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Abstract

Clouds are the dominant source of PV power output variability and their veloc-
ity is a principal input to most short-term forecast models. A new method for
deriving cloud speed from data collected at a triplet of sensors at arbitrary po-
sitions is presented; cloud speed and the angle of the cloud front are determined
from the time delays in two cloud front arrivals at the sensors. Five reference
cells at the 48 MW PV plant at Henderson (NV), were used to provide two
different triplets of sensors. Over a year of operation cloud speeds from 3 to
35 m s−1 were obtained. Cloud speeds are validated using cross-correlation of
power output from 96 inverters at the plant. Overall bias errors were less than
1% and the overall annual RMSE was 20.9%, but results varied with season.
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1. Introduction

Solar photovoltaic (PV) power output variability caused by clouds is a major
barrier to expansion of solar power (e.g. Pelland et al. (2011)). Cloud velocity
is a principal input to most short-term forecast (Chow et al. (2011); Perez et al.
(2010); Yang et al. (2013)) and variability models (Arias-Castro et al. (2013);
Hoff and Perez (2010); Lave and Kleissl (2013)). In simple terms for a cloud
passage, the ramp magnitude depends on the cloud optical depth; in addition
the ramp rate is a function of how long it takes for a cloud to cover the plant,
i.e. the cloud speed.

Cloud Motion Vectors (CMVs) have traditionally been obtained from satel-
lite imagery (Hammer et al. (1999); Leese et al. (1971); Lorenz et al. (2004)) by
tracking a feature in successive images. A statistical method based on condi-
tional probabilities for the motion vector field (Hammer et al. (1999)) predicted
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solar radiation up to 2 hours ahead. Lorenz et al. (2004) used a similar method
to obtain solar radiation forecast up to 6 hours ahead. For longer forecast
time horizons, non-linearities in atmospheric motion and cloud formation and
evaporation cause Numerical Weather Prediction (NWP) models to outperform
satellite-based CMV forecasts (Perez et al. (2010)).

However, not only are satellite data complex to acquire and process, but
infrequent data update (every 15 to 30 min in the case of the GOES-W satel-
lite which covers the area studied in this paper) and data transfer delays also
may not allow detection of mesoscale convective clouds in a timely manner.
Consequently, local ground measurements of cloud speed are advantageous for
short-term solar variability and solar forecasting.

The main goal in this study is to estimate cloud speed without additional
instrumentation using time delays in cloud arrival times detected using triplets
of reference cells and inverter output of a solar power plant. The principal as-
sumption is that the cloud edge shadow can be considered linear and cloud speed
constant as the cloud passes over the triplet. Previous work by Bosch et al.
(2013) covered a special case of sensors arranged orthogonally, equidistant, and
in close proximity. CMV detection required fast data sampling rates and the
validation was limited to four days. The conditions on the sensors set up in the
present paper are less restrictive and results are validated with a year of data.
Section 2 describes the data set, Section 3 presents the methods and quality
control process utilized to derive CMVs from the data. The results obtained
after applying these methods to a year of data are presented and discussed in
Section 4.

Nomenclature

α Angle between the cloud direction and the pair of sensors oA [o].

α0 Angle between the West-East direction and the pair of sensors oA [o].

β Angle between the cloud edge and the pair of sensors oA [o].

θ Angle between the pairs of sensors oA and oB [o].

CCM Cross-Correlation Method.

CMV Cloud Motion Vector.

LCE Linear Cloud Edge.

NWP Numerical Weather Prediction.

MBE Mean Bias Error.

PST Pacific Standard Time.

RMSE Root Mean Squared Error.
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CA Point of the cloud edge shadow that passes over sensor A.

CB Point of the cloud edge shadow that passes over sensor B.

ĉ Unitary vector in the direction of the cloud edge.

D Distance between sensors Sa and Sb.

dA Distance between sensors o and A in a given triplet [m].

dB Distance between sensors o and B in a given triplet [m].

Ia, Ib Global Irradiances received at sensors Sa and Sb [W m−2].

IPOA Plane of Array Irradiance [W m−2].

r Position vector (e.g. ro is the position vector of sensor o) [m].

tA Time needed for the cloud shadow to move from CA to sensor A [s].

tB Time needed for the cloud shadow to move from CB to sensor B [s].

tab Time lag obtained from the maximum cross correlation of signals Ia and
Ib.

v Cloud motion vector [m s−1].

v Magnitude of the cloud motion vector, or cloud speed [m s−1].

vm Cloud speed determined using CCM [m s−1].

vl Cloud speed determined using LCE [m s−1].

2. Data

Plane-of-Array irradiance IPOA was measured using 5 reference cells at the
Sempra US Gas & Power Copper Mountain Solar 1 48 MW PV Plant (Latitude
35.78o; Longitude -115.00o) with a sampling rate of 1 s. Copper Mountain
Solar 1 consists of nearly one million thin-film Cd-Te PV panels model FS-272,
FS-275 and FS-277 spread across more than 1.8 km2 (First Solar, 2011). The
reference cells are tilted towards south and the selected ones can be combined
in two different triplets, as shown in Fig. 1. Other reference cell triplets exist,
but they were not selected due to their larger spacing (520 m or more). Table 1
shows the distances and angles of the selected triplets.

In addition, power output from the 96 inverters located at the plant were
used to validate the cloud speed results obtained from the reference cell triplets.
This second set of data was also acquired at 1 s temporal resolution and has
a typical uncertainty of 1-2%. Other specifications and model names are not
provided due to confidentiality of the data.
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Figure 1: Power plant layout showing the selected reference cells. White boxes near the ’aisles’
of the panel blocks correspond to inverter locations (Google Earth, 2013).

Table 1: Description of the two triplets. Consult Fig. 1 for sensor numbers and variables
names are defined in Fig. 2.

Triplet T1 T2
Sensor o 1 5
Sensor A 2 4
Sensor B 3 3
α0 [o] -3.2 +1.5
θ [o] -36.0 +36.7
dA [m] 284 283
dB [m] 365 360

3. Methods

3.1. Linear Cloud Edge (LCE)

Consider a triplet of sensors o, A and B, in an arbitrary arrangement (Fig. 2).
For simplicity, we will consider the sensor o as the origin of the coordinate
system, and the x axis to be aligned with the oA direction. A sample cloud
edge passing through the array is shown in Fig. 3 using the defined coordinate
system.

We define the time needed for the cloud to move from CA to A, (tA) and
from CB to B, (tB). The cloud motion direction is given by either the lines
BCB, CAA or the motion vector v. Equations 1-13 show the steps to calculate
the CMV.

The main vectors in Fig. 3 can be expressed as:
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Figure 2: Arbitrary triplet of sensors where α0 is the angle between the West-East direction
and the line oA, and θ is the angle between the two pairs of sensors oA and oB. The distances
from sensor o to sensors A and B are given by dA and dB respectively.

Figure 3: Schematic of a linear cloud edge passing a sensor triplet. β is the angle between the
cloud edge and the x axis, and α is the angle between the CMV v and the x axis. CA and
CB are the cloud edge points that pass over sensors A and B.
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v = (v cosα, v sinα)
ro = (0, 0)
rA = (dA, 0)
rB = (dB cos θ, dB sin θ)

rCA
= oCAĉ

rCB
= oCB ĉ

ĉ = (cosβ, sinβ)

(1)

Where ĉ is an unitary vector in the direction of the cloud edge. Basic kinematic
equations can be used to reach the analytic expressions for tA and tB

rA = rCA
+ tAv

rB = rCB
+ tBv

(2)

Applying the cross product with ĉ:

tA =
rA × ĉ

v × ĉ
(3)

tB =
rB × ĉ

v × ĉ
(4)

In general, it can be deduced from Eqs. 3-4 that if a sensor pair is parallel to the
cloud edge, the shadow will reach both sensors at the same time simplifying the
problem. For example, if sensors o and B are parallel to the cloud edge, then
tB will be 0 and β will be equal to θ. On the other hand, if the cloud motion
vector is parallel to the cloud edge, the shadow will always be on the origin and
never reach the other sensors.

Defining the vectors vA and vB

vA = rA/tA
vB = rB/tB,

(5)

Eq. 2 can be rewritten as:

vA × ĉ = v × ĉ

vB × ĉ = v × ĉ.
(6)

3.1.1. Solving for the cloud edge angle β

Solving Eqs. 6 yields

vA × ĉ = vB × ĉ, (7)

where β can be solved after substitution of the values listed in Eq. 1.

dA
tA

sinβ =
dB
tB

sin(β − θ) (8)

β = arctan

[

−vB sin θ

vA − vB cos θ

]

. (9)
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[It is worth noting that for θ = π/2, Eq. 9 yields the equations derived in
for an orthogonal triplet

β = arctan

[

−

tB dA
tA dB

]

(10)

And for equal distances dA = dB = D:

β = arctan

[

−

tB
tA

]

(11)

in Bosch et al. (2013)]. Equation 9 demonstrates that one triplet of un-
aligned sensors is enough to obtain β. However, the CMV cannot be obtained
in this way. Also note that adding new sensors would not allow solving for
the CMV for a single cloud passage because the left-hand side of Eq. 6 is inde-
pendent of sensor location. The additional information needed to solve for the
CMV must be obtained from a second cloud edge passage through the sensors,
with the same v and α, but with a different β.

3.1.2. Solving for the cloud motion vector

Finally, replacing β from Eq. 9 into Eq. 6, the system reduces to:

−v sinα

vA − v cosα
=

−vB sin θ

vA − vB cos θ
(12)

Since the time lags tA and tB (i.e. vA and vB) can be obtained from the mea-
surements and the sensor locations are known, we are left with two unknowns
(α and v), and one equation (Eq. 12).

Assigning the indices 1 and 2 for the first and second cloud passage, respec-
tively, leads to Eq. 13

α = arctan

[

−dB sin θ (tA1 − tA2)

dA (tB1 − tB2)− dB cos θ (tA1 − tA2)

]

(13)

Once α is obtained from Eq. 13, v can be calculated using Eq. 12. The final
step to obtain the cloud cardinal direction is to apply the α0 rotation defined
in Fig. 2 to the calculated α.

Again, applying the restriction of orthogonality (θ = π/2) the equation is
reduced to the one presented in Bosch et al. (2013).

α = arctan

[

−dB (tA1 − tA2)

dA (tB1 − tB2)

]

(14)

3.1.3. Obtaining time lags

Attempts to determine the time lags tA and tB from the cross-correlation
method (Bosch et al. (2013)) or from the timing of the largest ramps (edge
overpass) were unsuccessful. Rather tA and tB are determined from the timing
of local maxima and minima of the measured IPOA. The maxima can occur
when cloud enhancement causes an increase in IPOA just before of after a cloud
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shades the sensors, while minima in IPOA occur near the cloud center. More
often, maxima and minima occur during the shading event due to variability
in intra-cloud opacity. Time lags between the maxima and minima observed at
different sensor locations yield tA and tB for particular cloud events.

3.2. Data quality control

3.2.1. Raw data

High data acquisition frequency can lead to noisy signals. Local maxima and
minima could then be caused by noise rather than atmospheric effects leading to
errors in both the cloud speed and direction. To avoid this and other erroneous
maxima and minima detection, a preprocessing similar to that described in
Bosch et al. (2013) is conducted. First, a 5-point (corresponding to 5 s) moving
average is applied and global maxima over a moving window of 50 s are selected;
from the remaining maxima, only those with 5 monotonous ascending values
before the maxima and 5 monotonous descending values after the maxima are
selected; groups of maxima from different sensors belonging to the same cloud
are identified using a 150 s window.

The three different times for the simultaneous maxima yield the time lags
tA and tB for each event, but two events are needed to obtain the CMV (see
Eq. 13). If two events were too far separated in time, the assumption of constant
CMVs may be violated. Consequently, two cloud events are required to occur
within 15 min. The same process is repeated for the minima, producing another
set of CMVs.

3.2.2. Two-dimensional quality control

Even after the quality control for the selection of minima and maxima the
resulting CMVs display considerable variability in cloud direction and especially
cloud speed (Fig. 4a,b). To determine the final CMV, the most frequent CMV in
the last hour is selected. While the mode is often not expressed in histograms of
one variable, the most prevalent pair can be obtained from the density maximum
in the 2-D distribution of CMVs. Each point in the scatter plot (Fig. 4c)
represents a CMV, and the color scale indicates the number of points in the
vicinity of each CMV (here the vicinity is defined as a five units ratio around
the point). The final CMV is the point with the highest density using a moving
window of one hour.

3.3. Cross-correlation method (CCM)

When the LCE method yielded a CMV, the cross-correlation method was
applied at the same time to obtain an independent validation. The basic premise
is that for a pair of sensors Sa and Sb aligned with the cloud motion, separated
by a distance D, the irradiances Ia and Ib are highly correlated, but with a time
lag tab (Fig. 5). Once the lag has been determined (e.g. by analyzing the signal
cross correlation), cloud speed can be calculated as

v = D/tab (15)
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Figure 4: Distribution of the 192 pairs of cloud direction and speed obtained on October 24,
2011 between 1030-1130 PST. a) Histogram of the azimuths. b) Histogram of the cloud speeds.
c) Scatter plot of the speed/azimuth pairs showing a density peak for the 21.9 ms−1/40.5o

pair.
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Figure 5: Sample sensor pair with spacing D aligned in the cloud motion direction and
irradiance time series IA and IB (used with permission from Bosch et al. (2013)).

Previous results from a sensor array in a semi-circle with diameter 12 m
Bosch et al. (2013) show that cross-correlation and linear cloud edge methods
yield similar values for CMV direction, and this study will use the CCM as a
validation for the LCE cloud speeds.

After quality control has been applied to the LCE results, the cloud direction
is obtained from Fig. 4 and a pair of inverters aligned with the cloud direction
is used to obtain the cloud speed.

The combinations in pairs of the 96 inverters cover the whole range of possi-
ble directions, but with different separation distances (Fig. 6). First, the most
aligned pairs (within 1 degree of the cloud direction) are preselected from the
initial set of 4560 pairs. From the most aligned pairs, the one with a separation
distance closest to 500m is selected and used for the CCM cloud speed algo-
rithm. For example, the inverters chosen for the period in Fig. 4 are marked
in Figs. 1 (markers A and B) and 6. A 3 min time series is used to compute
the cross-correlation. Finally, for quality control cloud speeds with a corre-
lation coefficient between the power output time series of less than 0.78 are
discarded. For example, the CMV results for 1130 PST October 24, 2011 were
[v=21.9 ms−1, α=40.5o] for the LCE method and [v=22.7 ms−1, R=0.799] for
the CCM method. The final number of CCM speeds that passed this last QC
for October 24, 2011 was 37, which will be compared with the LCE speeds in
the Results and Discussion section.
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Figure 6: Distance and direction between all possible inverters combination. A direction of
0o indicates east.

4. Results and Discussion

After discarding the completely clear days, the LCE method was used on the
remaining 226 days to obtain pairs of cloud speed and direction using the quality
control described in Section 3.2.2. Following the procedure in Section 3.3 the
CCM method was applied and cloud speed was calculated independently. The
year was split into four seasons to study the seasonal variation of the model per-
formance. The periods considered are Q1 (January-March 2012, winter frontal
systems), Q2 (April-June 2012, mostly clear), Q3 (July-September 2011, mon-
soon clouds) and Q4 (October-December 2011, winter frontal systems).

A total of 2700 cloud speeds from both the LCE (vl) and CCM (vm) methods
were compared in terms of Root Mean Squared Error (RMSE) and Mean Bias
Error (MBE) as defined by Eq. 16. The CCM cloud speed is considered as the
ground truth and the errors are calculated as a percentage of the mean CCM
speed value vm.

RMSE =

√
∑

n

i=1
(vl(i)−vm(i))2

n

100
vm

%

MBE =

∑

n

i=1
(vl(i)−vm(i))

n

100
vm

%
(16)

Figures 7 and 8 show the cloud speeds from the LCE and CCM methods
and normalized power output from the inverters. It can be observed that CMVs
are detected during the whole year except on clear days which mostly occurred
in June, October and December. Some of the cloudy days do not contain any
CMVs due to the quality control process. Also January and November show the
largest intra-day variability in CMV. The general trend of the speeds detected
by both methods follow the same yearly pattern, as corroborated by the errors
obtained for the different quarters.
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Figure 7: LCE (blue) and CCM (red) cloud speed from 0 to 35 ms−1 for January-June 2012.
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Figure 8: LCE (blue) and CCM (red) cloud speed from 0 to 35 ms−1 for July-December 2011.
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Figure 9: LCE vs CCM cloud speed for the whole year.

Fig. 9 shows the combined scatter plot of cloud speeds in the different sea-
sons. The largest spreads are evident for the first and fourth terms, but with
an overall grouping around the 1:1 line. It is worth noting that even though
the CCM results are considered the ground truth, they have been calculated
from the cloud direction detected by the LCE method. While cloud directions
observed from both methods are generally very similar (Bosch et al. (2013)),
this assumption will cause some of the spread observed in Fig. 9.

In addition, Table 2 show the validation of LCE results against the CCM
separated by season. The average detected cloud speeds are lower for the first
quarter of the year. The first quarter also registered the largest relative er-
rors for both RMSE and MBE, showing a general trend of the LCE results to
underestimate the CCM output. The second quarter shows the largest speeds
and a relatively small RMSE and MBE. The third and fourth quarters show
similar average cloud speeds and also a small MBE, with the overall smallest
RMSE during the third quarter. The combined -0.9% MBE shows that both
methodologies yield similar results even though they are based on very different
concepts and data.

5. Conclusions

Irradiance and PV production data from a PV plant are used to estimate
cloud speed which ranged from 3 to 35 m s−1 over 1 year of data. Encouraging
CMV results are obtained from the new LCE method applied to data from two
triplets of reference cells with arbitrary orientations when compared to the more
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Table 2: Error metrics for cloud speed by season including number of days and average speeds.

Period Days vmeanms−1 RMSE % MBE %
Q1 66 15.0 29.3 -5.5
Q2 46 25.9 14.7 2.7
Q3 56 22.9 13.7 -1.2
Q4 58 22.5 21.8 0.7
All 226 21.6 20.9 -0.9

robust cross-correlation method. The results indicate that -especially if only a
reduced number of sensors is available- LCE is a reliable option for cloud speed
detection with an overall annual RMSE of 20.9%. A seasonal dependence of
cloud speeds and the accuracy of detection was observed, with the best agree-
ment between both methods during the July-September period yielding 13.7%
RMSE and -1.2% MBE.

Future work will repeat this analysis in different areas to study the gener-
ality of the developed models, e.g. to confirm the performance for lower cloud
speeds typical for coastal regions. The CMVs will also be applied to evaluate
whether they enable more accurate forecast and variability models. A more
comprehensive CMV database could be assembled which is currently lacking
due to the inherent difficulty of cloud speed measurements.
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casting of solar radiation: a statistical approach using satellite data. Solar
Energy 67, 139–150.

Hoff, T.E., Perez, R., 2010. Quantifying PV power output variability. Solar
Energy 84, 1782–1793.

Lave, M., Kleissl, J., 2013. Cloud speed impact on solar variability scaling -
Application to the Wavelet Variability Model. Solar Energy , In Press.

Leese, J.A., Novak, C.S., Clark, B.B., 1971. An automated technique for obtain-
ing cloud motion from geosynchronous satellite data using cross correlation.
Journal of Applied Meteorology 10, 118–132.

Lorenz, E., Hammer, A., Heinemann, D., 2004. Short term forecasting of solar
radiation based on satellite data. Proc. ISES Europe Solar Congress EURO-
SUN2004,Freiburg, Germany, 2004 .

Pelland, S., Galanis, G., Kallos, G., 2011. Solar and photovoltaic forecasting
through post-processing of the Global Environmental Multiscale numerical
weather prediction model. Progress in Photovoltaics: Research and Applica-
tions Http://dx.doi.org/10.1002/pip.1180.

Perez, R., Kivalov, S., Schlemmer, J., Jr., K.H., Renné, D., Hoff, T.E., 2010.
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