
Chapter 3

Stratification

A fluid in which the density ρ varies in space, i.e. ρ = ρ(x) is said to be strati-
fied. In a fluid at rest (2.26) reduces to

∇p = ρg (3.1)

Consequently, in a gravitational field

∂ρ

∂z
= −gρ, (3.2)

where z is measured upwards, and the pressure must be constant on a hori-
zontal surface i.e. ρ = ρ(z). There are then two possibilities: the density either
decreases or increases with height. We consider the two possibilities separately.

3.1 Stability

A standard approach in dynamics is to enquire about the stability of the equi-
librium. This is achieved by considering a small departure (perturbation) from
the equilibrium state. Since such perturbations always occur in nature due to
random events that we have no control over, the response of the system tells
us what is likely to happen in practice. A familiar example is that of a pendu-
lum consisting of a mass on the end of a rigid rod (see figure 3.1). There are
two equilibrium positions: one where the mass hangs directly below the pivot
(figure 3.1 (a)) and one where it is directly above the pivot (figure 3.1 (b)). Com-
mon experience tells us that one of these equilibria is stable, while the other is
unstable. When the mass hangs below the pivot as in figure 3.1 (a) a small per-
turbation is subject to a force that restores it to its equilibrium position. This
equilibrium is said to be stable. On the other hand, when the mass is directly
above the pivot, a small perturbation is amplified and the mass moves towards
the stable equilibrium. This equilibrium is said to be unstable.

The difference between these two cases is that for the pendulum the down-
ward gravitational force on the mass has a component that moves the mass
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(b)(a)

Figure 3.1: A schematic showing the departure from equilibrium of a pendu-
lum. (a) The stable equilibrium of a standard pendulum. (b) The unstable
equilibrium of an inverted pendulum.
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Figure 3.2: A schematic showing the density perturbation for a small parcel
raised a distance s from its equilibrium position.

towards the equilibrium position. For the inverted pendulum this downward
force moves the mass away from the equilibrium position. We will see in chap-
ter 4that dimensional analysis shows that the pendulum oscillates with a fre-
quency ω ∝

√
l/g. This is a property of all stable equilibria – small departures

cause the system to oscillate about the equilibrium position. The final return to
equilibrium is caused by damping.

In natural systems these principles imply that the system is usually in a
state close to a stable equilibrium and that random natural perturbations cause
oscillations – usually in the form of waves – about this equilibrium. Hence
waves play an important role in environmental flows.

3.2 Stable density stratification

We first consider the case where the density decreases with height as shown
in figure 3.2. Since the pressure gradient is vertical, it is balanced by gravity
through the hydrostatic relation (1.5). Thus the stationary state is an equilib-
rium state. Consider a small parcel of fluid of volume dV raised a (small) dis-
tance s above its initial position, without exchanging mass with its surround-
ings. Then, to a first approximation, the density of the parcel exceeds that of its
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surroundings by an amount δρ given by

δρ = −sdρ
dz
. (3.3)

Since the parcel is denser than its surroundings it experiences a downward
buoyancy force gδρdV . This force tends to restore the parcel to its original po-
sition, and so the equilibrium is stable. The stratification is said to be statically
stable since the equilibrium is from a state of rest. If the fluid is moving a dif-
ferent criterion determines whether the flow is stable or not.

This result has the important implication that natural bodies of fluid tend
to be stably stratified. The warmest water in a lake or reservoir is at the surface,
and the hottest air in a room is near the ceiling. It is also the reason why the
temperature in the stratosphere increases with height. Thus the study of stably
stratified fluids is fundamental to environmental fluid dynamics.

Newton’s second law of motion gives the acceleration of the parcel as

ρdV
d2s

dt2
= −

(
−sg dρ

dz
dV

)
. (3.4)

This equation can be re-arranged to

d2s

dt2
+N2s = 0, (3.5)

where

N ≡

√
−g
ρ

dρ

dz
, (3.6)

is the buoyancy frequency1 When the density decreases with height dρ
dz < 0, and

so the term under the square root in (3.6) is positive and N is real. In general
N = N(z) and the strength of the stratification increases with N .

When N is a constant, equation (3.5) is the equation for simple harmonic
motion, and the general solution is

s(t) = A cosNt+B sinNt, (3.7)

where A and B are arbitrary constants, whose values are set by the initial con-
ditions. This solution shows that the parcel will oscillate vertically with fre-
quency N . (In fact this result is only true for an infinitesimal parcel in an invis-
cid fluid - see chapter ??.) The period of the oscillations is 2π

N .
The buoyancy frequency N is the key parameter describing a stratified

fluid. It has dimensions of T−1, and increases with the magnitude of the den-
sity gradient. Thus the strength of the stratification is proportional to N , as
is the oscillation of fluid parcels. In any system with a restoring force pertur-
bations about an equilibrium state generate waves. In a stably stratified fluid

1The buoyancy frequency is also known as the Brunt-Väisälä frequency. David Brunt (1886
-1965), Welsh meteorologist. Vilho Väisälä (1889-1969) Finnish oceanographer.
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Figure 3.3: Observed stratification frequency in the Pacific. Left: Stability of
the deep thermocline east of the Kuroshio. Right: Stability of a shallow ther-
mocline typical of the tropics. Note the change of scales.

these waves are called internal gravity waves (IGW) and these are discussed in
chapter ??.

In the atmosphere typical values of N are 10−2s−1, and so the periods of
the IGW are 2π

N ≈ 10 mins. Similar values are found in the ocean. In a room
temperature variations are often around 5 K over a height of 2 m. This implies
values of N of about 10−1s−1 and wave periods of 20 sec or so.

The inverse time scale N−1 is a measure of the response time of the stratifi-
cation. If a process occurs on a time much shorter than N−1, so that Nt << 1,
then the stratification does not have time to respond and so the fluid behaves
as though it is unstratified. So the propagation of say sound waves in a room,
which take only a few milliseconds to travel across the room are not influenced
by the stratification. So what you hear does not depend on how well ventilated
the room is. On the other hand an air-conditioning system with a cycle time
of, say, 10 mins, will generate motions that are influenced by the temperature
variations within the room. We will see examples of this in chapter ??.

Example 3.1 The buoyancy frequency N of the atmosphere is calculated using the
potential temperature. Consider the standard atmosphere shown in figure 1.13.

(a) Troposphere
The observed temperature gradient is -6.5 Kkm−1. The adiabatic lapse rate is

− g
cp

= −9.8Kkm−1. Hence the potential temperature gradient is +3.5 Kkm−1. Then

N =
√

g

T0

dT

dz
. (3.8)

Hence, taking T0 = 300K, g = 9.8ms−2, N = 0.011s−1.
(b) Stratosphere
In the lower part of the stratosphere, the observed temperature gradient is +1.0

Kkm−1. The adiabatic lapse rate is − g
cp

= −9.8Kkm−1. Hence the potential temper-
ature gradient is +10.8 Kkm−1. In this case N = 0.019s−1.
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Figure 3.4: Temperature profiles measured at various times in a meeting room.
From Skistad (2002)

Exercise 3.1 Calculate N in the upper part of the stratosphere where the observed
temperature gradient is +2.8 Kkm−1.

3.3 Unstable density stratification

The case where the density increases with height is shown in figure 3.6. The
argument given in § 3.2 follows through as before except that now N2 < 0 and
the buoyancy frequency is imaginary. Write M = iN and, in that case (3.5) has
a solution of the form

s(t) = AeMt +Be−Mt, (3.9)

where A and B are arbitrary constants. Since we can choose the sign of M
(which is a real number), (3.9) implies that s grows exponentially with time.
Hence the departure from equilibrium increases, and the stratification is un-
stable. It is said to be statically unstable because we are considering the stability
of a fluid initially at rest.

This mathematical argument is consistent with our physical intuition. Fig-
ure 3.6 shows that when a parcel is raised above its initial position the density
perturbation δρ < 0 and so the parcel is buoyant. Consequently, it will continue
to rise.

Exercise 3.2 Show that the density perturbation of a parcel initially displaced down-
wards is positive and that it will continue to sink.
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Figure 3.5: A schematic showing the density perturbation for a small parcel
raised a distance s from its equilibrium position.

Exercise 3.3 A stable linear density gradient is easily created in the laboratory. To fill
a tank of volume V , fill two identical buckets each to a volume 1

2V . One bucket B1

contains water of the lowest density ρ1 required and the other B2 contains fluid with
density ρ2, the highest. The two buckets are connected by a pipe at the bottom so that
the level in both buckets is always the same.

The tank is filled by withdrawing fluid from bucket B2, and this fluid is added to
the tank via a floating sponge to reduce mixing. B2 is continually stirred so that it is
well mixed. As fluid is withdrawn, fluid from B1 flows into B2 so that the fluid levels
in each are the same.

Set up an equation for the density ρ2 as a function of the volume of fluid in the
tank, and show that, for a tank of constant horizontal cross-section, this implies that
the density decreases linearly with height.

Carry out this procedure in the laboratory, with ρ1 = 1000kgm−3 and ρ2 = 1100kgm−3,
and a depth of about 0.3m. Calculate the buoyancy frequency N . Observe the motion
of a neutrally buoyant sphere (ping pong ball) released from its equilibrium position.
What is the frequency of the oscillations? What causes the motion to be damped so
quickly?
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Figure 3.6: A schematic showing the density perturbation for a small parcel
raised a distance s from its equilibrium position.

ρ1ρ2

B2 B1

Figure 3.7: The ‘double-bucket’ method for the production of a linear density
gradient.
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3.4 The Boussinesq approximation

The Boussinesq approximation recognizes the fact that in many natural and
industrial flows the variations in density are small. In a perfect gas differences
in density are caused by differences in temperature. If fluid of density ρ and
temperature T Kelvin is heated so that its temperature rises by an amount ∆T ,
its density changes by an amount ∆ρ, where (see Problem 2.2)

∆ρ
ρ

= −∆T
T
. (3.10)

In many cases ∆T << T , so that ∆ρ << ρ. For example, differences be-
tween the internal and external temperatures of a building seldom exceed 20K.
In that case, the variation in density is less than 10%. Similar small density dif-
ferences occur in other atmospheric and oceanic flows. On the other hand large
density differences can occur. One example is in a fire where temperatures can
easily exceed 1000K and the density of the heated gases is much less than the
ambient air.

The Navier-Stokes equations (2.26), which express the conservation of mo-
mentum in a fluid, naturally involve the fluid density ρ. On the left hand side
of (2.26) density appears in the inertia of the fluid. On the right hand side it oc-
curs in both the viscous and body force terms. The Boussinesq approximation
takes the density as constant in both the inertia and viscous terms but allows
for variations in density in the body force (gravity) term.

Physically, it is clear what this approximation implies. First, by allowing
variations in density associated with gravity, it means that buoyancy forces
between fluids of different densities are included in the equations. Thus less
dense fluid is subjected to forces which make it rise while heavy fluid sinks.
These density variations are crucial to the study of buoyancy driven flows. If
they are ignored the gravitational field plays no role in the fluid motion.

Second, and most important, variations in the fluid inertia associated with
density differences are ignored. So in a Boussinesq flow the inertia of the flow
is assumed to be the same whether it is a few percent denser than the surround-
ing fluid or a few percent lighter.

Thirdly, by ignoring the change in viscosity with density it is assumed that
variations in fluid properties with density are small and can be ignored.

A full mathematical derivation of the Boussinesq is complex and the inter-
ested reader is referred to Spiegel & Veronis (1960), who discuss in detail the
implications for fluids including the effects of viscosity and diffusion. Here we
restrict ourselves to an analysis of an incompressible and inviscid fluid.

Suppose that the fluid has a density ρ(x, t), which may be written as the
sum of a constant density ρ0 and a perturbation ρ∗(x, t), such that

ρ(x, t) = ρ0 + ρ∗(x, t), (3.11)

where ρ∗(x, t) << ρ0.
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As discussed at the start of the chapter, when a fluid is at rest in a gravita-
tional field, lines of constant density are horizontal (normal to the gravity field
– see (3.1)). Then the density may be written as

ρ∗(x, t) = ρ(z) + ρ′(x, t), (3.12)

where z is the vertical (antiparallel to gravity) coordinate, ρ is the background
vertical density variation and ρ′(x, t) is the density perturbation due to fluid
motion.

The corresponding pressure field is

p(x, t) = p(z) + p′(x, t), (3.13)

the corresponding hydrostatic density field p(z) is given by

dp

dz
= −gρ, (3.14)

In addition the pressure consists of a linear variation−gρ0z associated with the
hydrostatic component due to the (uniform) reference density and p′(x, t) is the
pressure perturbation corresponding to the fluid motion.

Substitution of (3.12) and (3.13) into (2.26) and division by the density gives

∂u
∂t

+ u · ∇u = − 1
ρ0 + ρ+ ρ′

∇p+ g + ν∇2u. (3.15)

Now subtract the hydrostatic pressure field using (3.14) and obtain

∂u
∂t

+ u · ∇u = − 1
ρ0 + ρ+ ρ′

∇p′ + g
ρ′

ρ0 + ρ+ ρ′
+ ν∇2u. (3.16)

The Boussinesq approximation assumes that all density variations are small
compared to ρ0 so that ρ + ρ′ << ρ0, but the limit g ρ′

ρ0
= g′ is finite. Then the

Boussinesq equations become

∂u
∂t

+ u · ∇u = − 1
ρ0
∇p′ + g′ + ν∇2u. (3.17)

The buoyancy force enters the Boussinesq equations (3.17) through the reduced
gravity g′, defined by

g′ ≡ g
ρ′

ρ0
. (3.18)

For the two layer flow shown in figure 3.8, the reduced gravity is given

g′ = g
ρ2 − ρ1

ρ2
. (3.19)

For a Boussinesq fluid, the choice of either ρ1 or ρ2 in the denominator of (3.19).
However, for non-Boussinesq flows the choice of the density in the denomina-
tor is important.



3.5. BAROCLINIC VORTICITY 49

g

ρ1H1

ρ2H2

Figure 3.8: A two layer stratification.

3.5 Baroclinic vorticity

We now consider the consequences of density variations within the fluid. Not-
ing that

u · ∇u = ∇× ω − 1
2
∇ |u|2 , (3.20)

the curl of (2.26) yields the vorticity equation for ω = ∇× u in the form

∂ω

∂t
+ u · ∇ω = ω · ∇u +

1
ρ2
∇ρ×∇p+ ν∇2ω. (3.21)

The effect of buoyancy is shown in the middle term on the left-hand-side of
(3.21),

Γ ≡ 1
ρ2
∇ρ×∇p. (3.22)

This term is non-zero whenever surfaces of constant pressure and density
are non-parallel. In a stationary fluid under gravity the pressure is hydrostatic
and constant pressure surfaces are horizontal. Hence, as discussed in § ??,
if the density field contains horizontal variations, vorticity will be generated,
and flow will occur. When the background density field varies only in the
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Figure 3.9: The baroclinic torque generated when lines of constant density
(isopycnals) are at an angle to lines of constant pressure (isobars).

vertical and is such that the density increases in the direction of gravity, buoy-
ancy forces provide a restoring force and damped oscillations (internal gravity
waves) occur. Such a density field is said to be statically stable . On the other
hand, if the density decreases in the direction of gravity the motion is amplified
and convection ensues. Such a stratification is said to be statically unstable.

The term 1
ρ2∇ρ×∇p is zero if p = p(ρ) and such a fluid is called ‘barotropic’ .

A trivial example is an unstratified fluid with constant density. If 1
ρ2∇ρ×∇p 6=

0 the fluid is called ‘baroclinic’ and the flow results from the baroclinic gen-
eration of vorticity. In non-stationary fluids, such as those in a rotating frame
of reference, surfaces of constant pressure are not necessarily perpendicular to
gravity, and so the terminology has a more general usage.

An important feature of Γ is that whenever it is non-zero flow is generated.
This is the principle behind placing heaters around the perimeter of a room.
Since the temperature and, therefore, the density varies in the horizontal, vor-
ticity is generated (figure 3.5).

Problem 3.1 Solve the differential equation (3.5) subject to the initial conditions that
the parcel is released from rest at a height s0 at t = 0.

Problem 3.2 Calculate N in a room assuming that the temperature increases linearly
from 18oC at the floor to 22oC at the ceiling. The floor to ceiling height is 3m. Calculate
the period of internal gravity waves in the room.
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Problem 3.3 A revolving door is fitted to the room in Exercise 3.2. Calculate the
minimum rotation rate of the door before the disturbance in the room is affected by the
interior stratification. Is this limit likely to be achieved in practice?

Problem 3.4 Show that under the Boussinesq approximation the buoyancy frequency
is given by

N2 = − g

ρ0

dρ

dz
. (3.23)

Consider an exponential density profile ρ(z) = ρ0e
−βz , where β > 0 is a constant.

Show that N as defined by (3.6) is a constant. By considering a linear approximation
to the exponential profile, discuss the implications on the height over which motion can
occur within the validity of the Boussinesq approximation.


