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7 [1] Large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow is
8 performed over a homogeneous surface with different heat flux forcings. The goal is to test
9 the performance of dynamic subgrid-scale models in a numerical framework and to
10 compare the results with those obtained in a recent field experimental study (HATS
11 (Kleissl et al., 2004)). In the dynamic model the Smagorinsky coefficient cs is obtained
12 from test filtering and analysis of the resolved large scales during the simulation. In the
13 scale-invariant dynamic model the coefficient is independent of filter scale, and the scale-
14 dependent model does not require this assumption. Both approaches provide realistic
15 results of mean vertical profiles in an unstable boundary layer. The advantages of the
16 scale-dependent model become evident in the simulation of a stable boundary layer and in
17 the velocity and temperature spectra of both stable and unstable cases. To compare
18 numerical results with HATS data, a simulation of the evolution of the ABL during a
19 diurnal cycle is performed. The numerical prediction of cs from the scale-invariant model
20 is too small, whereas the coefficients obtained from the scale-dependent version of the
21 model are consistent with results from HATS. LES of the ABL using the scale-dependent
22 dynamic model give reliable results for mean profiles and spectra at stable, neutral, and
23 unstable atmospheric stabilities. However, simulations under strongly stable conditions
24 (horizontal filter size divided by Obukhov length >3.8) display instabilities due to basic
25 flaws in the eddy viscosity closure, no matter how accurately the coefficient is determined.

27 Citation: Kleissl, J., V. Kumar, C. Meneveau, and M. B. Parlange (2006), Numerical study of dynamic Smagorinsky models in large-

28 eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions, Water Resour. Res., 42, W06D10,

29 doi:10.1029/2005WR004685.

31 1. Introduction

32 [2] In large-eddy simulation (LES) of turbulent flows, a
33 subgrid-scale (SGS) model accounts for the effect of the
34 small scales (smaller than the grid size D) on the (simulated)
35 resolved scales. Resolved scales are defined conceptually by
36 filtering the velocity and scalar fields at the grid scale

eu xð Þ ¼
Z

u x0ð ÞFD x� x0ð Þdx0; ð1Þ

38 where eu is the filtered velocity and FD is the (homogeneous)
39 filter function at scale D. The most commonly used
40 approach for parameterization of the SGS stress tij =
41 fuiuj � euieuj is the Smagorinsky model [Smagorinsky, 1963]:

tSmag
ij � 1

3
tkkdij ¼ �2nTeSij; nT ¼ c Dð Þ

s D
� �2 eS��� ���: ð2Þ

43eSij is the strain rate tensor, jeSj = ffiffiffiffiffiffiffiffiffiffiffiffi
2eSijeSijq

is its magnitude,

44and nT is the eddy viscosity. The Smagorinsky model
45includes a parameter cs

(D), the Smagorinsky coefficient,
46which needs to be specified to complete the closure.
47Accurate specification of this parameter is of paramount
48importance, since it determines the magnitude of the mean
49rate of SGS dissipation of kinetic energy, �D = �htijeSiji. In
50traditional LES of atmospheric boundary layers, cs

(D) is
51deduced from phenomenological theories of turbulence
52[Lilly, 1967; Mason, 1994] and also from models for the
53effects of stratification and shear upon the turbulence [Hunt
54et al., 1988; Deardorff, 1980; Canuto and Cheng, 1997;
55Redelsperger et al., 2001]. As a consequence, in simulations
56cs

(D) is based on predetermined expressions that relate cs
(D) to

57flow parameters such as the Kolmogorov constant ck, the
58ratio of filter scale to distance to the ground and/or to the
59Obukhov length, etc.
60[3] In an important development in turbulence theory and
61modeling, Germano et al. [1991] proposed a model entail-
62ing dynamic determination of cs

(D). In the ‘‘dynamic model,’’
63selected features of the numerically computed large-scale
64fields are analyzed during the simulation to deduce the
65unknown model coefficient, instead of obtaining it from
66predetermined expressions. The rationale for the dynamic
67model is that the resolved scales in a simulation may reflect

the effects of phenomena such as stratification, coherent
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69 structures, or wall blocking and their complex interactions
70 more realistically than available turbulence theories.
71 [4] The dynamic model is based on the Germano identity
72 [Germano, 1992],

Lij 	 euieuj � euieuj ¼ Tij � tij; ð3Þ

74 where Lij is the resolved stress tensor and Tij = guiuj � euieuj is
75 the subgrid stress at a test filter scale aD (an overline
76 denotes test filtering at a scale aD). In simulations, a is
77 typically chosen to be equal to 2. Applying this procedure
78 and replacing Tij and tij by their respective prediction from
79 the Smagorinsky model, one obtains:

Lij �
1

3
dijLkk ¼ c Dð Þ

s

� �2

Mij; ð4Þ

81 where

Mij ¼ 2D2 eS��� ���eSij � a2b eS��� ���eSij
 �
; ð5Þ

83 and

b ¼
c aDð Þ
s

� 
2
c

Dð Þ
s

� �2
ð6Þ

85 is the ratio of coefficients at test and grid filter scales.
86 Assuming scale invariance of the coefficient, namely

b ¼ 1; or c Dð Þ
s ¼ c aDð Þ

s ; ð7Þ

88 Equation (4) can be solved for cs
(D) by minimizing the square

89 error averaged over all independent tensor components
90 [Lilly, 1992]

c Dð Þ
s

� �2

¼ hLijMiji
hMijMiji

: ð8Þ

92 Angle bracktes denote averaging in some spatial [Ghosal et
93 al., 1995] or temporal domain [Meneveau et al., 1996]. For
94 further details about the dynamic model, see Meneveau and
95 Katz [2000], Piomelli [1999], and Kleissl et al. [2004,
96 hereinafter referred to as KPM04].
97 [5] While the dynamic model provides realistic predic-
98 tions of cs

(D) when the flow field is sufficiently resolved (that
99 is, the filter scale is much smaller than the turbulence
100 integral scale), it was found in a posteriori [Porté-Agel et
101 al., 2000, hereinafter referred to as POR] and a priori tests
102 (KPM04) that cs

(D) is underpredicted both near the wall and
103 in stably stratified flows. POR attributed this weakness to
104 the assumption of scale invariance (equation (7)) and
105 proposed a dynamic model in which the coefficient is
106 scale-dependent. In this modification of the dynamic model
107 a second filter is applied at scale a2D (denoted by a hat) in
108 addition to the filter at aD producing an equation analogous
109 to equation (4):

Qij �
1

3
dijQkk ¼ c Dð Þ

s

� �2

Nij; where Qij ¼ deuieuj � beuibeuj ð9Þ

Nij ¼ 2D2 deS��� ���eSij � a4b2 beS��� ��� beSij
 �
: ð10Þ

112113It has been assumed here that b is the same in the intervals
114between grid and test filter, and between test and second test
115filter scales, that is

c
a2Dð Þ

s

c
aDð Þ
s

¼ c aDð Þ
s

c
Dð Þ
s

; ð11Þ

117which implies that

c
a2Dð Þ

s

c
Dð Þ
s

¼ b2 ð12Þ

119(see POR for more details). At this stage the two equations (4)
120and (9) can be solved for the two unknowns cs

(D) and b. For
121further details on the scale-dependent dynamic model, see
122POR and KPM04.
123[6] The scale-dependent dynamic model was applied,
124together with planar averaging, to LES of neutral atmo-
125spheric boundary layer flow (see POR), demonstrating an
126improved prediction of cs

(D). As a consequence, more
127realistic results for mean velocity gradients and streamwise
128energy spectra were obtained. Also, in a priori tests
129(KPM04) of field experimental data (Horizontal Array
130Turbulence Study (HATS) [Horst et al., 2003]), the scale-
131dependent model gave much improved predictions of cs

(D)

132not only in neutral but also under unstable and stable
133atmospheric stability.
134[7] It is important to note that even a perfect prediction of
135cs cannot simultaneously produce the correct SGS dissipa-
136tion, SGS stress, and SGS force [Pope, 2000; Meneveau,
1371994] and that the correlation between SGS stress tensor
138and filtered strain rate tensor is weak leading to poor
139performance of the Smagorinsky model in a priori testing
140[McMillan and Ferziger, 1979; Liu et al., 1994; Bastiaans
141et al., 1998; Higgins et al., 2003]. Indeed both dynamic
142SGS models examined in the paper cannot improve the
143stress-strain correlations, since the models considered only
144affect the constant cs. In Figure 8 of Kleissl et al. [2003] we
145showed explicitly that the mean SGS fluxes would not be
146predicted accurately when the mean dissipation is predicted
147correctly. Despite these limitations, the widespread use of
148the eddy viscosity closure in the simulation of atmospheric
149flows justifies further research on the Smagorinsky model.
150[8] In the present study, numerical predictions for cs

(D)

151will be compared to measurements from HATS, and the
152effects of the SGS model on the flow statistics will be
153quantified. We examine the predictions for cs

(D) from both
154the scale-invariant and the scale-dependent dynamic model
155in a numerical framework. Through comparison of the
156results to KPM04, the applicability of a priori results from
157field experiments to a posteriori settings in LES can be
158evaluated. Note that in HATS the filter size was defined in
159terms of the horizontal filter scale Dh, namely Dh 	 Dx = Dy,
160where Dx and Dy are the filter sizes in the streamwise and
161spanwise directions, respectively. Dx and Dy also denote the
162horizontal grid spacings used in the LES of this paper.
163Furthermore, in the LES, the basic length scale used in the
164definition of eddy viscosity (e.g., equation (2)) is D =
165(DxDyDz)

1/3 = (Dh
2Dz)

1/3 [Deardorff, 1974; Scotti et al.,
1661993], where Dz denotes the vertical grid size used in the
167LES. However, for consistency with the HATS experimental
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168 data, in this paper the results will be presented in terms of
169 the horizontal filter scale Dh throughout. In LES a horizontal
170 cutoff filter is used in wave number space and implicit
171 filtering by the grid spacing is assumed in the vertical. The
172 variables used in the dynamic procedure for determination
173 of the Smagorinsky coefficient (equation (3)) are filtered at
174 a D in the horizontal directions only, both in LES and
175 HATS.
176 [9] During HATS, turbulence data were collected from
177 two horizontal crosswind arrays of three-dimensional sonic
178 anemometer-thermometers in the atmospheric surface layer.
179 From the field data the empirically determined Smagorinsky
180 model coefficient cs

(D,emp) was obtained by matching mean
181 measured and modeled SGS dissipations �D [Clark et al.,
182 1979]

c D;empð Þ
s

� �2

¼ � htijeSiji
h2D2

h
eS��� ���eSijeSiji ; ð13Þ

184 where the angle brackets denote Eulerian time averaging
185 over a timescale Tc. Using this technique, Kleissl et al.
186 [2003, hereinafter referred to as KMP03] and Sullivan et al.
187 [2003] quantified the dependence of cs

(D) upon distance to
188 the ground and atmospheric stability. Specifically, KMP03
189 found that independently of Tc, the median of cs

(D) is well
190 described as a function of stability and height by an
191 empirical fit:

c D;empð Þ
s ¼ c0 1þ R

Dh

L


 �� ��1

1þ c0

k
Dh

z


 �n� ��1=n

; ð14Þ

193 where R is the ramp function, n = 3, c0 � 0.135, L is the
194 Obukhov length, and k is the van Karman constant. Using
195 the same data set, KPM04 examined the ability of dynamic
196 SGS models to predict the measured cs

(D,emp) and its trends.
197 Using the standard scale-invariant dynamic model it was
198 found that the scale invariance assumption is violated when
199 the filter size is large (Dh > z or Dh > L) resulting in
200 coefficients that are too small. Conversely, the scale-
201 dependent dynamic model allows for scale dependence of
202 the coefficient and as a result the predicted coefficients were
203 found to be close to the measured values under various
204 stability conditions. The objective of the present work is to
205 compare the performance of the two versions of the
206 dynamic model in LES (a posteriori).
207 [10] One important difference between the experimental
208 analysis and the present simulations is the type of averaging
209 employed to measure the coefficients: In the a priori
210 analysis of KPM04, Eulerian time averaging over times Tc
211 was performed, whereas in the simulations time averaging
212 along fluid path lines (Lagrangian averaging [Meneveau et
213 al., 1996]) is used. Lagrangian time averaging was intro-
214 duced for the general applicability of dynamic models to
215 flows in complex geometries which do not possess spatial
216 directions of statistical homogeneity over which to average
217 [Bou-Zeid et al., 2004, 2005].
218 [11] This paper is organized as follows: The LES code
219 and the Lagrangian SGS model are briefly described in
220 section 2. Two test cases in stable and unstable conditions
221 are analyzed in section 3. Predictions for cs

(D) from the
222 simulation of a diurnal cycle are compared to HATS results

223in section 4 (a more detailed analysis of a diurnal simulation
224is presented by Kumar et al. [2005]. Conclusions follow in
225section 5.

2262. Numerical Simulations

2272.1. LES Code and Boundary Conditions

228[12] The conditions for the numerical simulations are
229selected to closely match the measurement conditions
230during HATS. Simulations are performed using a 1603 grid
231staggered in the vertical, and spanning a physical domain of
2324000 m � 4000 m � 2000 m, that is Dx = Dy = 25 m, and Dz

233= 13 m. The filtered Navier-Stokes equations are integrated
234over time based on the numerical approach described by
235Albertson and Parlange [1999a, 1999b].

@ieui ¼ 0 ð15Þ

@teui þ euj @jeui � @ieuj� 

¼ �@iep*� g

eq0
q0
di3 � @jtij

þ f eu2 � vg
� 


di1 þ f ug � eu1� 

di2; ð16Þ

@teqþ @j eqeuj� �
¼ �@jqj: ð17Þ

241The variable eq0 = eq � heqix,y describes temperature
242fluctuations away from the planar averaged mean, g is the
243gravitational acceleration, and f is the coriolis parameter. qj
244is the SGS heat flux

qi ¼ �Pr�1
SGSc

2
sD

2 eS��� ��� @eq
@xi

; ð18Þ

246where PrSGS is the turbulent SGS Prandtl number, which is
247set to PrSGS = 0.4. This is a value often used for neutral
248conditions [Kang and Meneveau, 2002, Figure 9b]. While
249PrSGS depends on stability, it does not vary as much as cs.
250Thus, in this work we prefer to focus on dynamic
251determination of cs while keeping PrSGS fixed to avoid
252additional computational cost. For dynamic implementa-
253tions of the SGS model for heat flux, see Porté-Agel [2004]
254and Stoll and Porté-Agel [2006].
255[13] Pseudospectral discretization is used in horizontal
256planes and second-order finite differencing is implemented
257in the vertical direction. The second-order-accurate Adam-
258Bashforth scheme is used for time integration. Nonlinear
259convective terms and the SGS stress are dealiased using the
2603/2 rule [Orszag, 1970]. Message passing interface (MPI)
261was implemented to run the simulation in parallel mode on
262supercomputers.
263[14] As in equation (2), D in equation (18) is defined as D
264= (DxDyDz)

1/3, while results will be reported as function of
265Dh. The Coriolis parameter f = sin F � 1.45 � 10�4 s�1 is
266imposed, using F 
 36	N for the latitude of the HATS
267array. The modified pressure is ep* ¼ ep=r0 þ 1

3
tkk þ 1

2
1
2
eujeuj.

268(ug, vg) are the components of the imposed geostrophic
269wind velocity.
270[15] The horizontal boundary conditions are periodic and
271the vertical boundary conditions are zero vertical velocity
272and imposed stress at the bottom, and zero stress and zero
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273 vertical velocity at the top. The surface shear stresses are
274 prescribed using Monin-Obukhov similarity law:

t13 ¼ � k
ln z=zo � ym


 �2 eu2 þ ev2� �0:5eu ð19Þ

t23 ¼ � k
ln z=zo � ym


 �2 eu2 þ ev2� �0:5ev; ð20Þ

278 where eðÞ represents a local average from filtering the
279 velocity field at 2D (see Bou-Zeid et al. [2005] for more
280 details about the need for such filtering). The roughness
281 length at the surface is set to zo = 0.02 m, equivalent to the
282 value determined from the HATS data, and van Karman’s
283 constant k = 0.4. The flux profile functions in unstable
284 conditions are given by Dyer [1974] with the correction by
285 Hogstrom [1987], while in stable conditions we use the
286 formulation by Brutsaert [2005]:

fm ¼ 1� 15:2z=Lð Þ�1=4
when L < 0 ð21Þ

fm ¼ 1þ 6:1
z=Lþ z=Lð Þ2:5 1þ z=Lð Þ2:5

� ��1þ1=2:5

z=Lþ 1þ z=Lð Þ2:5
� �1=2:5

when L > 0

ð22Þ

fh ¼ 1� 15:2z=Lð Þ�1=2
when L < 0 ð23Þ

fh ¼ 1þ 5:3
z=Lþ z=Lð Þ1:1 1þ z=Lð Þ1:1

� ��1þ1=1:1

z=Lþ 1þ z=Lð Þ1:1
� �1=1:1

when L > 0

ð24Þ

[16] The ym functions are determined as follows:

ym z=Lð Þ ¼
Z z=L

zo=L

1� fm xð Þ½ �dx=x: ð25Þ

298 [17] These wall models are themselves parameterizations
299 for unresolved near-surface fluxes occurring at scales below
300 the first grid point and involve a series of modeling
301 uncertainties. For a discussion, see, for example, Piomelli
302 and Balaras [2002].
303 [18] Near the top boundary of the domain, a numerical
304 sponge is applied to dissipate energy of gravity waves
305 before they reach the upper boundary of the domain
306 [Nieuwstadt et al., 1991]. The sponge treatment is
307 applied to the four uppermost levels of the grid. The
308 simulations are forced with prescribed geostrophic veloc-
309 ity (ug, vg) and surface kinematic heat flux hw0q0is. The
310 boundary layer height, zi, is used as a characteristic
311 length scale.

313 2.2. Lagrangian Scale-Dependent Dynamic SGS Model

314 [19] In LES with the dynamic model, the numerator and
315 denominator in equation (8) need to be averaged over

316homogeneous areas or over time in order to prevent nega-
317tive eddy viscosities that may lead to numerical instabilities.
318Typically in channel flow, or ABL flow, cs

(D) is computed
319from quantities averaged over horizontal planes. Though
320spatial averaging across horizontal planes in flow over
321heterogeneous surfaces is not appropriate, time averaging
322is always possible in principle. However, to comply with
323Galilean invariance, time averaging must be performed
324following material fluid elements, and this leads to the
325development of the Lagrangian dynamic model [Meneveau
326et al., 1996].
327[20] The original Lagrangian SGS model uses the def-
328inition of equation (5) with b = 1 (that is the scale-
329invariant version). As discussed previously, this assump-
330tion leads to inaccurate results when D approaches the
331limits of an idealized inertial range of turbulence. To
332remedy this, a scale-dependent dynamic version of the
333Lagrangian SGS model is also used in the simulations. For
334detailed information on the implementation see Bou-Zeid
335et al. [2005].

3373. Unstable and Stable Test Cases

338[21] The LES model using the Lagrangian scale-depen-
339dent dynamic model gives excellent results in neutral
340conditions [Bou-Zeid et al., 2005]. Nondimensional velocity
341gradients and velocity energy spectra confirm well known
342experimental results such as the k�5/3 scaling in the inertial
343range, a nearly k�1 in the production range close to the
344ground, and normalized mean velocity profiles Fm =
345kzu*

�1@hu1i/@z � 1 in the neutral surface layer [Parlange
346and Brutsaert, 1989]. To study the effects of stability and
347the choice of SGS model on the dynamic Smagorinsky
348coefficient, four 1603 LES with constant surface heat fluxes
349are performed using scale-invariant (b = 1) and scale-
350dependent (b 6¼ 1) SGS parameterizations. Table 1 shows
351an overview of the simulations. In the unstable simulation,
352the surface heat flux is hw0q0is = 0.1 K m s�1 and the results
353are averaged over the last hour of a four hour simulation. In
354the stable simulation, the surface heat flux is hw0q0is = �0.02
355K m s�1 and the results are averaged over the last two hours
356of a twelve hour simulation. The simulations are initialized
357with a constant mean temperature profile below 800 m and
358an inversion layer of strength 0.01 K m�1 above 800 m to

t1.1Table 1. Details of the Four Simulations Conducted for This

Studya

Parameter

Unstable Stable t1.2

DYN SD DYN SD t1.3

hw0q0is, km s�1 0.1 0.1 �0.02 �0.02 t1.4

tavg, h 3–4 3–4 10–12 10–12 t1.5
zi, m 855 855 212 162 t1.6
L, m �43 �42 61 45 t1.7

aAll simulations were conducted in a domain of 4000 � 4000 � 2000 m
and at a resolution of 1603. ‘‘DYN’’ abbreviates the Lagrangian scale-
invariant dynamic simulation, while ‘‘SD’’ abbreviates the Lagrangian
scale-dependent dynamic simulation. The time period of the simulation
used for the quantitative analysis is given by tavg. The inversion height zi
was determined as the location of minimum heat flux for the unstable
simulations and as the location where the momentum flux is 5% of its
surface value in the stable simulations. t1.8
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359 limit the vertical growth of the boundary layer in unstable
360 conditions. The geostrophic velocity is (ug, vg) = (8, 0) m s�1.

361 3.1. Simulations for Unstable Conditions

362 [22] Vertical profiles for the simulations of unstable
363 conditions for both models are shown in Figure 1. The
364 stability parameter L 
 �42 m (Dh/L 
 �0.60) indicates
365 unstable conditions. The height of the capping inversion zi
366 is often defined as the location of minimum heat flux
367 (Figure 1c). This occurs at zi 
 855 m for both simulations.
368 In general, the results for the scale-invariant and scale-
369 dependent SGS models are quite similar. In unstable sim-
370 ulations at high resolution, the SGS do not contain much
371 energy. Thus the SGS model’s influence on the profiles of
372 mean quantities, variances, and covariances is limited,
373 except near the land surface.
374 [23] In Figure 1a it can be seen that in stable conditions
375 and near the surface the Smagorinsky coefficient becomes

376scale-dependent in the SD simulation. Note that since
377averages of b are not meaningful due to occasional large
378values when the denominator of equation (12) is very small,
379we use the average squared coefficient at 4D divided by the
380average squared coefficient at 2D as a measure of scale
381dependence. This measure is about 1.2 in the mixed layer
382and decreases to 0.3 near the surface indicating that the
383scale dependence of cs is stronger near the surface, causing
384an increase in cs

(D) as compared to the DYN simulation
385(Figure 1b). In the mixed layer, cs

(D) 
 0.16 in the SD
386simulation, while cs

(D) 
 0.11 in the DYN simulation. To
387examine how the difference in the velocity fields between
388the two simulations influences the value of cs, the scale-
389invariant dynamic model was applied to the velocity field of
390the scale-dependent dynamic model (without using the
391resulting coefficient in the simulation). Figure 1b indicates
392that the Smagorinsky coefficient derived from the scale-
393invariant dynamic model is too small, even if derived from

Figure 1. Profiles of quantities averaged over 1 hour during LES with hw0q0is = 0.1 K m s�1. Dot-
dashed lines are results using the scale-invariant version of the dynamic subgrid model; solid lines are
results using the scale-dependent version. (a) Scale dependence parameterized as h(cs4D)2i/h(cs2D)2i and
(b) Smagorinsky coefficient cs

(D). The Smagorinsky coefficient derived from the scale-invariant
procedure applied to the velocity field of the scale-dependent dynamic simulation is shown as a thick
line. (c) Total vertical heat flux hew0eq0i + q3, (d) SGS (t13

2 + t23
2 )0.5 and total resulting horizontal shear

stress [(heu0ew0i + t13)
2 + (hev0ew0i + t23)

2]0.5, (e) resolved velocity variances s2(eu) and s2(ew),
and (f) nondimensional velocity gradient Fm = kzu*

�1@eu/@z (thin curves) and nondimensional
temperature gradient Fh = �kzu*/hew0eq0i@eq/@z (thick curves). For comparison, the empirical surface
layer functions (equation (22)) are shown as dotted lines.
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394 the SD simulation. Note that the Lagrangian SGS model
395 used in this simulation [Bou-Zeid et al., 2005] assumes that
396 the scale-invariant dynamic model gives a correct estimate
397 for cs at the test filter scale. For the neutral simulation, the
398 self-consistency of this assumption was tested by plotting
399 the results from the scale-invariant model as function of z/
400 2D (height normalized with test filter scale) and comparing
401 with the scale-dependent model plotted as function of z/D,
402 and finding good collapse (POR). In the present case with
403 thermal effects affecting the scale dependence, it is less
404 obvious how to perform such an intercomparison. At any
405 rate, the trends as function of normalized height are similar
406 as those in POR.
407 [24] In the stable region above the capping inversion at
408 855 m, cs

(D) decreases and reaches a value of cs 
 0.08 and
409 cs 
 0.05 for the SD and DYN model, respectively. Above
410 the inversion height, the turbulent stresses and variances are
411 close to zero. For both SGS models, shear stress (Figure 1d)
412 and velocity variance (Figure 1e) profiles are qualitatively
413 similar to previous results for LES of convective boundary
414 layers [e.g., Moeng and Sullivan, 1994]. The nondimen-
415 sional velocity gradient Fm and temperature gradient Fh are
416 shown in Figure 1f. As expected, they follow empirical
417 functions (equation (21)) in the surface layer (z < 150 m),
418 although some oscillations near the surface are observed.
419 [25] While the correct representation of the mean profiles
420 by the SGS model is important, better information on the
421 correct representation of turbulent structures can be
422 obtained from the velocity spectra. For unstable conditions,
423 but shear-dominated flow (as in the surface layer) one
424 would expect to see a �1 scaling in the production range

425(large scales) and an inertial subrange with a �5/3 power
426law. In buoyancy-dominated flow (e.g., above a height
427equal to the Obukhov length) the inertial subrange extends
428to smaller wave numbers and the �1 power law in the
429production range may not be observed [Stull, 1997]. Figure 2
430shows the streamwise velocity spectra for the DYN and SD
431simulations. In the near-surface region (z/zi < 0.1) which is
432the most challenging for a SGS model, the spectra in the SD
433simulation agree very well with the inertial subrange scaling
434of k�5/3, while the spectra for the DYN simulations are too
435flat. This reflects the underdissipative property of the scale-
436invariant dynamic model near the wall already noted in POR.
437At greater heights in the mixed layer the turbulence spectra
438are consistent with the inertial range scaling for both SGS
439models. The temperature spectra in Figure 3 lead to similar
440conclusions.
441[26] In summary, while both simulations show similar
442mean profiles, the scale-dependent dynamic model repre-
443sents the energy transfer between resolved and unresolved
444turbulence structures more accurately as reflected in the
445power spectra. Since the SGS represent a greater amount of
446TKE in stable atmospheric conditions a more conclusive
447test for SGS models will be presented in the next section
448using stable simulations.

4503.2. Stable Simulations

451[27] While the unstable boundary layer grows steadily
452into the inversion region, the stable boundary layer is
453shallow and largely unaffected by the inversion region.
454Therefore, in Figures 4a–4f only the lower half of the
455simulation domain is presented. To reach quasi-steady
456conditions [Kosović and Curry, 2000], the simulation with
457hw0q0is = �0.02 K m s�1 was run for a physical duration of
45810 hours. Subsequently, averages were calculated over
459the following 2 hours. The Obukhov length was L 
 61 m
460(Dh/L 
 0.41) in the DYN simulation and L 
 45 m (Dh/

Figure 2. Normalized streamwise velocity power spectra
versus kz at different heights for unstable conditions.
Heights z/zi are given in the legend. (a) Standard Lagrangian
dynamic SGS model and (b) scale-dependent Lagrangian
dynamic SGS model.

Figure 3. Same as Figure 2 for temperature power spectra.
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461 L 
 0.56) in the SD simulation, characterizing moderately
462 stable conditions. Note that overall the Smagorinsky coef-
463 ficients in the stable simulation were significantly smaller
464 than in the unstable runs. Heat fluxes (Figure 4c), stresses
465 (Figure 4d), and variances (Figure 4e) decreased to zero at
466 z 
 200 m, indicating the height of the stable boundary
467 layer. The stable boundary layer height zi was defined as
468 the location where the shear stresses reach 5% of their
469 surface value (see Table 1). In contrast to the unstable
470 simulations, here the mean profiles from the SD and DYN
471 simulations are markedly different. In stable boundary
472 layers, the SGS contain a significant amount of the total
473 turbulence kinetic energy [Beare et al., 2006]. Thus the
474 quality of the SGS model will have a greater influence on
475 the overall simulation results.
476 [28] The most important distinction is that the stable
477 boundary layer has grown higher in the DYN simulation
478 than in the SD simulation. This is expected, since the
479 reduction in turbulence kinetic energy due to the larger
480 cs

(D) in the scale-dependent model leads to a slower growth
481 of the stable boundary layer. Boundary layer growth has
482 been identified as a key parameter in a stable LES inter-
483 comparison study [Beare et al., 2006]. However, even the
484 profiles normalized by zi do not collapse, indicating a

485fundamental difference between the results of the two
486simulations.
487[29] The velocity variances, stresses, and heat flux were
488larger in the DYN simulation, indicating the underdissipa-
489tive property of this SGS model. As in the unstable
490simulations, the decreased b in the SD simulation causes
491cs

(D) to increase as compared to the DYN simulation
492(Figure 4b). However, the Smagorinsky coefficient deter-
493mined by applying the scale-invariant SGS model to the
494velocity field in the SD simulation does not agree with the
495cs

(D) profile in the DYN simulation. This is mainly due to the
496different boundary layer profiles which developed over the
49712 hour simulation period. Despite these differences, the
498nondimensional velocity and temperature profiles are sim-
499ilar in both simulations, and agree well with empirical
500profiles below z 
 50 m.
501[30] Further clues on the representation of turbulence
502structures in the simulations are obtained from the stream-
503wise velocity spectra in Figure 5 and temperature spectra in
504Figure 6. For the stable boundary layer, the �1 power law
505for large eddies in the production range may not be
506observable due to opposition to turbulent motions by
507stability (a k�1 line is still included for reference). An
508inertial subrange with a �5/3 power law is still expected,

Figure 4. Profiles of quantities averaged over 2 hours during a LES with hw0q0is = �0.02 K m s�1. Dot-
dashed lines are results using the scale-invariant version of the model; solid lines are results using the
scale-dependent version. (a) Scale dependence parameterized as h(cs4D)2i/h(cs2D)2i and (b) Smagorinsky
coefficient cs

(D). (c) Total vertical heat flux hew0eq0i + q3, (d) SGS (t13
2 + t23

2 )0.5 and total resulting
horizontal shear stress [(heu0ew0i + t13)

2 + (hev0ew0i + t23)
2]0.5, (e) resolved velocity variances s2(eu)

and s2(ew), and (f) nondimensional velocity gradient Fm = kzu*
�1@eu/@z (thin curves) and nondimensional

temperature gradient Fh = �kzu*/hew0eq0i@eq/@z (thick curves). For comparison, the empirical surface layer
functions (equation (21)) are shown as dotted lines.
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509 but the lower wave number end becomes larger for increas-
510 ing stability [Stull, 1997]. Similar to the results for unstable
511 conditions, the spectra for the DYN simulations are flat,
512 while those of the SD model are steeper, in general closer to
513 the expected k�5/3 scaling in the inertial range.
514 [31] In summary, we conclude that the LES with the
515 Lagrangian scale-dependent dynamic SGS model captures
516 the main features of stable and unstable boundary layers.
517 The choice of SGS model does not influence the mean
518 profiles in the unstable case, where the scale-dependent and
519 scale-invariant models predict essentially similar mean
520 velocity and temperature gradients. However, the velocity
521 spectra in stable and unstable conditions indicate that the
522 scale-dependent dynamic model represents the turbulence
523 structures more faithfully.

525 4. Smagorinsky Coefficient as a Function
526 of D/L in a Diurnal Cycle of the ABL and
527 Comparison to HATS

528 [32] Here our goal is to compare the Smagorinsky coef-
529 ficients obtained from the dynamic and scale-dependent
530 dynamic models during the simulation of a diurnal cycle
531 to HATS measurements. The HATS data set includes data
532 from a wide range of stability conditions (1 < Dh/L < 10,
533 KMP03). The LES data set is based on the simulation
534 presented in detail by Kumar et al. [2005], where it is
535 suggested that under very stable conditions (typically
536 Dh � L), LES based on the Smagorinsky eddy viscosity
537 parameterizations display instabilities, although the scale-

538dependent dynamic model returns realistic coefficient val-
539ues. For the purposes of the present paper, however, simu-
540lations are carried out in stability regimes under which the
541simulations do not display these instabilities. The simulation
542still created an evolution of stability conditions qualitatively
543and quantitatively similar to the experiment, except that the
544extremely stable conditions are not matched. The most stable
545conditions in our simulation were L
 6.9 m,Dh/L
 3.6, and
546z/L 
 1.8 at the first grid point.
547[33] A plot of the evolution of cs

(D) from the simulation
548with b 6¼ 1 as a function of time and height is shown in
549Figure 7a. The evolution of the Smagorinsky coefficient
550obtained by applying the scale-invariant procedure to the
551velocity field of the scale-dependent simulation is presented
552in Figure 7b.
553[34] As observed in the experiment, the coefficient
554decreases near the wall and in stable stratification. Since
555the coefficient is derived from a mixing length assumption it
556can be interpreted as the ratio of an SGS turbulence length
557scale to the filter scale. In these conditions the observed
558decrease in cs could thus be interpreted as a decrease of the
559eddy sizes of the SGS turbulence when shear, wall blocking,
560or stratification are large.
561[35] The coefficient decreases after sunset (1730h) and
562remains very small during stable conditions at night. Con-
563versely, cs

(D) increases in unstable daytime conditions.
564Above the daytime boundary layer, the stable capping
565inversion produces a smaller cs

(D). During the evening
566transition, large cs

(D) persist at mid-ABL heights (
500 m)
567until 2200h. During the morning transition, the first strong
568increase in cs

(D) occurs near the surface at 0710h, 
30 min
569after sunrise (0640h). With the rapidly increasing ABL
570height, cs

(D) also quickly increases at greater heights. Com-
571paring to the coefficient obtained from the scale-invariant

Figure 5. Normalized streamwise velocity power spectra
versus kz at different heights for stable conditions. Heights
z/zi are given in the legend. (a) Standard Lagrangian
dynamic SGS model and (b) scale-dependent Lagrangian
dynamic SGS model.

Figure 6. Same as Figure 5 for temperature power spectra.
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572 dynamic procedure, (Figure 7b) it is observed that the
573 scale-dependent cs

(D) is always significantly larger than the
574 scale-invariant cs

(D). The ratio of the scale-dependent and scale-
575 invariant cs

(D) (not shown) is largest near the top of the stable
576 boundary layer with a value of 
2, and in daytime near the
577 surface and in the entrainment layer with a value of 
1.5.
578 While cs

(D) during the morning transition is similarly predicted
579 by the two SGS models, the evening transition from large cs

(D)

580 to small cs
(D) is prolonged when using the scale-dependent

581 formulation. Larger Smagorinsky coefficients in the nocturnal
582 boundary layer will result in slower boundary layer growth, as
583 observed in section 3.2.
584 [36] Next, the LES results are compared to the HATS data
585 fit (equation (14)) in Figure 8. While the LES predictions by
586 both SGS models capture the decrease of cs

(D) in stable
587 conditions during HATS qualitatively, cs

(D) from the scale-
588 invariant model is too small. The Smagorinsky coefficient
589 computed from the scale-dependent procedure is closer to
590 the value from the empirical fit. In unstable conditions, cs

(D)

591 continues to increase with increasingly unstable atmospheric
592 conditions for both models, while the empirical formula is
593 constant for L < 0.
594 [37] The other important observation from Figure 8 is a
595 delay in the response of the Smagorinsky coefficient to
596 changing surface conditions at greater heights (smaller Dh/z).
597 In Figure 8a, Dh/L collapses the data for z = 6.3 m (Dh/z = 4)
598 reasonably well. At greater heights, however, two signifi-
599 cantly different values are obtained for cs

(D) depending on
600 whether it is the morning or evening transition (hysteretic
601 behavior observed in Figures 8b and 8c). This behavior is
602 physically expected due to the following considerations: In
603 the early morning the instability increases rapidly with time.
604 Since it takes some time for the turbulence at a greater
605 height to adjust to the new conditions at the surface, the
606 stability conditions at greater heights are less unstable than
607 those close to the surface. This difference is extreme at a

Figure 7. Daily evolution of (cs
D)2(z) averaged over x and y. (a) Scale-dependent dynamic SGS model

and (b) scale-invariant dynamic SGS model applied to the velocity field of the simulation with the scale-
dependent dynamic model.

Figure 8. (a–c) Parameter cs
(D) as a function of Dh/L for

three heights in the diurnal simulation. The circle with the
clockwise arrow in Figure 8c indicates the sense of the time
sequence. Large dots depict the Smagorinsky coefficient
from the scale-dependent dynamic model. Small dots depict
the Smagorinsky coefficient from the scale-invariant
dynamic model.
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608 height that is still outside of the turbulent boundary layer
609 and thus dynamically disconnected from the unstable re-
610 gime near the surface. Conversely, in the evening the
611 stability conditions become slowly less unstable (decaying
612 turbulence), and thus the turbulence has more time to adjust
613 to changing surface conditions. It is expected that a change
614 in surface conditions needs several large eddy turnover
615 times (
100 m/u* 
 400 s) to affect the entire surface
616 layer. The observed hysteretic behavior is examined in more
617 detail by Kumar et al. [2005], who conclude that local
618 scaling is successful in describing the behavior of the
619 coefficient.
620 [38] In Figure 9 the predictions for the Smagorinsky
621 coefficient from the simulations are compared to the mea-
622 sured coefficients from HATS described by KMP03
623 (cs

(D,emp)) and the predicted dynamic coefficients from
624 HATS of KPM04 (cs

(D,dyn), cs
(D,sd-dyn)). In experiment and

625 simulation, the scale-dependent coefficient is always larger
626 than the scale-invariant. In general, the scale-dependent
627 coefficients from the simulation match the experimentally
628 determined values cs

(D,emp). In addition, the data from HATS
629 and from LES agree well for the scale-invariant case
630 (cs

(D,dyn)), although, as noted before, the values fall signif-
631 icantly below the measured coefficient cs

(D,emp).
632 [39] The hysteretic behavior of the coefficient in Figure
633 8 has to be taken into account when plotting the results.
634 Consequently in Figure 9 for Dh/L 
 �1 in Figure 9a, Dh/L
635 
 0 in Figure 9b, and Dh/L 
 1 in Figure 9c, two data sets
636 are plotted for each of the simulations: The larger values are
637 recorded during the evening transition. The smaller values
638 occur during the morning transition, when as outlined
639 earlier, Dh/L is not an appropriate scaling parameter.

640[40] In the simulation, cs
(D) is larger in unstable conditions

641(Figure 9a) than in neutral conditions (Figure 9b), in
642contrast to HATS results. The Smagorinsky coefficient in
643the simulation is smaller than in HATS for neutral con-
644ditions, but experiment and simulation agree very well in
645unstable conditions. During the evening transition in mod-
646erately stable conditions, the scale-dependent coefficient
647converges to cs 
 0.08, while the scale-invariant coefficient
648approaches cs 
 0.05 for z/Dh > 2.5. Field experiment and
649simulation results agree well qualitatively, but the scale-
650dependent coefficients from LES are smaller than the HATS
651measurements for the moderately stable conditions. In the
652most stable conditions in the simulation (Figure 9d,Dh/L
 4),
653LES predictions of cs

(D) match the a priori results from HATS
654when the scale-dependent dynamic model is used.

6555. Conclusions

656[41] High resolution large-eddy simulations of unstable
657and stable atmospheric boundary layers (ABL) with con-
658stant surface heat fluxes were conducted using the Lagrang-
659ian scale-dependent dynamic SGS model [Bou-Zeid et al.,
6602005] and the Lagrangian scale-invariant dynamic SGS
661model [Meneveau et al., 1996]. In unstable conditions, the
662vertical profiles of mean quantities and fluxes are predicted
663equally well by both approaches. In stable conditions, there
664are significant differences in the profiles. The scale-invari-
665ant dynamic procedure is underdissipative which leads to
666larger velocity variances and fluxes in the nocturnal bound-
667ary layer. In addition, a faster growth of the nocturnal
668boundary layer is observed for the LES with the scale-
669invariant dynamic model.

Figure 9. Smagorinsky coefficient cs
(D) for different stability conditions from HATS and from LES.

(a) Dh/L 
 �1, (b) Dh/L 
 0, (c) Dh/L 
 1, and (d) Dh/L 
 4. Dot-dashed and dotted lines are scale-
invariant dynamic SGS model; solid and dashed lines are scale-dependent dynamic SGS model. Because
of hysteretic behavior that is observed in the near-neutral stability, in Figures 9a, 9b, and 9c, two curves
for each simulation are plotted.
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670 [42] The advantages of the scale-dependent dynamic
671 procedure become especially evident in the velocity spectra,
672 which follow the expected scalings in the inertial range
673 correctly. The spectra in the scale-invariant dynamic simu-
674 lation are flat, indicating an unnatural buildup of turbulent
675 kinetic energy at the small scales. Obtaining correct velocity
676 and temperature spectra in a simulation is of paramount
677 practical importance, since the energy distribution of turbu-
678 lence structures greatly affects all transport processes,
679 including those of nonhomogeneous processes such as
680 evapotranspiration over heterogeneous surfaces.
681 [43] By analyzing the Smagorinsky coefficients obtained
682 during the simulations of a diurnal cycle, we conclude that
683 the Lagrangian dynamic SGS models in LES of ABL flow
684 of varying stability are able to predict trends of the Smagor-
685 insky coefficient cs

(D) that agree well with the coefficient
686 measured a priori in the HATS experiment (KMP03,
687 KPM04). cs

(D) decreases both in the near-wall region and
688 in stable conditions. The scale invariant dynamic procedure
689 underpredicts the field experimental value of cs

(D,emp), but
690 closely matches the scale-invariant coefficients obtained in
691 the field study cs

(D,dyn). The Smagorinsky coefficient pre-
692 dicted from the scale-dependent dynamic model is similar to
693 cs

(D,emp). However, for neutral and moderately stable con-
694 ditions cs

(D) is larger and increases faster with z/Dh in the
695 field measurements than in LES.
696 [44] The scale-dependent dynamic procedure is success-
697 ful in automatically reducing cs

(D) in stable conditions, such
698 as in the stable region above the inversion layer, and in the
699 nocturnal boundary layer. Moreover, the agreement between
700 LES and field experimental study supports the applicability
701 of a priori studies to gain insights into development and
702 testing of SGS parameterizations for LES. Finally, the
703 detailed analysis of the diurnal cycle simulation of the
704 ABL of Kumar et al. [2005] provides further illustration
705 of the strengths of the dynamic model in LES to study
706 complex time-dependent problems in hydrology and land-
707 atmosphere interaction.
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