – m), time (second – s)
and temperature (Kelvin – K).

Dimensional analysis can be used to predict the functional forms of rela-
tions between physical quantities and also to produce nondimensional groups
that govern flow characteristics.

As the simplest possible example, consider the system of a mass on a string.
Without knowing anything about the dynamics of the system, the parameters
that come into play are the length of the string l (m), the acceleration due to
gravity, g (ms−2), and the mass of the pendulum m (kg). The only quantity
with the dimensions of time that can be constructed is (l/g)1/2. Hence, if the
pendulum performs periodic motion, which it will for small enough ampli-
tudes, the frequency of the motion must be proportional to (g/l)1/2 (for very
small amplitudes, the frequency is (g/l)1/2/2π).

4.2 Buckingham’s Π theorem

The Buckingham Π theorem states that the relation among n dimensional quan-
tities q1, . . . , qn,

g(q1, . . . , qn) = 0, (4.1)

can be represented as
G(Π1, . . . ,Πn−m) (4.2)

where the Πi are all the dimensionless combinations of the qn that can be
formed. A formal procedure for using this theorem is given in ?.
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Example 4.1 Consider the two layer fluid shown in figure 3.8. The dimensional pa-
rameters are the densities ρ1 and ρ2, the depthsH1 andH2, gravity g and the viscosity
ν. Suppose we are concerned with oscillations with frequency ω.

If we assume that viscous effects are unimportant, then flow in the system depends
on 6 independent variables. Since the dimensions of these variables include mass M,
length L and time T, the properties of the system can be described by 6 − 3 = 3,
dimensionless variables.

The choice is somewhat arbitrary, but possible choices are

γ =
ρ1

ρ2
,

D =
H1

H2

and

Ω = ω

√
H1

g
.

Formally we can write
Ω = F(γ,D).

However, this is somewhat mindless.

Example 4.2 A more appropriate way to describe the flow is to note that restoring
force across the interface is due to the density difference. Hence we use instead of γ,
the dimensionless group

ρ2 − ρ1

ρ2
= 1− γ.

The noting that this is the only parameter involving mass, we can combine it with
gravity to get the reduced gravity

g′ = g
ρ2 − ρ1

ρ2
.

Then, since g′ is the only variable with the dimensions of time we conclude that

ω =
√

g′

H1
F (D).

This is exactly the same result as in the previous example, but is written in a more
revealing way.

4.3 Equations of motion in dimensionless form

In addition, the equations of motion can be nondimensionalized. We take char-
acteristic values for quantities, such as L for length, U for velocity, and so
on, which we substitute into the equations. Simplifying the equations yields
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nondimensional groups which, along with boundary conditions, determine the
behavior of the system.

Probably the most important case in fluid mechanics is the Navier–Stokes
equations. Taking L and U as above, as well as time scale T , pressure scale P ,
and density scale ρ0, gives

U

T

∂u

∂t
+
U2

L
(u · ∇)u = − P

ρ0L

1
ρ
∇p+

νU

L2
∇2u. (4.3)

If there is no exterior imposed time scale, then T = L/U . In addition, the
pressure force must balance the inertial terms, so P ∼ ρ0U

2 . Then

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

1
Re
∇2u, (4.4)

where the Reynolds number is defined by

Re ≡ UL

ν
. (4.5)

Hence in general, the behavior of a viscous flow with no body forces is de-
termined entirely by its Reynolds number and geometry. Two flows with the
same Reynolds number are kinematically similar, while two flows with the same
geometry are geometrically similar: if both hold, the flows are dynamically similar.

For large Reynolds number, (4.4) suggests that the last term is negligible.
This leads to the Euler equations, which are known to be an incomplete de-
scription of fluid motion. This apparent paradox may be reconciled with ob-
servations by the presence of a thin boundary layer next to solid surfaces, in
which the influence of viscosity cannot be neglected.

For a solid boundary at y = 0, the term uyy will be much larger than the uxx

term, because variations are much more rapid in the y-direction. If the bound-
ary layer has width δ, the viscous term may be balanced with the advective
term to give U2/L ∼ νU/δ2, which shows that the boundary layer width is

δ = LRe−1/2. (4.6)

Example 4.3 Nuclear blast front. Consider an intense detonation. Shortly after the
blast the spread of the front is characterized only by the amount of energy E released
and the density of the fluid, ρ. How does the front evolve? How could the energy
released be computed from pictures of the blast?

It is necessary to make two assumptions.

• that the blast wave is spherical and characterized by a single scale – its radiusR.
Figure 4.1 shows that this is indeed the case (of course the presence of the ground
makes it a hemisphere).

• that the air moves adiabatically. This is reasonable because the motion is fast, so
there is little time to transfer heat.
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Figure 4.1: The ball of fire at 15ms, showing the sharpness of its edge. From
Taylor (1950).

Then the radius R of the detonation wave depends on E, ρ and the time t. These 4
variables depend on M, L and T, so there is a single nondimensional parameter.

Noting that [E] = ML2T−2, then R = C
(

Et2

ρ

)1/5

. The dimensionless parameter

is C = C(γ), where γ = cp

cV
is the ratio of specific heats for air.

Figure 4.2 confirms the dimensional analysis. Taylor (1950)1 estimated the yield
of the 1945 bomb to be 16.8 kilotons, in fair agreement with the figure of 20 kilotons
announced by President Truman, and based on measurements of air velocity and tem-
peratures.

4.4 Application to water waves

A classical fluid dynamical problem with environmental consequences is the
motion of waves on the surface of water. Waves are described by their wave
length λ and phase speed cp, which is the speed of the wave crests. Alterna-
tively, we can use the wave frequency ω = cp

λ , as a parameter.
Assuming that the viscosity and surface tension of the water is unimpor-

tant, cp depends on λ, gravity g and the water depth H . Dimensional analysis
then implies that

cp =
√
gHf

(
λ

H

)
, (4.7)

1G.I. Taylor 1885 – 1975. Considered by many to be the greatest fluid dynamicist. This analysis
is typical of the way he was able to get simple and accurate answers to very complex problems.
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Figure 4.2: Logarithmic plot showing R5/2 is proportional to t. From Taylor
(1950).
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where f
(

λ
H

)
is a dimensionless function.

4.4.1 Deep water waves

When the water is much deeper than the wavelength of the waves, i.e λ << H ,
we expect the speed to be independent of the depth. In that case (4.7) implies

that f
(

λ
H

)
∝

√
λ
H and the speed is given by

cp = K1

√
gλ, (4.8)

where K1 is a dimensionless constant.
Thus the speed of deep water waves depends on their wavelength, and

such waves are called dispersive. Long waves travel faster than short waves.
This implies that when a storm generates waves in the deep ocean, the long
waves arrive at the coast first followed by the shorter waves. By observing the
different wavelengths (or, more easily, the different frequencies) of waves at
successive times it is possible to calculate the distance to the storm.

4.4.2 Shallow water waves

When waves arrive at a beach the other limit λ >> H applies. In that limit we
expect the wave speed to be independent of λ, and so f

(
λ
H

)
= K2 a dimen-

sionless constant and

cp = K2

√
gH. (4.9)

In this case the wave speed is independent of the wavelength and such waves
are called nondispersive. Since waves on shallow water have wavelengths much
larger than the depth, they are also referred to as long waves.

Equation (4.9) is the reason that it is possible to go surfing! Since the wave
speed decreases as the depth decreases, waves approaching a beach at an angle
are refracted parallel to the beach (see figure 4.3). As can bed seen from the
figure, the portion of the wave crest near the beach travels slower then the
portion further away, allowing the latter part to catch up and align the wave
crest parallel to the beach.

In order to determine the full form of the function f
(

λ
H

)
it is necessary to

carry out a theoretical analysis. This analysis is beyond the scope of this course,
but can be found in many textbooks e.g. Lighthill (1978), chapter 3. The result
is

f

(
λ

H

)
=

√
λ

2πH
tanh

(
2πH
λ

)
. (4.10)

Thus

cp =

√
gλ

2π
tanh

(
2πH
λ

)
, (4.11)
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wave crest
increasing depth

Figure 4.3: The refraction of waves approaching a beach. Since the speed is
greater in deeper water, the crests curve around parallel to the shore.

which is known as the dispersion relation for water waves. (Usually the disper-
sion relation relates the frequency to the wavelength, but this is an equivalent
relation.) Taking the appropriate limits for λ

H , we find that K1 = 1√
2π

and
K2 = 1. Figure 4.4 is a plot of the wave speed as a function of the wave length.
We see that cp increases with wave length, and the fastest waves are waves in
shallow water, with a wave speed cp =

√
gH .

4.4.3 Hydraulics of a river

If we throw a rock into a stationary pond waves will propagate away from the
point of impact – the fastest waves will be long waves that travel with speed√
gH . Suppose instead that we throw the rock into a river flowing with speed

U . Waves will then travel downstream with maximum speed U +
√
gH , while

waves will travel upstream with a maximum speed U −
√
gH . Thus when

U >
√
gH , no waves will travel upstream. A river flowing at a speed greater

than the long wave speed is said to be supercritical, since no information can
propagate upstream. This is similar to a supersonic flow, where the speed is
faster than the speed of sound waves; so for a jet travelling at a supersonic
speed, the sound is left behind and the approach of the jet can not be heard.
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Figure 4.4: The wave speed c given by linear theory for waves of varying wave-
length λ on water of uniform depth. Note the transition from the deep-water

value
√

gλ
2π to the long wave value

√
gH . From Lighthill (1978).

4.4.4 Froude number

The character of a river flow can be determined by the Froude number F ≡
U√
gH

. Supercritical flow is given by F > 1 and subcritical flow by F < 1. In

subcritical flow information can propagate both upstream and downstream,
while it can only propagate downstream in a supercritical flow.

Suppose a river flow is supercritical and at some time an obstacle partially
blocking the flow is placed at some location. Since information can only propa-
gate downstream, the presence of the obstacle is undetectable to the oncoming
river ahead of the obstacle. Clearly if the obstacle is large enough to reduce the
river flow this will lead to a increase in the water level and this is unsustain-
able.

The way the river responds is to create a hydraulic jump, across which the
flow changes from supercritical upstream to subcritical downstream as shown
in figure 4.5. Downstream of the jump, since the flow is supercritical, infor-
mation can propagate upstream and so the presence of the obstacle is known
up to the jump. As the jump propagates upstream the river level changes in
response to the obstacle.

4.4.5 Flow over a weir

Consider flow over a weir as shown in figure 4.7. Suppose that the depth of
the water is d(x) and the (uniform) speed is u(x). Then the volume flow rate Q
per unit width is

Q = u(x)d(x). (4.12)
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D u2 h2
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Figure 4.5: A hydraulic jump. The control volume is the region ABCD includ-
ing the free surface from C to D.

Figure 4.6: Turbulent bore on the River Severn, UK.
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D
h(x) η(x)

Figure 4.7: The flow over a weir. The slope of the weir is supposed sufficiently
small for the flow to be hydrostatic.

Obviously, if the flow is steady conservation of mass implies thatQ is indepen-
dent of the downstream location x. Apply Bernoulli’s equation along the free
surface from the point A in the reservoir, where the flow is slow and the water
depth is D, to a point B over the weir. If η(x) is the height of the surface over
the weir,

pA + gρD = pA + gρη + 1
2ρu

2. (4.13)

Thus

u2 = 2g(D − η). (4.14)

Given the height of the weir is h(x),

d = η − h. (4.15)

Hence using (4.12) and (4.15) in (4.14) we get

u3 − u [2g(D − h)]− 2gQ = 0. (4.16)

Differentiate (4.16) with respect to x, noting that Q is constant, to get

u′
(
3u2 − [2g(D − h)]

)
− 2guh′ = 0. (4.17)

At the top of the weir, h′ = 0 and h = hm, and at that point

u2 =
2
3
g(D − hm). (4.18)

The Froude number F based on the velocity and depth at the top of the weir is

F =
u√

g(η − hm)
. (4.19)

From (4.14)
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g(η − hm) = g(d− hm)− 1
2u

2 =
2
3
g(D − hm), (4.20)

and so by (4.18) we see that, at the crest of the weir, F = 1. Thus the flow is
critical at the crest. The crest is said to be a control point for the flow.

Obviously, the flow is subcritical in the reservoir, so what happens down-
stream of the crest? At the crest of the weir

u3 = gQ, (4.21)

so that (4.16) may be rewritten as

h = D − u2

2g
− Q

u
, (4.22)

and the turning points occur at the values of u given by (4.21).
The curve h(u) is shown in figure 4.8. Upstream in the reservoir corre-

sponds to the pointR and as the flow approaches the crest, it follows the arrow
to the right. At the crest C, the solution has two branches. Either the speed can
decrease again downstream and the flow remains subcritical (the solution re-
verses direction back towards R), or the speed can increase and the solution is
on a different, supercritical branch.

Problem 4.1 From a consideration of the Navier-Stokes equations show that a reason-
able estimate of the viscous drag on a sphere, of radius a and moving with speed U , is
νU
a2 . Hence show that a reasonable equation for the motion of a sphere, displaced verti-
cally a small distance s from its equilibrium position in a viscous fluid with buoyancy
frequency N , is

d2s

dt2
+

ν

a2

ds

dt
+N2s = 0.

Solve this equation for a sphere released from rest from a position s0 above its
equilibrium position. Using reasonable estimates for N, ν and a from the laboratory
experiment, discuss whether this is a good model for your observations.

Problem 4.2 Waves of small wavelength, such as ripples on the sea surface, ate influ-
enced by the surface tension T of the free surface. The surface tension T is the force per
unit length of surface and for water has the value T = 0.074Nm−2.

Use dimensional analysis to show that

T

gρλ2

is a dimensionless group. Hence show that the wave speed cp can be written as

cp =
√
gHf

(
λ

H
,
T

gρλ2

)
.
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h(u)
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(gQ)⅓

R

u

Figure 4.8: The depth h plotted against the flow speed u. The reservoir is de-
noted by the point R and the crest of the weir by C.
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Figure 4.9: The wave speed c for ripples on deep water. From Lighthill (1978)).

In deep water, and for small surface tension show that, to a first approximation, the
wave speed is given by

cp =

√
gλ

2π

(
1 +K

T

gρλ2

)
,

whereK is a dimensionless constant. Compare this result with the exact solution given
in figure 4.9.

Problem 4.3 Apply conservation of mass flux and momentum flux to the control vol-
ume around the hydraulic jump shown in figure 4.5, and calculate the speed and depth
of the flow on the downstream side of the jump. Show that F > 1 on the upstream side
and F < 1 on the downstream side. By calculating the energy fluxes into and out of
the control volume show that energy is dissipated in the jump.
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