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1. INTRODUCTION 
 
Forecasting of weather conditions such as solar irradiance and wind speed and direction is essential for efficient integration 
of solar and wind power into the energy portfolio. Several metrics can be used to evaluate forecast effectiveness: consistency, 
quality, and value [1]. Consistency refers to the correspondence between the forecast and the judgments made by forecasters 
to determine the forecast (i.e. do the same inputs that are used to determine a forecast produce the same forecast). Quality 
refers to the difference between forecasts and observations. Finally, value refers to the incremental monetary benefits of 
forecasts to users.  There are two prominent groups that use solar forecasts: solar power generators and system operators. In 
an open market, solar power generators would primarily rely on the value criterion because forecast quality does not 
necessarily translate to forecast value. For example, a forecast that has a higher quality during peak net load times of the day, 
when energy prices are high and errors would be more costly, may be more valuable than a forecast that has an overall higher 
quality, but not necessarily at the critical time of day. System operators, however, are primarily concerned with the quality of 
a forecast, as reliability and accurate planning of the power grid is their primary concern. Secondary is forecast value to 
operate the energy market optimally reducing energy generation, transmission, and reserve costs on the grid. For example, an 
underforecast would result in over-procurement of energy at a higher marginal cost and possibly transmission congestion 
near the solar power plant; an overforecast would result in under-procurement of energy, purchase of energy from reserves or 
regulation, and potential operation of  transmission lines below capacity.   
 
The mismatch between what constitutes a good forecast for system operators and power generators has been a recent topic of 
discussion. It is possible for a power generator to benefit economically from using biased (rather than neutral) forecasts, 
which is detrimental to the systems operator’s goal of reliability of the power grid [2].  As such, system operators cannot rely 
solely on the information obtained through energy market commitments or generation schedules and have contracted with 
third party forecasting providers to correctly forecast delivered energy from renewable energy systems.  
 
The California Independent Service Operator (CAISO) allows solar power producers participating in the market process to 
participate in the Participating Intermittent Resource Program (PIRP).  PIRP requires current estimates and historical 
observations of production and meteorological data (global horizontal irradiance (GHI), direct normal irradiance (DNI), 
temperature, wind) [3]. Although plant operators submit day-ahead and hour-ahead hourly forecast schedules under PIRP, 
deviations are netted over the month and ‘uninstructed imbalance energy’ charges are assessed on the net which can be 
positive or negative (reimbursement), i.e. no penalties for forecast errors are applied. Under PIRP there is no incentive for 
generators to provide accurate forecasts. However, utility-scale solar power plants will eventually participate in the energy 
market following the same bidding and settlement rules as conventional power sources (as is already the case for Red 
Electrica in Spain), including wind power (in most energy markets). Recent studies investigated integration of renewable 
energies, predominately wind power, into energy markets. From a power generator’s perspective, several studies focused on 
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optimal bidding strategies. Botterud et al. (2011) found that, using price data from Midwest ISO (MISO), in a market 
structure with a day ahead commitment process, real time settlement, and no deviation penalty, optimal wind energy bids in 
the day ahead market are mostly driven by price expectations (rather than expected energy output); however, adding a 
deviation penalty diminished the difference between the optimal wind energy bid and the wind energy forecast [4].  Fabbri et 
al. (2005) estimated the costs associated with errors in wind power forecasts for the Spanish energy market by assuming 
errors are balanced by reserve energy and found that error prediction costs can be as much as 10% of the total income 
annually from the energy generation [5].  
 
Studies evaluating the value of a forecast from a system operator’s perspective examined how forecasts affect the overall cost 
of operations.  Milligan et al. (1995) found that the most accurate forecast yields the highest benefit from the wind power 
resource, however they found that improving a forecast to 100% accuracy has declining marginal benefits [6]. Using price 
data from New York ISO (NYISO) Ruiz et al. (2009) showed that the cost of operations, optimized based on the constraints 
of the power system, is reduced by up to 2% when using a stochastic based forecast when determining unit commitment 
needs versus a deterministic based forecast [7]. The Western Wind and Solar Integration Study (WWSIS, Lew et al., 2010) 
found that – for a 2020 25% wind and 5% solar (by energy) scenario – using state-of-the-art day-ahead wind and solar 
forecasts in the unit commitment process would reduce Western Electricity Coordinating Council (WECC) operating costs by 
up to $5 billion/yr, with additional cost savings of $500 million/yr for using a perfect forecast [8].   
 
The value of a forecast should be evaluated from both a power generator’s and system operator’s perspective, as both are 
users of forecasts, and such information would be helpful in determining the level of investment into solar energy forecasts. 
However, modeling the value of a forecast to a system operator is very complex, requiring knowledge of available resources, 
start-up and running costs of these resources, and the unit commitment rules used by the system operator. These factors vary 
among system operators and consequently such a study would be specific to each ISO. Large-scale studies such as WWSIS 
have already generalized these factors to investigate cost savings due to wind and solar forecasts. Rather, the purpose of this 
paper is to investigate the spread between the day-ahead market (DAM) and real-time market (RTM) prices and its 
correlation to DAM solar forecast error to assign a more general value of solar forecasts to market participants such as solar 
power generators (after discontinuation of PIRP). The study is applied to the CAISO market which at the end of 2010 
contained 47% of the installed solar power nationwide [9]. Methods are discussed in Section 2, results and discussions are 
presented in Section 3, and conclusions are outlined in Section 4. 
 
2. METHODS 
 
2.1    Energy Price Data and Market Structure 
 
Energy price data was obtained from the CAISO Open Access Same-time Information System (OASIS).  OASIS has over 
4,500 nodes at which a Locational Marginal Price (LMP) is reported. These nodes represent locations in the CAISO power 
grid where energy can be sold into the market.  The LMP is the sum of three components: energy, loss, and congestion. The 
energy component represents the average price of generating a MWh of electricity in the market and by convention is the 
same for all price nodes. The loss component represents the cost of transmission losses associated with the delivery of 
electricity to that price node. The congestion component values the transmission constraints in delivering electricity to a price 
node. All LMP components are reported for the day-ahead (DA) market, hour ahead (HA) market, and real-time (RT) market.   
The DA forecast is submitted at 0530 prior to the operating day, which begins at midnight on the day of submission and 
covers (on an hourly basis) each of the 24 hours of that operating day. Therefore, the DA forecast horizon is 18.5 to 42.5 
hours. The vast majority of conventional generation is scheduled in the DA market (DAM). The HA forecast is submitted 
105 minutes prior to each operating hour. It also provides an advisory forecast for the 7 hours after the operating hour. HA 
prices are not used in this study. 
 
DAM LMP (the market price at which a DA forecast is committed) and RT market (RTM) LMP (the price at which 
settlements are made) from June 1, 2010 to May 31, 2011 for the 63 nodes collocated with solar resource measurement 
stations was used for this study. DAM LMP are reported on the hour for the following hour (i.e the 08:00 DAM LMP is used 
for 08:00-09:00) and were averaged to correspond to instantaneous on the hour GHI data (i.e. for 08:00, the mean of the 
07:00 and 08:00 DAM LMP is used). RTM LMP are reported every five minutes for the following 5 minutes (i.e the 08:00 
RTM LMP is used for 08:00-08:05). To determine hourly RTM LMP, the prices for the half hour before and after the hour 
were averaged (i.e. for 08:00, the mean of values from 07:30 – 8:25 RTM LMP were taken). 
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In calculating revenue from energy sales, we assume that PIRP is discontinued and that – like most other generating 
resources –PV plants participate in the wholesale energy market. We further assume that the 2010/2011 LMP are valid, i.e. 
the LMP does not change due to participation of the additional PV plants in the market. In reality, DAM prices would be 
reduced with increasing solar generation and the RTM price could increase or decrease if solar forecast trend to either over- 
or under-predict [10]. 
 
Since forecast are submitted in the DAM and errors have to be made up in the RTM, the value of the forecast depends on the 
spread between the DAM and RTM pricing (Table 1). For example, if the RTM is much greater than the DAM price and 
there is an overforecast (the amount of energy forecasted exceeds actual delivered energy), there will be a large loss in 
revenue because additional units of energy will need to be purchased at the higher RTM price. Conversely, if there is an 
underforecast (the amount of energy forecasted is less than that which was delivered), there could be a large gain in revenue 
by selling excess energy in the RTM at the higher RTM price. However, energy is not always guaranteed to sell in the RTM, 
and for this reason, excess energy sold in the RTM will be considered only as a potential gain in revenue. The case when the 
RTM price is less than the DAM price can also be considered. If there is an underforecast (overforecast) there could be loss 
(gain) of revenues because greater revenue could have been achieved in the DAM (energy to make up for the overforecast 
can be purchased at a lower price in the RTM). Table 1 summarizes the possible outcomes considering forecast error and the 
price difference between the RTM and DAM. 
 
 
TABLE 1: SUMMARY OF MARKET/FORECAST OUTCOMES 
 
DAM price – 
RTM price 

Forecast 
Bias Outcome Restrictions 

Imposed 

<  0 Over-
forecast 

Have to buy additional energy at higher RTM price:  
loss of revenue 

 

None 

>  0 Over-
forecast 

Still have to buy additional energy to cover under delivery of energy, 
but the price will be at the lower RTM price and thus total revenue will 

be greater than if no forecast error occurred: gain of revenue 
 

If RTM LMP < 0, 
then RTM LMP = 0 

<  0 Under-
forecast 

Potential to sell additional energy at higher RTM price:  
potential gain of revenue  

(only monetized when implementing a deviation penalty) 
 

If RTM LMP > 0, 
then RTM LMP = 0 

>  0 Under-
forecast 

Could have sold additional energy at higher DAM price:  
loss of revenue  

none 

 
 
2.2     Solar Energy Forecasts and Actual Generation 
 
An hourly DA solar forecast for June 1, 2010 through May 31, 2011 was calculated at 63 CIMIS station locations, assuming 
for illustrative purposes a 1 MW PV plant located at the CIMIS station location. Actual hourly delivered energy was 
calculated to be proportional to the CIMIS GHI (Eq. 1). This will overestimate (underestimate) solar energy production in 
higher (lower) panel temperatures such as in the afternoon or at inland sites, but is reasonably accurate and chosen here for 
generality and simplicity. The automated network of over 120 CIMIS weather stations is managed by the California 
Department of Water Resources (DWR). Data quality control yielded 63 CIMIS stations with complete and accurate records 
for the time period under investigation. CIMIS GHI is measured every minute using a LI200S Li-Cor pyranometer and 
reported as an hourly average with an hour-ending time stamp. Data were interpolated to instantaneous on the hour values in 
order to match the forecasted GHI data.  
 
In practice, day-ahead solar forecasts are generated using numerical weather prediction. Forecasted GHI from the North 
American Mesoscale Model (NAM) was used to calculated hourly forecasted energy output for the DAM (Eq. 2). Hourly 
NAM GHI data is published by the National Oceanic and Atmospheric Administration’s (NOAA) NCEP on a 12.5 km x 12.5 
km grid and is available up to 36 h ahead at four times daily, 00, 06, 12, and 18 UTC. DAM bids were set equal to the NAM 
forecasts issued at 12 UTC (0400 local standard time, before the closing of the DAM) on the previous day for the NAM 
gridpoint closest to the CIMIS stations. 
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𝑬𝑪𝑰𝑴𝑰𝑺,𝒉 = 𝑮𝑯𝑰𝑪𝑰𝑴𝑰𝑺,𝒉

𝟏𝟎𝟎𝟎 𝐖 𝐦−𝟐 ∗ 𝟏 𝐌𝐖 ∗ 𝟏𝐡         (1) 
 

  𝑬𝑵𝑨𝑴,𝒉 = 𝑮𝑯𝑰𝑵𝑨𝑴,𝒉
𝟏𝟎𝟎𝟎 𝐖 𝐦−𝟐 ∗ 𝟏 𝐌𝐖 ∗ 𝟏𝐡          (2) 

 
To investigate the effects of a higher quality forecast on forecast value, the value of a bias-corrected NAM forecast was 
compared to the value of the NAM forecast.  Mathiesen et al. found that long-term averaged NAM forecasts are positively 
biased by up to 150 W m-2 [11].  Costal sites exhibited the largest positive bias, especially in summer months, which was 
attributed to issues in modeling the prevalent summer marine layer clouds in these regions. Inland sites generally had a much 
lower bias than coastal sites.  Model-output-statistics (MOS) was employed to remove bias error as a function of forecast 
clear sky index and solar zenith angle.  This correction was applied independently for each CIMIS station using a dynamic 
training set of 8 weeks of (rolling) up-to-date data.  Overall, for our dataset, bias-corrected NAM forecasts reduced the MBE 
in GHI from 57.5 W m-2 to 7.0 W m-2. The root mean square error (RMSE) was reduced from 134.2 W m-2  to 114.1 W m-2. 
We will examine whether this increase in accuracy also yields larger revenue. 
 
2.3 Revenue and Forecast Value 
 
The total yearly revenue for solar energy sales, R, is calculated using the DAM LMP and RTM LMP (Eq. 3). We impose 
(Table 1) that if an overforecast occurs, negative RTM LMP are set equal to zero (this insures that power sellers do not get 
paid for under delivering in the DAM; however, they can procure energy to make-up the forecast error at zero cost in the 
RTM). We also impose that if there is an underforecast, RTM LMP that are greater than zero are set to zero (this insures that 
power generators cannot profit from selling excess energy in the RTM as energy is not guaranteed to be traded in the RTM). 
To determine the forecast value of “best accuracy” forecasts, we also assume that a non-revenue-biased forecast is used when 
bidding into the market. 
 

𝑹𝑵𝑨𝑴 = ∑ 𝑬𝑵𝑨𝑴,𝒉 ∗ �𝑳𝑴𝑷𝑫𝑨𝑴,𝒉 − 𝑳𝑴𝑷𝑹𝑻𝑴,𝒉�𝒉=𝟖𝟕𝟔𝟎
𝒉=𝟏 + 𝑬𝑪𝑰𝑴𝑰𝑺,𝒉 ∗ 𝑳𝑴𝑷𝑹𝑻𝑴,𝒉          (3) 

 
To investigate the impact of an alternative market structure on forecast value, a deviation penalty, Pdev, is defined as: 
 

𝑷𝒅𝒆𝒗,𝒉 = 𝑫𝑷𝑭 ∗ 𝐦𝐚𝐱�𝑳𝑴𝑷𝑫𝑨𝑴,𝒉,𝑳𝑴𝑷𝑹𝑻𝑴,𝒉� ∗ �𝑬𝑵𝑨𝑴,𝒉 − 𝑬𝑪𝑰𝑴𝑰𝑺,𝒉�,   (4) 
 
where DPF is the deviation penalty factor. There is no precedent for the magnitude of the DPF, but a factor of 1.5 is used as it 
ensures that the deviation penalty is always at least 50% larger than the possible gain of a biased forecast. In other words, the 
generator is charged 1.5 times the largest possible value of the forecast error. A proper DPF causes the highest quality 
forecast also to be the most valuable forecast while still not excessively diminishing total revenue for the solar energy 
generator (i.e. if the DPF is too high solar energy generators will be penalized too harshly for providing even near perfect 
forecasts). An optimal DPF was not investigated. When implementing a deviation penalty, we allow all excess energy to be 
sold in the RTM. The total yearly revenue considering a deviation penalty becomes: 
 

𝑹𝑵𝑨𝑴 = ∑ 𝑬𝑵𝑨𝑴,𝒉 ∗ �𝑳𝑴𝑷𝑫𝑨𝑴,𝒉 − 𝑳𝑴𝑷𝑹𝑻𝑴,𝒉�𝒉=𝟖𝟕𝟔𝟎
𝒉=𝟏 + 𝑬𝑪𝑰𝑴𝑰𝑺,𝒉 ∗ 𝑳𝑴𝑷𝑹𝑻𝑴,𝒉 − 𝑷𝒅𝒆𝒗,𝒉     (5) 

 
Revenue from a perfectly accurate forecast was calculated assuming that the delivered energy calculated using CIMIS data 
(Eq. 1) was bid perfectly into the DAM and no RTM settlement took place. 
 

𝑹𝑷𝒆𝒓𝒇𝒆𝒄𝒕 𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕 = ∑ 𝑬𝑪𝑰𝑴𝑰𝑺,𝒉 ∗ 𝑳𝑴𝑷𝑫𝑨𝑴,𝒉
𝒉=𝟖𝟕𝟔𝟎
𝒉=𝟏     (6) 

 
 
3. RESULTS AND DISCUSSION 
3.1     Day-Ahead and Real-Time Market Price Trends 
 
Figure 1 shows the average DAM LMP and RTM LMP for each of the price nodes collocated with a CIMIS station. Mean 
hourly DAM LMP range from $25 to $41 with fairly consistent trends over the course of the day and year. The highest DAM 
LMP occur in the late afternoon during July through September.  RTM LMP are more volatile, but mean hourly RTM LMP 
are similar to that of the DAM ($21 to $34). The highest RTM LMP also occur during July through September. RTM LMP 
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are sometimes negative, indicating that there is an oversupply of electricity and a power supplier would be paid to reduce 
delivery of energy. Both DAM and RTM prices vary by location, but yearly averaged prices show no strong spatial trends 
(not shown). Usually, the highest yearly averaged prices for the DAM occur near the coast, but not all sites follow this trend 
and the difference from coastal to inland sites is small (less that $7/MWh). For the RTM, the highest yearly averaged prices 
are spread throughout the state. In addition to daily and monthly trends, yearly trends in energy prices exist, which are 
ignored in our analysis. Since on a year-to-year basis absolute revenues of different forecasts vary more than ratios, we report 
only ratios of yearly total revenue to compare forecasts.  
 
As presented in Table 1, the difference between the DAM and RTM LMP is important to forecast value. Over a majority of 
the year, the DAM and RTM prices are equal or differ by less than 5 $/MWh, and hourly averages of DAM-RTM over the 
entire year and for all sites yield mean values greater than zero (Fig 1c,f). This means that on average, the DAM prices are 
higher than the RTM prices, which is an incentive for overforecasting in the DAM since additional energy can likely be 
procured at a lower price in the RTM. Additionally, seasonal trends in the DAM-RTM show that overforecasting in the 
mornings in May through September will be particularly profitable as the DAM prices tend to be much higher than the RTM 
prices for those time periods. While evenings in June, July, August, and September could yield high profits for an 
underforecast because the excess energy would be sold at the higher RTM price, we do not allow such profits (Table 1). 
 
3.2     Comparison of Forecast Value 
 
Revenue was calculated for a 1 MW power plant at each CIMIS station for real forecasts (NAM, bias-corrected NAM, Eq. 3) 
and a perfectly accurate forecast (Eq. 6). Figure 2a depicts the ratio of yearly revenue using the NAM forecast to yearly 
revenue assuming a perfect forecast for each site.  The perfect forecast always yields a higher yearly revenue than the NAM 
forecast, with the mean ratio of yearly revenue of 0.96 (Fig 2b). In some locations (mainly inland), the NAM forecast revenue 
is as large as 98% of the perfect forecast revenue.  The likely reason for this is that forecasts are generally more accurate at 
inland sites due to lower cloud occurrence. Figure 2b shows the distribution of site revenue considering the ratio of yearly 
revenue using a real forecast to a perfect forecast. Four real forecast scenarios are analyzed: the NAM forecast and the 
corrected NAM forecast (Eq. 3), and the NAM forecast with deviation penalties and the corrected NAM forecast with 
deviation penalties (Eq. 5). The mean ratios, considering all sites, were 0.96, 0.93, 0.59, and 0.76, respectively. The box plot 
indicates that without deviation penalties, the NAM forecast has more value than the corrected NAM forecast for almost all 
sites; on the other hand with a deviation penalty (as expected) the corrected NAM forecast has more value than the NAM 
forecast for all sites (Fig 2b). 
 
3.3     Example for Coastal Sites 
 
Figure 3a shows that the ratio between yearly revenue (without deviation penalties) using the corrected NAM forecast to the 
NAM forecast is lowest at coastal sites. To illustrate why the NAM forecast is more valuable, particularly at coastal sites, 
Figure 3b plots the Revenue Improvement Factor (RIF, defined as 𝑅𝐼𝐹 = 𝑅𝑁𝐴𝑀𝑐𝑜𝑟𝑟−𝑅𝑁𝐴𝑀

𝑅𝑃𝐹
) by hour of day and month of year 

for all sites within 20 miles of the coast. The corrected NAM yields smaller revenue during the evening year-round and 
throughout the entire day from July through November, but especially in the mornings during July, August, and September. 
This trend is a product of the NAM over-predicting irradiance in coastal areas in the summer mornings due to the prevalent 
marine layer clouds that are forecast to burn off too quickly by the NAM. The bias-corrected forecast is more accurate than 
the uncorrected forecast during the summer mornings, but this is when the spread between the DAM LMP – RTM LMP is 
between 0-5 $/MWh (Fig 1c). Thus, an overforecast during summer mornings (which was the case before the correction), 
actually causes a gain in revenue in the settlement process (over a perfect forecast) because the price at which additional 
energy is procured in the RTM is less than the commitment price in the DAM (see Table 1). In other words, if the DAM price 
is higher than the RTM, the most profitable bid (for a market structure without deviation penalties) would be to forecast 
energy output at maximum capacity. The bias-corrected forecast trends away from forecasting at maximum capacity, thus 
leading to an overall loss of revenue as compared to the uncorrected forecast. Adding in a deviation penalty disincentivizes 
forecast errors, which is why the bias-corrected forecast always produces more value than the uncorrected forecast when 
deviations penalties are considered. 
 
3.4. Forecast Value Versus Error Metrics 
Figure 4a shows the the RIF as a function of ∆𝑀𝐵𝐸 = 𝑀𝐵𝐸𝑁𝐴𝑀 − 𝑀𝐵𝐸𝑁𝐴𝑀𝑐𝑜𝑟𝑟  and ∆𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸𝑁𝐴𝑀 − 𝑅𝑀𝑆𝐸𝑁𝐴𝑀𝑐𝑜𝑟𝑟) 
for each site. The negatively-sloped trend line (linear fit) illustrates that without a deviation penalty, as MBE and RMSE 
improve, forecast value decreases, as measured by the RIF. However, Figure 4b shows that by adding a deviation penalty and 
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allowing for excess energy to be sold in the RTM, forecast value increases as MBE and RMSE improve (as indicated by the 
positively-sloped trend line). Without the deviation penalty the magnitude of the slope of the linear regression line is much 
larger for the MBE versus the RMSE. This indicates that a RMSE improvement (especially if it was bias-neutral) is more 
likely to increase revenue, while a reduction in bias is strongly correlated to a decrease in revenue. 

  

  

  
Figure 1: Average DAM LMP (a), RTM LMP (b), and DAM LMP-RTM LMP (c) for June 1, 2010 – May 31, 2011 for all 63 
price nodes by time of day (for hours with a non-zero solar forecast) versus month. Box plots for DAM LMP (d), RTM LMP 
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(e), DAM LMP-RTM LMP (f) indicating mean, 25th and 75th percenticles, ends, and outliers (red crosses). For RTM LMP, 
outliers greater than 115 $/MWh (83) are not shown. For DAM LMP –RTM LMP, outliers less than -100 $/MWh (66) are 

not shown. 
 

 
 

Figure 2: (a) Ratio of yearly revenue using NAM forecast (Eq. 3) over using a perfect forecast (Eq. 6). (b) Box plot showing 
distribution of site revenue performance based on yearly revenue ratio using a real forecast to a perfect forecast (Eq. 6); real 
forecasts consist of (from left to right) NAM (‘NAM’, mean 0.96), corrected NAM (‘NAMcorr’, mean 0.93) (Eq. 3), NAM 

with deviation penalty (‘NAM_Pen’, mean 0.59) and corrected NAM with deviation penalty (‘NAMcorr_Pen’, mean  
0.76)(Eq. 5). Box plots indicate mean, 25th and 75th percenticles, ends, and outliers (red crosses). 

 

  
Figure 3: (a) Ratio of yearly revenue using corrected NAM forecasts to NAM forecasts (Eq. 3). (b) Revenue improvement 
factor [-] using corrected NAM to NAM plotted by time of day and month averaged for all sites within 20 miles of the coast.  
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Figure 4: Revenue Improvement Factor (RIF, defined as 𝑅𝐼𝐹 =
𝑅𝑁𝐴𝑀𝑐𝑜𝑟𝑟−𝑅𝑁𝐴𝑀

𝑅𝑃𝐹
) as a function of change in MBE and RMSE 

due to the forecast bias correction for each site site without deviation penalties (a, Eq. 3) and with deviations penalties (b, Eq. 
5). 

 2 
 3 
 4 

4. CONCLUSION 5 
 6 
For the California market and meteorological conditions, the yearly revenue of a real numerical weather prediction forecast 7 
by the NAM model is always less than that of a perfect forecast, but for some sites, the real forecast revenue is as much as 8 
98% of the perfect forecast revenue. For this scenario the interests of a grid operator in accurate forecasts are aligned with the 9 
objective of an owner/operator to maximize revenue of energy sales. However, for real forecasts an improvement in forecast 10 
accuracy was found to decrease value for the CAISO energy market; the positively biased NAM forecast produces greater 11 
revenue than a less-biased forecast for all sites. This result is due to correlations in the difference between RTM LMP and 12 
DAM LMP and solar forecast errors. As illustrated for the coastal California sites the months with greatest excess DAM 13 
LMP (May through September) were also those with the largest positive forecast bias. The reduction in forecast bias in the 14 
improved forecast model reduces DAM energy sales and results in a negative revenue improvement factor during July – 15 
September. 16 
 17 
Our simulations confirm findings [2] that biased forecasts can be more valuable to a solar power generator. If forecasts from 18 
generators are not representative of the energy that is expected to be received, market inefficiencies are created by forcing 19 
system operators to procure additional reserves or regulation to balance the additional uncertainty in the forecast. System 20 
operators can respond by producing internal forecasts or procuring forecast from independent 3rd parties. Market 21 
inefficiencies could also be mitigated through deviation penalties, which (by design) cause the value of an accurate forecast 22 
to increase. In this way, deviation penalties can internalize the external costs of inaccurate forecasts to the owner / operator, 23 
but the penalty factor must be chosen carefully to be reasonable to forecast providers. 24 
 25 
We assume that solar power plants participate in the open market and that the LMP does not change due to participation of 26 
the additional solar power plants in the market. In reality, DAM prices would be reduced with increasing solar generation and 27 
the RTM price could be driven up or down if solar forecast trend to either over- or under-predict. Inclusion of the feedback of 28 
PV participation in the energy market is likely to promote accurate forecasts.  Also the results are specific to California with 29 
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unique forecast biases and DAM and RTM price spreads. Regardless, our approach to determining forecast value allows for 30 
the analysis of impact of different energy market structures on the value of accurate forecasts to market participants.  31 
 32 
 33 
 34 
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