
Soil Heat Flux

Conduction

Energy Balance

What is soil?

Soil Thermal Properties

TABLE 8.2. Thermal properties of typical soil materials.

Material	Density (Mg m ⁻³)	Specific Heat (J $g^{-1} K^{-1}$)	Thermal Conductivity (W $m^{-1} K^{-1}$)	Volumetric heat capacity (MJ m ⁻³ K ⁻¹)
Soil minerals	2.65	0.87	2.5	2.31
Granite	2.64	0.82	3.0	2.16
Quartz	2.66	0.80	8.8	2.13
Glass	2.71	0.84	0.8	2.28
Organic matter	1.30	1.92	0.25	2.50
Water	1.00	4.18	0.56 + 0.0018T	4.18
Ice	0.92	2.1 + 0.0073T	2.22 - 0.011T	1.93 + .0067T
Air (101 kPa)	(1.29 - 0.0041T) $\times 10^{-3}$	1.01	0.024 + 0.00007T	(1.3 - 0.0041T) $\times 10^{-3}$

(Campbell and Norman, 1998)

Soil Specific Heat Capacity

$$\rho_{s}c_{s} = \phi_{m}\rho_{m}c_{m} + \theta\rho_{w}c_{w} + \phi_{o}\rho_{o}c_{o}$$

- θ is volumetric water content
- ϕ_m is volume fraction of minerals
- ϕ_0 is volume fraction of organic material
- ρ_s is (wet) bulk density of soil (Mg m⁻³)
- ρ_m is density of minerals (Mg m⁻³)
- $\rho_{\rm w}$ is density of water (Mg m⁻³)
- ρ_0 is density of organic material (Mg m⁻³)
- c_s is specific heat of soil (J g^{-1} K^{-1})
- c_m is specific heat minerals (J g⁻¹ K⁻¹)
- c_w is specific heat of water (J g⁻¹ K⁻¹)
- c_o is specific heat of organic material (J g^{-1} K^{-1})

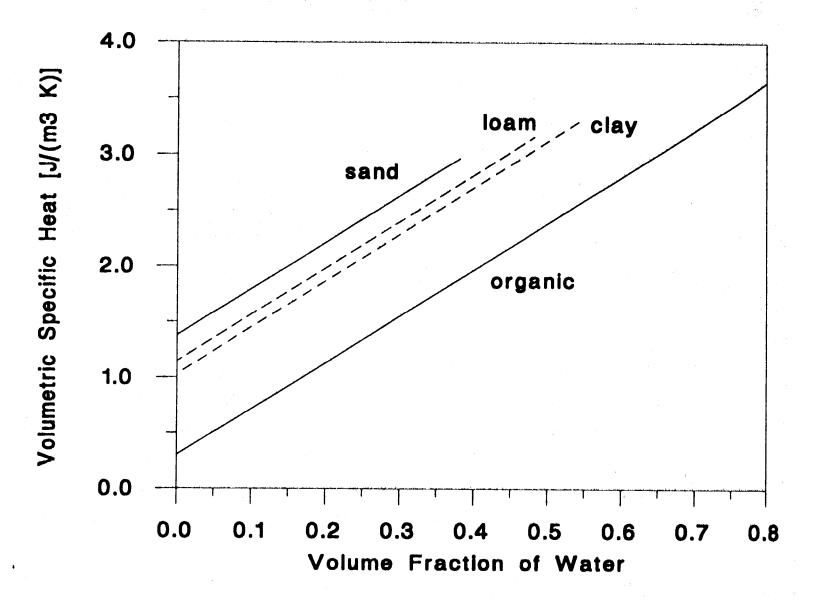


FIGURE 8.2. Volumetric heat capacity of organic and mineral soils. Differences are mainly due to differences in soil bulk density.

Soil Conductivity

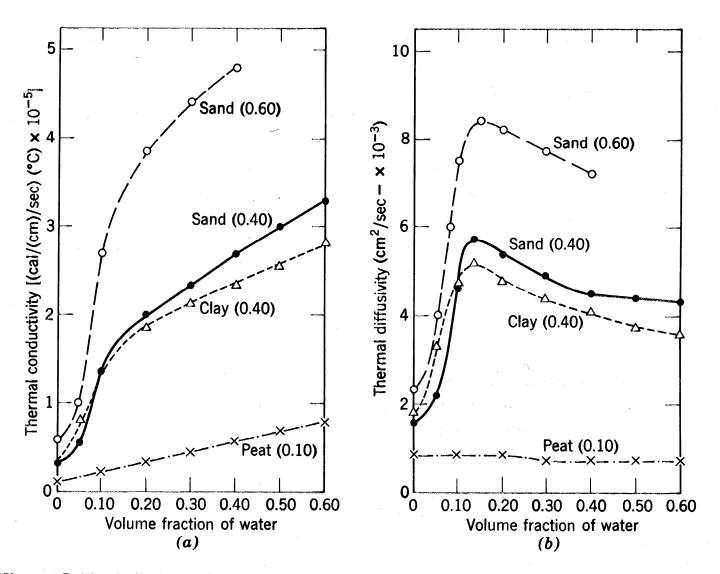


Figure 5.11 Soil thermal conductivity (a) and thermal diffusivity (b) as a function of water content for various soil types. Numbers refer to porosity. (After van Duin, 1963.)

$$G = -k_{Tsoil} \frac{\partial T}{\partial z}$$

 $\begin{array}{ll} G & \text{is soil heat flux } (W \ m^{-2}) \\ k_{Tsoil} & \text{is thermal conductivity } (W \ m^{-1} \ K^{-1}) \\ T & \text{is temperature } (K) \end{array}$

$$G = -k_{Tsoil} \frac{\partial T}{\partial z}$$

Combined with soil heat flux divergence / soil heat storage equation:

$$\rho_{s}c_{s}\frac{\partial T}{\partial t} = -\frac{\partial G}{\partial z}$$

$$\frac{\partial T}{\partial t} = D_{Tsoil} \frac{\partial^2 T}{\partial z^2}$$

$$D_{Tsoil} = \frac{k_{Tsoil}}{\rho_{s}c_{s}}$$

$$\frac{\partial T}{\partial t} = D_{Tsoil} \frac{\partial^2 T}{\partial z^2}$$

$$T(0,t) = T_{avg} + A(0)\sin(\omega(t-t_o))$$

$$T(z,t) = T_{avg} + A(0)\exp(-z/D)\sin[\omega(t-t_o) - z/D]$$

- A(0) is amplitude of soil surface temperature
- t_o is a phase shift that depends on whether t is local time
- D is the damping depth (m)
- ช is the angular frequency

$$D = \sqrt{\frac{2D_{Tsoil}}{\omega}}$$

$$\omega_{diurnal} = \frac{2\pi}{24 \times 3600} = 7.3 \times 10^{-5} \text{ s}^{-1}$$

$$\omega_{annual} = \frac{2\pi}{365 \times 24 \times 3600} = 2 \times 10^{-7} \text{ s}^{-1}$$

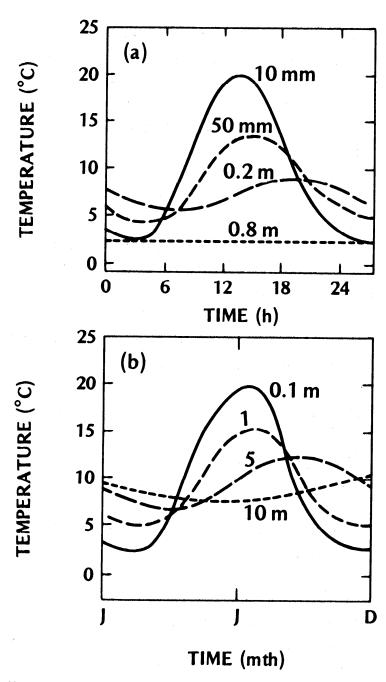


Figure 2.6 Generalized cycles of soil temperature at different depths for (a) daily and (b) annual periods.

(Oke, 1987)

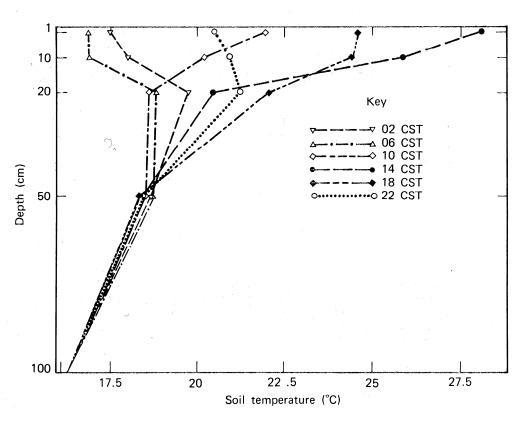


Figure 2.3. Vertical temperature profiles in soil during the course of a typica summer day at Argonne, Illinois, July 27, 1955 (after Carson and Moses, 1963)

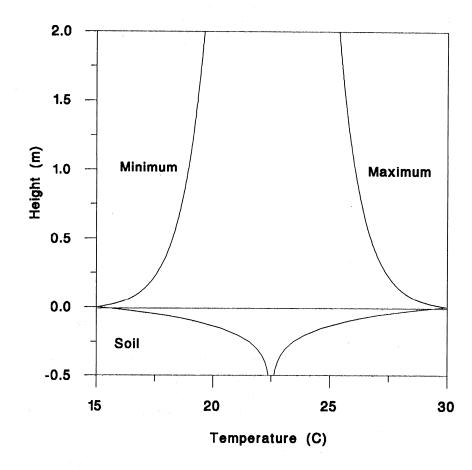


FIGURE 2.1. Hypothetical profiles of maximum and minimum temperature above and below soil surface on a clear, calm day.

(Rosenberg, 1974)

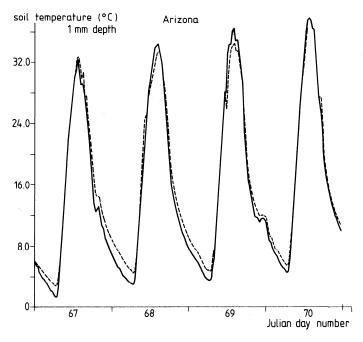
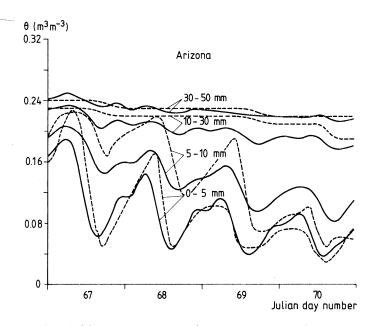



Figure 5.35 Measured (----) and simulated (----) 'surface' temperature, ARIZONA.

Figure 5.36 Measured (----) and simulated (----) soil moisture contents for various depths intervals, ARIZONA.

(Ten Berge, 1986)

Simple Rules for G

G for day and ten-day periods; relatively small

$$G \approx 0$$

G for hourly or shorter periods;

daytime

$$G = 0.1 R_n$$

nighttime

$$G = 0.5 R_n$$

Measuring G

Natural Soil: Heat flux plates and soil temperature measurements can be used together

$$G = G_{heat \ plate \ at \ 0.08 m} + C_s \int_0^{0.08} \frac{\partial T_s}{\partial t} dz$$

Buildings: ??