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The evolution of a counter-rotating vortex pair in a stably stratified fluid is investigated
using direct numerical simulations. The study focuses on the short-wavelength elliptic
instability occurring in this flow and the subsequent decay of the vortices. Depending
on the level of stratification, as characterized by the Froude number which indicates
the time scale of buoyancy to that of the instability, and the stage of evolution,
stratification effects may significantly alter the behaviour of the flow. In the case of
weak to moderate stratification, the elliptic instability develops qualitatively in the
same manner as in unstratified fluid. The primary effect of stratification is to reduce the
vortex separation distance which enhances the mutually induced strain. Consequently,
the instability has an earlier onset and higher growth rate with increasing stratification.
The behaviour is essentially described by linear stability theory for unstratified flow
if the varying separation distance is taken into account. On the other hand, the final
breakdown and decay of the flow may be greatly modified by stratification since
buoyancy effects eventually emerge after sufficient time has elapsed. The decay is
enhanced owing to additional mechanisms not present in unstratified flow. Secondary
vertical vortex structures form between the primary vortices promoting fluid exchange
in the transverse direction. Detrainment of fluid from the primary vortices by the
generated baroclinic torque also contributes to the more rapid breakdown of the
flow. In the case of strong stratification, in which the time scale of buoyancy is
comparable to that of the instability, the flow is significantly altered. As a result of
strong baroclinic torque, the primary vortices are brought together and detrainment
occurs earlier. The associated reduction in radii of the vortices results in a higher
axial wave mode and a more complex radial structure of the instability. Detrainment
and mixing accelerate their decay. Late time evolution is dominated by the successive
generation of alternate signed baroclinic torque which results in an oscillation of the
total flow circulation at the buoyancy frequency.

1. Introduction
A counter-rotating vortex pair is a model flow of both practical and fundamental

significance. Such a flow may occur in the wake of an aircraft and can be hazardous
to following aircraft (Spalart 1998). Knowledge of the rate of decay of these vortices
which includes the effects of atmospheric conditions such as density stratification and
turbulence is critical for air traffic control. More relevant to the present study is the
fundamental interest in elementary vortex flows; the knowledge of which is prerequisite
for understanding the interaction and behaviour of vortices in more complex flows.
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For example, in fully developed turbulence, coherent vortex structures are found to
occur at small scales (She, Jackson & Orszag 1991; Jimenez et al. 1993; Nomura &
Post 1998) and may play a significant role in the dynamics and statistical properties
of the flow. In stably stratified turbulence, counter-rotating vortices can generate
overturns with regions of high diapycnal mixing in between them (Diamessis &
Nomura 2004). Accordingly, it is of interest to determine what effect stratification has
on these vortices.

In an unstratified fluid, a pair of counter-rotating parallel vortices is known to
exhibit two types of (three-dimensional) instabilities, a long-wavelength and a short-
wavelength instability. The long-wavelength (Crow) instability (Crow 1970) results in
a symmetric sinusoidal deformation of the vortex cores. According to Crow’s linear
stability theory, the wavelength with the maximum growth rate depends on the vortex
dipole aspect ratio, defined in this case as the ratio of the vortex core radius rc to
the initial vortex separation distance b0. For a Rankine vortex with rc/b0 = 0.0985
(presumed characteristic of aircraft trailing wing vortices), Crow calculated that this
most amplified wavelength is approximately 8.6b0. According to Han et al. (2000),
laboratory experiments, numerical simulations and field measurements have found
that for aircraft trailing wing vortices, the most amplified wavelength is in the range
5b0 to 10b0. The variation about the expected value is attributed to differences in
rc/b0 and vorticity distribution in the various studies, and the effects of ambient
turbulence in the atmospheric observations. Detailed studies have shown that the
Crow instability leads to vortex reconnection and the formation of vortex rings which
may persist for long times (Leweke & Williamson 1998a, b).

A short-wavelength instability has also been observed in both laboratory experi-
ments (Sarpkaya & Suthon 1991; Thomas & Auerbach 1994; Leweke & Williamson
1998a) and numerical simulations (Orlandi et al. 1998; Laporte & Corjon 2000).
Leweke & Williamson 1998a , here in after referred to as LW98) identified the
instability as a cooperative elliptic instability associated with the ellipticity of the
streamlines in the vortex cores owing to the strain induced by one vortex on the other
(Tsai & Widnall 1976; Waleffe 1990). An antisymmetric sinusoidal deformation of
the cores is observed. Experimental studies report a range of wavelengths 0.6b0 to
0.8b0 (Thomas & Auerbach 1994; LW98). A stability analysis of the Lamb–Chaplygin
vortex pair performed by Billant, Brancher & Chomaz (1999) showed the existence of
both symmetric and antisymmetric short-wavelength instabilities, the latter exhibiting
higher growth rates. Sipp & Jacquin (2003) showed that the growth rates depend on
the dipole aspect ratio and the preference for the antisymmetric mode increases with
increasing aspect ratio. They also considered the effects of viscosity which damp the
perturbation growth rate and also increase the vortex radii and hence, the aspect ratio
(see § 3.3.3). The predicted growth rate is in good agreement with the experiments
of LW98. In the later stages of flow development, the short-wave instability gives
rise to secondary transverse vortex structures which lead to rapid vortex decay and
transition to turbulence (LW98; Laporte & Corjon 2000).

The interaction of the Crow and short-wavelength instabilities has also been con-
sidered (LW98; Laporte & Corjon 2000). The behaviour of the flow is found to
depend on the relative significance of the initial energy of each instability mode
(Laporte & Corjon 2000). When the Crow instability dominates, the short-wave
instability is locally enhanced where the deformation of the Crow instability brings
the vortices close together. This is due to the increase in mutually induced strain as
the separation distance decreases (LW98). Long-term evolution is sensitive to both
instabilities (Laporte & Corjon 2000).
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The effects of stable density stratification on two-dimensional vortex pairs have been
considered in a number of studies (Scorer & Davenport 1970; Crow 1974; Spalart
1996). In an unstratified fluid, a two-dimensional counter-rotating vortex pair des-
cends, owing to its mutually induced velocity, at a constant speed while maintaining
a constant separation distance. Results from these studies indicate that ambient
stratification with Fr � 1, where Fr = W0/Nb0, and W0 is the initial advection velocity
and N is the buoyancy frequency, causes a decrease in separation distance and sub-
sequent acceleration of vertical motion. This disagrees with experimental
observations (Sarpkaya 1983; Delisi & Robins 2000) and three-dimensional simu-
lations (Robins & Delisi 1998; Garten et al. 2001) which indicate a simultaneous
decrease in separation distance and deceleration. A two-dimensional analysis by
Holzäpfel & Gerz (1999) shows early deceleration followed by acceleration. It was
suggested that the acceleration phase is not observed in actual flows since beyond the
early phase, the dynamics are dominated by three-dimensional instabilities. As the
vortices descend in a stratified fluid, opposite signed vorticity is generated through
baroclinic torque (see figure 8). The associated flow drives the vortices towards each
other (Spalart 1996). As shown by Holzäpfel & Gerz (1999), the induced velocity field
of the baroclinic torque also causes a reduced descent speed and detrainment of fluid
from the vortex pair oval.

The effect of ambient stratification on the Crow instability has been investigated
using numerical simulations (Robins & Delisi 1998; Garten et al. 2001). Robins &
Delisi (1998) find that increasing stratification accelerates linking and ring formation.
For strong stratification (Fr � 2), the formation of rings is suppressed and instead,
‘puffs’ are formed. Garten et al. (2001) find a critical Froude number, Frcr ≈ 2/3, such
that for Fr > Frcr , the reduced separation distance results in a faster growth of the
Crow instability. For Fr< Frcr , the separation distance increases, retarding instability
growth and preventing significant vortex reconnection to occur. The symmetry
boundary conditions used in the transverse direction precluded the development
of any antisymmetric instabilities in their simulations.

An experimental and numerical study by Delisi & Robins (2000) reported the
development of a short-wavelength instability in stably stratified fluid. The circulation
Reynolds number, ReΓ =Γ/ν where Γ is the vortex circulation and ν is the kinematic
viscosity, is 24 000 in the experiments and 1465 in the simulations, and the Fr
values are 0.73 � Fr � 1.1. The wavelength of the instability is longer (approximately
b0 to 2b0) than that observed in the unstratified flows (�b0). The instability also
exhibits an earlier onset and a more rapid growth, apparently at the expense of the
Crow instability. Results from large-eddy simulations (LES) of vortex pairs in stably
stratified fluid at high ReΓ (ReΓ ∼ 107) (Switzer & Proctor 2000) indicate that the level
of ambient stratification and turbulence determine whether the long-wave or short-
wave instability dominates. Holzäpfel, Gerz & Baumann (2001) performed LES for
ReΓ = 7400 and report that in the case of a quiescent atmosphere and stratification
levels 1 � Fr � 3, the decay of the vortices is controlled by the interaction of the
short-wave instability and baroclinic vorticity. Increasing stratification accelerates the
short-wave instability which they suggest is due to the reduced vortex spacing. Intense
vertical vortex structures are induced by baroclinic torque. These structures result in
lateral transport and turbulent mixing of the primary vorticity which promotes a
rapid decay of the vortex pair.

These previous studies indicate that a short-wavelength instability occurs in stably
stratified flows and that it can dominate with significant stratification. There is also
an enhancement of the instability with increasing levels of stratification. However,
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quantitative assessment of the instability is limited. Growth rates have not been
evaluated and the variation in wavelength has not been verified. In general, it has not
been clearly established whether the observed instability in the stratified flows is the
cooperative elliptic instability occurring in unstratified flow (Delisi & Robins 2000).
At present, there are no corresponding three-dimensional linear stability analyses for
the stratified flow.

The objective of the present study is to investigate further the short-wavelength
instability and subsequent decay of a vortex pair in a stably stratified fluid using
direct numerical simulation. Here, we consider only the short-wave instability by
restricting the development of the Crow instability in the simulations. The Reynolds
number ReΓ is fixed at a value comparable to the experiments of LW98 and we
consider a greater range of stratification levels (1 � Fr � 10, Fr= ∞) than in previous
studies. A more thorough and quantitative assessment of the instability and influence
of stratification is performed. Details of the instability, not provided in previous
studies, are examined and compared with those of unstratified flow. Growth rates
are evaluated. Energy spectra are computed and show the evolution of the primary
instability, development of harmonics, and late-time behaviour. Detailed analysis is
carried out in order to understand the development of structural features and the
physical mechanisms involved in the decay of the vortex pair.

The results provide a more comprehensive description of the effects of stable
stratification in this flow. Depending on Fr, which indicates the time scale of
buoyancy to that of the instability, and the stage of evolution, stratification effects may
significantly alter the behaviour of the flow. For weak to moderately stratified flows
(∞ >Fr � 2), the time scale of buoyancy is relatively large. Thus, at early times when
the instability develops, stratification results only in a variation of the unstratified
flow (decreasing separation distance) and the behaviour of the instability is essentially
described by linear theory for unstratified flow with appropriate scaling. On the
other hand, the final breakdown and decay of the flow may be greatly modified by
stratification since buoyancy effects eventually emerge after sufficient time has elapsed.
For strongly stratified flow, Fr ∼ 1, the time scales of the instability and stratification
are comparable and the associated processes interact significantly. We consider Fr ∼ 1
to be a limit for our analysis of the short-wavelength instability, corresponding to
a transition between convective dominated and stratification dominated flow. The
two-dimensional base flow is significantly altered and the instability does not develop
in the same manner, or to the extent, as in the weak to moderately stratified flows.
We note that very strongly stratified flows, Fr < 1, exhibit different behaviour and the
elliptic instability is not expected to be realized. These flows are outside the main
scope of this study.

The numerical simulations are described in § 2. Results are presented in § 3: the
overall behaviour of the flows is first described and details of the (linear) instability
and (nonlinear) late-time decay are then presented and discussed. Conclusions are
given in § 4.

2. Direct numerical simulations
Direct numerical simulations of a counter-rotating vortex pair in an initially uniform

stably stratified fluid are performed for this study. Figure 1 shows the initial flow
geometry and the coordinate system. Here, the spatial coordinates, x, y, z, correspond
to the transverse, axial and vertical directions, respectively.
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Figure 1. Coordinate system and initial conditions for counter-rotating vortex pair and
uniform stable stratification. (a) Initial vortices of circulation, ±Γ0, with centres separated
by a distance, b0, moving with downward induced velocity, W0 = Γ0/2πb0. (b) Background
linear density profile ρ(z).

The governing equations with the Boussinesq approximation are:

∇ · v = 0, (2.1)

∂v

∂t
+ v · ∇v = − 1

ρ0

∇p + ν∇2v − αT T g, (2.2)

∂T

∂t
+ v · ∇(T (z) + T ) = κ∇2T , (2.3)

where ρ0 is a constant reference density, ν is the kinematic viscosity, g = (0, 0, −g) is
the acceleration due to gravity, and κ is the thermal diffusivity. In the above equations,
v =(u, v, w) is the instantaneous velocity, p is the deviation of the pressure from its
hydrostatic value and T is the deviation of the temperature from the background

temperature, i.e. the instantaneous temperature is T̃ = T0 + T (z) + T (x, y, z, t), where
T (z) is the imposed background temperature. The volumetric expansion coefficient,

αT , is defined as, αT = −(1/ρ0)(∂ρ̃/∂T̃ ). The corresponding density field is ρ̃ = ρ0 +
ρ(z) + ρ(x, y, z, t), where the imposed uniform stable stratification corresponds to
dρ/dz.

The initial base flow consists of a pair of two-dimensional counter-rotating vortices.
The flow is represented by a superposition of two Lamb–Oseen vortices which
was found to fit well the experimental data of LW98. The corresponding vorticity
distribution is given by,

ωy(x, z, t0) = Ω0 exp

(
−((x − x1)

2 + (z − z1)
2)

a2
0

)
− Ω0 exp

(
−((x − x2)

2 + (z − z2)
2)

a2
0

)
,

(2.4)

where Ω0 =Γ/πa2
0 is the peak vorticity, a0 is the initial value of the vortex radius and

(x1, z1) and (x2, z2) are the initial coordinates of the two vortex centroids (z1 = z2).
Note that here, the vortex radius is based on the vorticity polar moment and given
by a2 = 〈r2ωy〉/〈ωy〉, where r is the radial distance from a vortex centroid and 〈〉
indicates an area average in x − z. The intial separation distance is b0 = |x1 − x2|. The
vortex dipole aspect ratio for all simulations performed here is a0/b0 = 0.177. This is
comparable to the estimated value a0/b0 = 0.15 for the experiments of LW98. We also



288 K. K. Nomura, H. Tsutsui, D. Mahoney and J. W. Rottman

note that a0/b0 = 0.177 corresponds to rc/b0 = 0.2, where rc is defined as the radius
from the centre of one vortex to where the tangential velocity is maximum (rc =1.12a

for a Lamb–Oseen vortex).
Superimposed on the base vortex flow, (2.4), is a three-dimensional random pertur-

bation velocity field. The amplitude of the perturbations does not exceed 0.001Wmax

and is comparable to that used in previous simulations (Laporte & Corjon 2000).
The corresponding vorticity perturbations are approximately 0.2 % of Ω0. The initial
temperature field corresponds to a uniform gradient (dT /dz > 0) with no initial
perturbations. We note that additional simulations were performed in which the
velocity perturbation level was increased by a factor of 5. Results showed no significant
change in growth rates of the linear instability. Use of different random fields, e.g.
different random number generator seed, yielded variations in growth rate of up to
7%.

The relevant non-dimensional parameters are now defined. The characteristic length
scale is the initial vortex separation, b0. The geometry is characterized by the dipole
aspect ratio, a0/b0. The velocity scale is the initial advection velocity of the vortices,
W0 = Γ0/2πb0, where Γ0 is the initial vortex circulation (figure 1). The convective time
scale of the vortex flow is therefore b0/W0 = 2πb0

2/Γ0 which, as will be shown in
§ 3.3.3, is the time scale of the instability. The circulation Reynolds number is given
by,

ReΓ =
Γ0

ν
=

2πb0W0

ν
. (2.5)

The Froude number is defined as,

Fr =
W0

Nb0

, (2.6)

where N is the buoyancy frequency,

N2 = − g

ρ0

dρ

dz
= αT g

dT

dz
. (2.7)

Thus, Fr can be considered as the ratio of the buoyancy time scale to the instability
time scale. The Prandtl number is Pr = ν/κ .

For all simulations performed, the Reynolds number of the vortex pair is ReΓ =
2400. This is comparable to the experiments of LW98 in which ReΓ ranges from
2400 to 2750. The Prandtl number is Pr =0.7. The Froude numbers considered are
Fr = 1, 2, 5 and 10 which cover a range of conditions corresponding to strong (Fr = 1),
moderate (Fr = 2) and weak (Fr = 5, 10) stratification. In addition, Fr = ∞ correspond-
ing to an unstratified flow is considered. Since the values of ReΓ and a0/b0 are com-
parable to those of LW98 and also to the simulations of Laporte & Corjon (2000)
who use ReΓ =2400 and rc/b0 = 0.2, the unstratified flow serves as a validation for
the simulations in addition to providing a reference flow from which to study the
effects of stratification.

As indicated earlier, our study is directed at the fundamental flow problem and
not the practical application. We note that the simulated vortices do not adequately
represent those in typical aircraft wakes which are characterized by much smaller
aspect ratios, of order 0.01 (Delisi et al. 2003), and much higher ReΓ . Simulations of
tight core vortices would require very high resolution and/or appropriate subgrid-scale
modelling (Holzäpfel 2004). However, it has been reported that LES results of high
ReΓ (∼107) show higher growth rates, but otherwise similar dynamics to the low ReΓ
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flows (Laporte & Leweke 2002). With regard to Fr, the range of values we consider is
representative of stratification levels in the lower atmosphere (Switzer & Proctor 2000).

The numerical solution procedure is based on a second-order finite-difference
scheme with second-order Adams–Bashforth time integration (Gerz, Schumann &
Elghobashi 1989). The dimensions of the computational domain are Lx = 6b0, Ly =
6b0, Lz = 18b0, with resolution of 192 × 192 × 576 (uniform) grid points, respectively.
This allows approximately 13 grid points across the core of each vortex. Preliminary
studies of simulations with differing numbers of grid points showed a reasonably grids-
independent solution for this resolution. In addition, energy spectra (see figure 15)
show no energy accumulation at the highest wavenumbers further demonstrating
adequate resolution.

Periodic boundary conditions are employed in all three directions. The transverse
length, Lx = 6b0, is sufficient to minimize the effects of neighbouring vortices through
the linear instability phase in all flows. Based on linear internal wave theory (see § 3.2),
we expect the generated waves to reach the boundary at the end of the linear phase
only for the Fr = 1 case. Still further time would be required for the waves to interact
with the neighbouring vortices and thus we do not expect significant interaction for
the extent of the simulations, except perhaps in the late stages of the Fr = 1 flow
(§ 3.4). Additional test simulations using Lx =12b0 showed no significant change in
wavelength or growth rate (values of growth rate σ differed by less than 0.1 %). The
vertical length, Lz = 18b0, is extended to accommodate the downward descent of the
vortices and associated wake, and to prevent the vortices and wake from encountering
image vortices and their wakes.

The axial length, Ly =6b0, is selected to minimize the Crow instability. Using
Crow’s linear stability theory (neglecting the differences between Rankine and Oseen
vortices), we have computed the most amplified wavelength for rc/b0 = 0.2 to be
7.4b0. However, this theory predicts that there will be non-zero growth rates for
wavelengths greater than about 4.8b0. Since the axial length of our computational
domain is 6b0, we have excluded the instability with maximum growth rate, but we
might expect to see some slow growth of a Crow instability with a wavelength near
the axial length of our computational domain. In our simulations, we observed some
axial variations with a scale larger than predicted for the short-wave instability, but
these variations showed none of the properties characteristic of the Crow instability.
Results from simulations using different axial lengths indicate Ly =6b0 to be a good
compromise in minimizing the development of the Crow instability while retaining
a sufficient number of short-wave periods for evaluating statistics and spectra (see
§ 3.3.2). Additional simulations suggest that the observed axial and vortex-to-vortex
variability in the instability amplitudes are due to sensitivity of the flow to the initial
perturbation field. For the case of Fr= 1, some competition between neighbouring
wave modes is exhibited (§ 3.3.2).

3. Results
In the results presented, the non-dimensional time is t∗ = tW0/b0 and non-

dimensional spatial coordinates are X = x/b0, Y = y/b0 and Z = z/b0.

3.1. Flow visualizations

Figures 2–5 show the development of the three-dimensional vortex structures in the
unstratified (Fr = ∞) and stratified (Fr= 5, 2, 1) flows. The structures are visualized by
isosurfaces of the second invariant of the velocity gradient tensor, II =(ω2/2 − S2)/2,
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Figure 2. Three-dimensional visualizations of isosurfaces of the second invariant of velocity
gradient tensor, II∗ for Fr = ∞ at (a) t∗ = 10.5, (b) 12.0, (c) 13.5, (d) 15.0, (e) 16.5, (f ) 18.0.
(a) II∗ = 40, (b–f ) 30.

where ω is the vorticity vector and S is the strain rate tensor (Nomura & Post 1998).

Here, it is non-dimensionalized as, II∗ = II/(ω2
0/4), where ω0 is the initial vorticity.

High-amplitude positive values of II thus correspond to strong rotation-dominated
regions which effectively characterize the dominant vortex structures in the flow
(Diamessis & Nomura 2000).

In the unstratified flow (figure 2), following an initial flow adjustment period (see
§ 3.2), the short-wave instability is initiated. A dominant wavelength is selected and
amplified deforming the vortices in a sinusoidal manner that is antisymmetric with
respect to the dividing plane between the vortices (figure 2a, b; t∗ � 12.0). As the flow
develops further, the geometry becomes more complex. Secondary structures develop
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(a) (b)

(c) (d)

(e) ( f )

Figure 3. Three-dimensional visualizations of isosurfaces of the second invariant of velocity
gradient tensor, II∗ for Fr =5 at (a) t∗ = 8.25, (b) 9.0, (c) 9.75, (d) 10.5, (e) 11.25, (f ) 12.0.
(a) II∗ = 55, (b–e) 50, (f ) 45.

in the transverse direction (figure 2d, e; t∗ � 15.0) and eventually dominate the flow
as the primary vortices breakdown and weaken (figure 2f ).

A similar instability is observed in the flows with weak (Fr = 5, figure 3a, b;
t∗ � 9.0) to moderate (Fr =2, figure 4a, b; t∗ � 6.0) stratification, with the onset
occurring earlier with increasing stratification. A noticeable reduction in the vortex
separation distance is also observed. As in the unstratified flow, the breakdown of the
primary vortices is associated with the development of secondary vortex structures;
however, these structures differ in the stratified flows. In the moderately stratified flow
(figure 4c, d), vertical structures are formed. In weakly stratified flow (figure 3d, e),
both vertical and transverse structures are observed. With strong stratification (Fr = 1,
figure 5a, b, t∗ � 4.5), the vortices are brought so close together that the core
deformation becomes irregular. A smaller wavelength is indicated. Evidence of the
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(a)
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Figure 4. Three-dimensional visualizations of isosurfaces of the second invariant of velocity
gradient tensor, II∗ for Fr = 2 at (a) t∗ = 5.25, (b) 6.0, (c) 6.75, (d) 7.5, (e) 8.25, (f ) 9.0.
(a) II∗ = 75, (a) 60, (c) 45, (d) 40, (e, f ) 25.

formation of vertical secondary structures between the primary vortices is observed
(figure 5c, t∗ = 5.25). More significant, however, is the appearance of structures in the
wake of the primary vortices. As will be discussed, these structures are associated
with baroclinically generated vorticity which in this flow is significant and eventually
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Figure 5. Three-dimensional visualizations of lower isosurfaces of the second invariant of
velocity gradient tensor, II∗ for Fr = 1 at (a) t∗ = 3.75, (b) 4.5, (c) 5.25, (d) 6.0, (e) 6.75,
(f ) 7.5. (a) II∗ = 100, (b) 70, (c–f ) 7.
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Figure 6. Time development of normalized average transverse vorticity magnitudes, Γx/Γy,0.
Symbols: �, Fr = ∞; �, 10; �, 5; �, 2; �, 1.

dominates the flow (figure 5f , t∗ = 7.5). Note the relatively low level of II associated
with these regions, which is consistent with the sheet-like geometry of these structures.

Details of the observed flow structure and associated dynamics are presented in
§ § 3.3 and 3.4. We first consider basic aspects of the overall evolution of the flow.

3.2. General behaviour

Since the initial flow is dominated by axial vorticity, ωy , the development of the
off-axial components of ω provides an indicator of the instability and change from
two-dimensional to three-dimensional flow. Following Laporte & Corjon (2000), a
global measure of the transverse vorticity, ωx , is given by,

Γx =
1

Lx

∫
Lx

(∫
Ly

∫
Lz

|ωx(x, y, z)| dy dz

)
dx. (3.1)

Figure 6 shows the time development of Γx (normalized with the initial value of the
axial vorticity magnitude Γy,0). Γx characterizes the evolution of the flow which can
be considered to consist of three phases: adjustment, linear and nonlinear (Laporte
& Corjon 2000). The adjustment phase (0< t∗ � 3.4 for Fr = ∞) corresponds to the
initial decrease in Γx . During this phase, the flow adjusts from its initial conditions as
it develops under the Navier–Stokes equations. The vortices adapt to the presence of
each other and owing to the induced velocity, they propagate downwards and develop
an elliptic shape due to the mutually induced strain. The perturbation field decays
owing to viscous diffusion and the flow remains two-dimensional. In the linear phase
(3.4 � t∗ � 13.5 for Fr= ∞), Γx increases, although Γx 	 Γy . This phase corresponds
to the development of the three-dimensional short-wave instability with growth of the
perturbation amplitudes. The linear phase is limited to times in which the perturbation
amplitudes remain small in comparison with the base flow and the core displacement
exhibits an exponential growth as indicated by linear stability theory (see § 3.3.2).
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Figure 7. Time development of (a) vortex circulation, Γ , (b) vortex circulation with time
rescaled with buoyancy scale 1/N . �, Fr = ∞; �, 10; �, 5; �, 2; �, 1.

When Γx/Γy,0 exceeds about 2 %, the deformation is clearly visible (t∗ = 10.5 for
Fr = ∞, figure 2a) and three-dimensional dynamics become significant. For example,
at the corresponding times, the orientation of the principal strains begins to change
(see § 3.3.1 and figure 14a) indicating the significance of the modified vorticity. From
figure 6, it is seen that the onset of the linear phase occurs earlier for the stratified
flows and the growth rate of Γx increases with increasing stratification (decreasing
Fr). In the nonlinear phase (t∗ � 13.5 for Fr= ∞), the perturbation amplitudes are
significant and Γx becomes comparable in magnitude to Γy . Γx eventually reaches a
peak and then decreases.

The vortex circulation, Γ (evaluated over half the transverse domain), is given by,

Γ =
1

Ly

∫
Lx

(∫
Lx/2

∫
Lz

ωy(x, y, z) dx dz

)
dy, (3.2)

and shown in figure 7(a). In the unstratified flow (Fr = ∞), Γ corresponds to the
circulation of one vortex and exhibits a moderate decrease in the linear phase
(t∗ � 13.5) and a more significant decrease in the nonlinear phase. In the stratified
flows, Γ is seen to decrease more rapidly through both the linear and nonlinear
phases. This is due primarily to the generation of baroclinic torque. As the vortex
pair descends through the stably stratified fluid, it transports lighter fluid into a region
of heavier fluid (figure 8a). Strong horizontal density gradients are thereby established
which generate axial vorticity of opposite sign (figure 8b) through baroclinic torque,
as described by the last term in the vorticity equation,

∂ω

∂t
+ (v · ∇)ω = ω · ∇v + ν∇2ω +

1

ρ0

∇ρ × g. (3.3)

Since this opposite signed vorticity is included in (3.2), Γ is reduced in value. The pro-
cess is initially two-dimensional and begins immediately in the adjustment phase. How-
ever, once off-axial vorticity is established, axial components of the density gradient
are generated which then establish transverse components of baroclinic torque. With
moderate to strong stratification (Fr � 2 in figure 7a), Γ becomes negative and then
oscillates in time. Figure 7(b), in which time is scaled by 1/N , shows that this oscilla-
tion occurs at the buoyancy frequency (with period 2π/N).
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vorticity, ωy (solid: ωy > 0, dashed: ωy < 0) showing generation of opposite signed vorticity
by baroclinic torque (b) due to horizontal density gradients (a).
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Figure 9. The non-dimensional temperature perturbation field showing internal wave
generation and propagation from the vortex pair. The wave amplitudes have been normalized
to have a maximum value of unity in each plot. (a) Linear analysis for Nt = 10, (b) simulation
(extended domain) result for Fr = 1 at Nt= 10.

As discussed in Meng & Rottman (1988), a counter-rotating vortex pair generates
an internal wave field that resembles an approximately two-dimensional fan of rays
emanating from the region occupied by the vortex pair. This is illustrated in figure 9(a)
which shows the perturbation temperature (T ) field computed using linear theory
(Meng & Rottman 1988). Figure 9(b) shows T in an (x, z)-plane from our nonlinear
simulations for Fr = 1 at t∗ = Nt = 10 (t∗ = FrNt). Although linear theory, in which
the amplitudes of the waves are proportional to Fr, is strictly valid for Fr 	 1, the
two plots show similar qualitative features in the region away from the origin where
the flow is dominated by the vortices.

We can use linear internal wave theory to estimate the time it takes for the internal
waves generated by the vortex pair to reach the boundaries of the computational
domain. As described in Meng & Rottman (1988), the radial position r with respect
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Figure 10. Time development of conditional vortex circulation, 〈Γ 〉ωy+
(conditioned by

ωy > 0). �, Fr = ∞; �, 10; �, 5; �, 2; �, 1.

to the origin and angular position θ with respect to the x-axis of the internal wave
with wavenumber magnitude K and wavenumber angle φ is given by

r

b0

=
Nt

Kb0

|cos θ |. (3.4)

Since the wavenumber vector is perpendicular to the group velocity vector for internal
waves, θ = φ + π/2. The dominant waves generated by the vortex pair have Kb0 ≈ 1,
so the maximum radial distance travelled by these waves from the origin at time t

is r/b0 ≈ Nt. Based on this estimate, we expect the dominant internal waves to reach
the boundaries of the computational domain at t∗ =FrLx/(2b0). For Lx = 6b0, this
gives t∗ ≈ 3, 6, 15 and 30 for Fr= 1, 2, 5 and 10, respectively. Thus, as discussed in § 2,
we do not expect significant contamination by waves entering through the periodic
boundaries during the linear phase of these flows. There may, however, be some
contamination during the nonlinear phase of the strongly stratified (Fr ∼ 1) flows.

Figure 10 shows a conditional vortex circulation 〈Γ 〉ωy+
(conditioned on ωy > 0)

which effectively excludes the baroclinic vorticity and provides a measure of the
circulation of the primary vortex, at early times in the flow. A more moderate reduction
during the linear phase followed by an enhanced decay during the nonlinear phase
is revealed. The rate of decay increases with increasing stratification. At late times,
this simple conditional averaging is no longer meaningful owing to the complexity
of the flow. As discussed in § 3.4, during the late stages of strongly stratified flows,
there is successive generation of opposite signed baroclinic torque (for Fr = 1, this
occurs for t∗ > 5). Secondary baroclinic torque will have the same sign as the primary
vortices and therefore be retained in 〈Γ 〉ωy+

, thus rendering the conditional averaging
ineffective.

Figure 11 shows the time development of the vortex pair descent height, H . Since H

is defined with respect to the core centre (vorticity maximum), it can be evaluated only
during the linear phase when the primary vortices are identifiable. During the early
stages of development, the unstratified and weakly stratified flows exhibit a nearly
constant descent speed. In the moderate to strongly stratified flows, the influence of
stratification is observed. In the Fr= 1 flow, the descent is arrested for a period of
time before it resumes. In general, the duration of the linear phase decreases with
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Figure 12. Time development of (a) vortex separation, b, normalized by b0, (b) vortex
separation with time rescaled with the buoyancy time scale 1/N . �, Fr = ∞; �, 10; �, 5; �, 2;
�, 1. Here, tadj is the adjustment time beyond which b starts to decrease in (a). Solid line in
(b) corresponds to the theory given by equation (3.5).

increasing stratification. The behaviour of H is consistent with previous results of
Holzäpfel et al. (2001).

Figure 12(a) shows the time development of the vortex separation distance, b. In
the stratified flows, b decreases in time; the rate of decrease increasing with increasing
stratification. As discussed earlier, the reduction of b is due to the secondary flow
associated with the generated baroclinic torque which advects the primary vortices
towards one another. The behaviour is described by the analyses of Saffman (1972)
and Crow (1974), which are reviewed in Spalart (1996). Their analysis considers a
two-dimensional quasi-steady nearly inviscid flow with weak stratification and gives
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the following result for b(t):

b(t) =
b0

cosh
(
(A/2π)1/2 Nt

) , (3.5)

where A= 2.85 (Saffman 1972). This solution is shown in figure 12(b) along with the
simulation results which are scaled by N(t − tadj). Here, tadj is the adjustment time
beyond which b starts to decrease (figure 12a) and b is rescaled with the separation
distance at the corresponding time. As figure 12(b) shows, the simulation results are
in reasonable agreement with the theory, indicating that the behaviour of b(t) is
primarily controlled by two-dimensional dynamics.

We note that in strongly stratified flow (Fr ∼ 1), the effects of baroclinic torque
significantly alter the flow early in time, i.e. during the linear phase. The reduction
in separation distance b is so significant that the primary vortices are brought
together (see figure 26b, t∗ � 4.5). Mutual diffusion of opposite sign vorticity reduces
their strength (as observed in figure 10) and size. In addition, as also indicated in
figure 26(b), baroclinic torque causes detrainment of the primary vortices further
reducing their size.

Details of the linear and nonlinear phases are presented in the following sections.

3.3. Linear phase

3.3.1. Geometric features of short-wave instability

As discussed in LW98, the three-dimensional short-wave instability is an elliptic
instability which evolves in the vortex pair in a coupled ‘cooperative’ manner. Close
examination of the vortices reveals the distinct geometry associated with this instability
which is also exhibited in the weak to moderately stratified flows.

As seen in the unstratified flow (figure 13a–c), the deformation of the core is in
phase when viewed from the bottom (x, y-plane, figure 13a) and out-of-phase when
viewed from the side (y, z-plane, figure 13b); the core displacements are of an anti-
symmetric mode. As discussed earlier, some axial variation is present owing to the
random initial perturbations. In the bottom view (figure 13a), both the inner core
(high vorticity magnitude) and outer layer (low vorticity magnitude) are displayed. We
see that the inner and outer regions of the vortex are displaced in opposite directions.
Note that in these visualizations, vorticity magnitude is used rather than II in order
to distinguish the outer layer better. These geometric features are consistent with the
experimental observations of LW98. In the (x, z)-plane (end view, figure 13c), the
deformation of each vortex (at this time) is seen to orient in a plane approximately
20◦ −22◦ from the horizontal. This angle of the deformation plane from the horizontal
(as viewed in the (x, z) plane) will be referred to as θω. In the stratified flow (Fr = 2,
figure 13d–f ), the basic geometric features of the elliptic instability are retained
although, notably, the vortex separation is reduced (figure 13d) and the angle of the
deformation plane is larger (θω ≈ 47◦ − 50◦, figure 13f ).

The orientation of the deformation plane is presumed to correspond to the direction
of the principal extensional strain (LW98). From the simulation results, the principal
eigenvalues of the rate of strain tensor were determined at the core centre, in particular,
the most extensional strain, α, and the corresponding eigenvector eα . Figure 14(a)
shows the time development of θα , defined as the angle from the horizontal of eα

as projected onto the (x, z)-plane (axial average). For weak (and zero) stratification
(Fr � 5), θα remains at nearly 45◦ during the linear phase and then increases as the flow
becomes three-dimensional and the nonlinear phase begins. With strong stratification
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Figure 13. Geometry of elliptic instability for (a)–(c) Fr = ∞ (t∗ = 12.0) and (d)–(f ) Fr = 2
(t∗ = 5.625). (a), (c) Bottom views of two isosurfaces of high and low vorticity magnitude
(normalized with initial maximum value, |ω0|max) indicating inner core and outer layer, respect-
ively, (a) |ω|high/|ω0|max = 0.19, |ω|low/|ω0|max = 0.025, (c) |ω|high/|ω0|max =0.30, |ω|low/|ω0|max =
0.030. (b), (e) Side views of isosurface of high vorticity magnitude. (c), (f ) End views showing
vortex centre (maximum vorticity) locations projected onto the (x, z)-plane. The angles of the
deformation plane, θω , with respect to horizontal are indicated for each vortex.

(Fr = 1), θα exhibits an increase during the linear phase. Figure 14(b) shows the time
development of θα together with the angle of the core deformation, θω. As indicated
in the figure, early in time, θω is smaller than θα . This is consistent with the expected
behaviour of the vorticity. Initially, the axial (horizontal) component ωy dominates.
As vorticity perturbations in the direction of largest positive strain (eα) amplify, the
angle of the vorticity vector from the horizontal increases. When the perturbation
vorticity becomes significant, the core deformation is observable and θω approaches
45◦ for Fr � 5. At the same time, the induced strain by the deformed core becomes
significant and θα deviates from 45◦ (and (x, z)-plane as eα indicates, not shown).
Thus, as indicated in figure 14(b), the deformation is not aligned with eα in these
cases. Three-dimensional effects are signficant and the interaction of ω and S must
be considered (Nomura & Post 1998). With stratification, θω increases more rapidly
and achieves a higher value. As will be shown, there is an enhancement of strain in
these flows which accelerates the growth of the vorticity perturbations. With strong
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Figure 14. Time development of (a) angle of eigenvector of the most extensional principal
strain, θα , and (b) angle of vortex core deformation, θω , along with corresponding θα . Both
angles are measured from the horizontal in the (x, y)-plane. Open symbols for θα , solid symbols
for θω: �, Fr = ∞; �, 10; �, 5; �, 2; �, 1.

stratifcation (Fr = 1), the linear phase is short-lived and the deformation does not
develop to a sufficient extent for θω to develop significantly before the cores become
indiscernible.

3.3.2. Wavelength and growth rate

In order to carry out a quantitative assessment of the linear phase, the axial wave-
length of the instability, λ, and the corresponding growth rate, σ , are determined. The
spectral energy Ek(t) is obtained by performing a one-dimensional Fourier transform
in the axial (y) direction of each velocity component which yields, v̂ = v̂(x, k, z, t),
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and then evaluating the average of v̂ · v̂∗
in the transverse (x, z)-plane,

Ek(t) =
1

LxLz

∫
x

∫
z

v̂ · v̂∗
dx dz, (3.6)

where v̂
∗

denotes the complex conjugate. Since the base flow is two-dimensional in
the (x, z)-plane, Ek(t) for k > 0 corresponds to the perturbation kinetic energy. The
wavenumber, k =2π/λ, is non-dimensionalized by b0 and related to the Fourier mode
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number, m = Ly/λ= 6b0/λ, by,

kb0 =
2πb0

λ
=

mπ

3
. (3.7)

Figure 15(a) shows spectra Ek(t) for the unstratified flow. Initially (t∗ = 0), the spec-
trum is flat corresponding to the random perturbation field. During the adjustment
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phase (not shown), all axial wave modes decay owing to viscous diffusion, and energy
at the high wavenumbers decays more quickly. Beyond the adjustment phase, the
perturbation energy increases at the low wavenumbers. A dominant wavenumber,
kmaxb0 = 6π/3 = 6.3, is identified (figure 15a, t∗ � 9) indicating that the most amplified
wavelength is λ/b0 = 1.0. This compares reasonably well with the reported wavelength
of λ/b0 = 0.77 (kmaxb0 = 8.16) in the experiments of LW98 and λ/b0 = 0.85 ± 0.05 in
the simulations of Laporte & Corjon (2000). We note that some discrepancy will arise
from the finite computational domain of the simulations which requires approximat-
ing the Fourier transform with a discrete Fourier transform which allows only discrete
wavenumbers. This limits the possible values of wavelength to λ/b0 = 6/m, m =
1, 2, . . . , Ny/2, where Ny is the number of grid points in the axial direction. For
m =6, the actual wavelength could have a value in the range of 0.86 < λ/b0 < 1.2. As
discussed earlier, Ly is limited in order to minimize the effects of the Crow instability.
Although varying Ly slightly might yield a better estimate of λ, there are other factors
to be considered in assessing the results (see § 3.3.3).

Figure 16 shows the time development of Ekmax
(t). The growth rate, σ , of the most

amplified mode energy is obtained from σ = 1/2(d lnEkmax
/dt). For Fr = ∞, the non-

dimensional growth rate is σ ∗ = σ/(Γ/2πb0
2) = 0.83. This is in agreement with the

growth rates reported in LW98 (σ ∗ = 0.94 ± 0.12) and in Laporte & Corjon (2000)
(σ ∗ = 0.96 ± 0.3).

In the stratified flows (figure 15b–d), Ek(t) develops in a qualitatively similar manner
to the unstratified flow during the adjustment and linear phases. In weak to moderate
stratification (Fr = 5, 2, figure 15b, c) the same dominant wavenumber, kmaxb0 = 6.3,
is exhibited. In strong stratification (Fr = 1, figure 15d), the peak occurs at a higher
wavenumber, kmaxb0 = 8π/3 = 8.4. In general, the behaviour of Ekmax

(t) in figure 16
suggests that the growth rate increases with increasing stratification. However, in
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Fr ∞ 10 5 2 1

λ/b0 1.0 1.0 1.0 1.0 0.75

σ ∗ = σ/(Γ/2πb0
2) Right vortex 0.74 0.89 1.26 1.60 2.09

Left vortex 0.70 0.89 1.42 1.99 1.62

σ ∗
b = σ/(W0/b) (Right vortex) 0.80 0.82 0.88 0.64 0.73

(Left vortex) 0.76 0.82 0.99 0.80 0.57

Table 1. Computed wavelength and growth rates.

the stratified flows, the perturbation energy also includes that associated with the
secondary flow due to the baroclinic torque. Thus for these flows, λ/b0 and σ ∗ are
determined using an alternative method based on the measured growth of the vortex
core displacement (Mahoney 2002; Tsutsui 2003). A one-dimensional discrete Fourier
transform is applied in the axial direction to the measured core displacements. The
growth rate is determined by an exponential fit to the time development of the
amplitude of the most amplified mode. It should be noted that the exponential
function fits the simulation data well, indicating the existence and extent of the
linear phase. Results are presented in table 1. As discussed earlier, there is some
vortex-to-vortex variability in the instability amplitudes owing to sensitivity of the
flow to the initial perturbation field. Note that the average growth rate for Fr= ∞ is
σ ∗ =0.72 which is in reasonable agreement with that obtained from Ek(t). For weak
to moderate stratification (∞ > Fr � 2), λ/b0 = 1.0 as in the unstratified flow. However,
as the stratification increases, σ ∗ increases. As will be discussed in § 3.3.3, this is due
to the enhanced strain in the vortices resulting from the reduced vortex separation
distance.

In the case of strong stratification (Fr = 1), both Ek(t) (figure 15d) and the
core displacement spectrum indicate that the most amplified wave mode is
associated with a higher wavenumber, kmaxb0 = 8π/3 = 8.4 which corresponds to a
shorter wavelength, λ/b0 = 0.75. Results from additional simulations (different initial
conditions, domain size) indicate comparable growth rates for wave modes in the
range 6π/3 � kmaxb0 � 10π/3.

To further assess the nature of the Fr =1 flow, we consider details of the structure
of the perturbation field. In particular, we consider the radial structure which can be
understood by using results from Waleffe (1990) who analysed the elliptic instability
in an unbounded single vortex. In this case, the axial perturbation velocity, v, is given
by (in cylindrical coordinates with respect to the vortex),

v(r, φ, y) = C exp(σ t)J1(
√

3 k r) sin(k y) sin
(
φ + 1

4
π
)

(3.8)

where C is a constant and J1 is the Bessel function of the first kind. The radial
dependence of v, which is the same as that of the axial perturbation vorticity, is
given by J1(

√
3kr). Figure 17(a) shows the distribution given by (3.8). If the vortex

core contains only the inner dipole, this corresponds to the first radial mode. If the
vortex core contains the inner dipole and its neighbouring pair, this corresponds to
the second radial mode, and so on. As discussed by Billant et al. (1999), the Lamb–
Chaplygin vortex pair (bounded and distributed vorticity) exhibits a similar internal
structure (see their figure 4).
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Figure 17. Axial component of perturbation velocity (a) theoretical prediction for single
vortex (Waleffe 1990). The innermost pair corresponds to the first radial mode, the two
innermost pairs correspond to the second radial mode, and so on. (b) DNS results for
Fr = ∞, t∗ =12.0. The distribution indicates the first radial mode. Dashed-line shows axial
vorticity contour corresponding to |ω|/|ω|max = 1/e.
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Figure 18. Axial component of perturbation velocity for Fr =1, t∗ = 3.75. (a) Distribution at
axial location y = 0.03b0 indicating the first radial mode. (b) Distribution at axial location
y = 0.11b0 indicating the second radial mode. Dashed-line shows axial vorticity contour
corresponding to |ω|/|ω|max = 1/e.

Figure 17(b) shows the distribution of axial perturbation velocity in a transverse
plane in the unstratified flow (Fr = ∞). The region enclosed by the heavy dashed lines
is the approximate spatial extent of the primary vortex cores. The figure indicates the
first radial mode which is observed along the entire axial length of the vortices. The
same behaviour is found in the weak to moderately stratified flows. In the strongly
stratified flow (Fr = 1, figure 18), both the first and second radial modes are exhibited
at different axial locations on the same vortex. As indicated in the figures, the shape
of the primary vortices is not elliptical. The vortices are pushed against each other
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and deform into a flattened tear-drop shape. As previously indicated, the combined
action of mutual diffusion and detrainment reduces the size of the vortices.

3.3.3. Discussion

In order to understand and interpret the simulation results better, we review the
existing theory for the short-wavelength instability in the unstratified vortex pair. As
indicated in § 1, there are no stability analysis results for the stratified flow; thus,
a reasonable approach is to consider first relatively weak stratification and how it
will affect the known instability in unstratified flow. We will first consider the results
of inviscid linear stability analysis. In this case, the fundamental parameter is the
dipole aspect ratio, a/b, and both the vortex radius, a, and the vortex separation,
b, are constant in the two-dimensional base flow. We will then consider results
from a linear stability analysis in which viscous effects, characterized by ReΓ , are
considered. As discussed in Sipp & Jacquin (2003), viscosity will not only affect the
perturbation growth rate, but also the base flow vortex radii, a. We will then discuss
the present results for a vortex pair in a stably stratified fluid, in which the base
flow also changes in time. Stratification is characterized by Fr which indicates the
time scale of stratification to that of the flow instability. As our results indicate, two-
dimensional effects of stratification may cause both a and b to vary in time. In the
case of weak to moderate stratification, characteristics of the observed instability are
fundamentally similar to that in unstratified flow. However, for strong stratification
(Fr ∼ 1), significant differences are observed and the existing theory for unstratified
flow may no longer be applicable.

A number of theoretical studies have been carried out on the short-wave elliptic
instability of a single vortex (e.g. Tsai & Widnall 1976; Waleffe 1990; Eloy & Le Dizès
1999). These studies showed that the axial wavenumber scales with a and the growth
rate with strain rate. As the wavenumber increases, the radial structure becomes
more complex. More relevant to the present work are the linear stability analyses
performed for a vortex pair (Billant et al. 1999; Sipp & Jacquin 2003), which directly
consider the parameter a/b. The inviscid analysis of Sipp & Jacquin (2003) considered
the Lamb–Oseen vortex pair with two values of the dipole aspect ratio, a/b =0.208
and 0.288. They found that the antisymmetric instability mode occupies bands of
wavenumbers with a local maximum growth rate in each band. The wavenumbers
corresponding to the maximum growth rate in the first three bands are: ka = 2.26, 3.96
and 5.61, corresponding to the first, second and third radial modes, respectively. For
a/b = 0.288, the maximum growth rate of the first radial mode is higher than that
of the second radial mode. Similar results were found by Billant et al. (1999) in a
linear stability analysis of a Lamb–Chaplygin vortex pair with a/b =0.4478. These
results indicate that for sufficiently high a/b, the antisymmetric mode with the first
radial mode will be selected. This is consistent with experimental observations and
our Fr = ∞ results. The analysis of Sipp & Jacquin (2003) gives the corresponding
wavenumber and growth rate as ka = 2.26 and σ ∗ = 1.38, respectively. LW98 report
ka = 1.6 ± 0.2 and σ ∗ = 0.94.

As discussed in Sipp & Jacquin (2003), viscosity will not only reduce the perturba-
tion growth rate, but also increase the vortex radius, a, and hence a/b. The diffusive
growth of an Oseen vortex, with the scaling defined in § 2, can be expressed as,(

a

b0

)2

=

(
a0

b0

)2

+
8π t∗

ReΓ

, (3.9)
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where t∗ = tΓ /(2πb2
0) is non-dimensional time. Using (3.9) and data from LW98, the

change in a/b in their experiments can be estimated. As stated earlier, at the start of
their experiments, a/b = 0.15. For the time interval over which their σ ∗ is evaluated
(see figure 14b in LW98), a/b varies in the range 0.24 <a/b < 0.31. Thus, a/b increases
by approximately 33 % during this time and by 100 % during the evolution from initial
generation through the linear phase. As discussed by Sipp & Jacquin (2003), simply
rescaling the wavenumber with an appropriate a will not account for the difference
between the predicted ka = 2.26 and measured ka = 1.6 (e.g. ka = kb × a/b =8.16 ×
0.24 =1.96).

Sipp & Jacquin (2003) also performed a linear stability analysis which accounts
for the effects of viscosity on both the perturbation field and the base flow radius,
a = a(t). In this case, the perturbation growth rates depend on ReΓ , kb and a/b. Since
a/b now varies in time, the growth rates for each kb also vary in time. The solution is
determined by integrating in time a non-autonomous amplitude equation. Results are
obtained for ReΓ = 2750 in order to match LW98. The growth rate corresponding to
the wavenumber kb = 8.16 of LW98 is determined to be σ ∗ = 0.99 which agrees well
with the value σ ∗ = 0.94 determined by LW98. In general, since the kb dependency
of the growth rate develops in time, the wavenumber associated with the maximum
growth rate and the wavenumber bands associated with the radial modes are no
longer explicitly indicated. Although the analytical results indicate a wavenumber
near kb = 8.16 with a local maximum growth rate, wavenumbers kb > 8.16 appear to
have comparable growth rates and initiate growth earlier in time. The determination
of which kb is selected is not clear.

In regards to our Fr= ∞ results, for which ReΓ =2400, the most amplified wave-
number is found to be kmaxb0 = 6.3 (with some uncertainty associated with the finite
domain) and the corresponding growth rate is σ ∗ = 0.83. The lower kmaxb0 and σ ∗

are consistent with the lower ReΓ . Using (3.9), we estimate for the linear phase
(3.4 < t∗ < 12.0 over which σ ∗ is determined) a range of a/b values, 0.23 <a/b < 0.38.
The values are comparable to the values in LW98. However, since the wavelength
and growth rates are time dependent, there may be greater sensitivity to initial
conditions and this is what we observe in our simulations. With these considerations,
the differences between our results and those of LW98 are reasonable.

We now consider the effects of stratification in which both a and b may vary. In the
case of weak to moderate stratification (Fr � 2), the most amplified wavelength is the
same as that of the unstratified flow, i.e. kmaxb0 = 6.3. However, as indicated in table 1,
σ ∗ increases with increasing stratification. Under these conditions, stratification does
not significantly affect the vortex radius, a, but does affect the vortex separation, b,
as indicated in figure 12(a). Thus, if the wavenumber scales with a, but growth rates
vary with a/b, we expect the observed behaviour. While viscosity acts to increase
a, stratification causes a reduction in b, thereby enhancing the increase of a/b in
time. For the Fr range considered, the reduction in b increases with increasing
stratification. For Fr= 2, using (3.9) to estimate the variation of a and results from
figure 12(a) to evaluate b, we obtain a range of values, 0.19 <a/b < 0.53 for the
estimated duration of the linear phase (2< t∗ < 5.25). Although both viscosity and
stratification act to increase a/b, the physical effects on the perturbation field differ.
While viscosity acts to damp the growth of the perturbations, the reduction in b caused
by stratification results in an enhanced amplification of the perturbations. It should
be noted that even in unstratified flow, a smaller b results in greater amplification of
the perturbations. Details of the variation of the growth rate with b will be discussed
below.
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In the strongly stratified flow (Fr = 1), the first radial mode is associated with a
higher wavenumber kmaxb0 = 8.4 than in the unstratified flow. As indicated in figures
18 and 26, the vortices are in close proximity and exhibit smaller radii. If we assume
that the axial wavelength of the maximum growth rate scaled with a is fixed at
ka = 2.26, k must increase if a decreases. Viscous results for Sipp & Jacquin (2003) do
show that the growth rate peaks at higher kb for lower a/b (see figure 9b in Sipp &
Jacquin 2003). Additionally in the Fr= 1 flow, the second radial mode is also present.
According to inviscid theory for unstratified flow, this must be associated with the
higher axial mode, kb0 = 10.5. The reason why this mode is amplified enough to
become visible is not clear. The inviscid analysis of Sipp & Jacquin (2003) indicates
that for a/b = 0.288, the first radial mode dominates. However, for lower a/b

(a/b =0.208), the analysis indicates that the growth rate of the second radial mode
slightly exceeds (σ ∗ = 1.39) that of the first radial mode (σ ∗ = 1.38). In our Fr = ∞ flow,
a/b = 0.23 at the start of the linear phase and increases in time owing to viscous effects.
Thus, according to inviscid theory, significant development of the second radial mode
will not occur. Since a/b increases in time in the weak to moderately stratified flows,
we expect similar behaviour. For the Fr = 1 flow, an estimate of a/b = 0.15 is obtained
for the start of the linear phase (t∗ = 1). Since both a and b decrease in this flow, a/b

will not significantly increase as in the Fr � 2 flows. For the lower a/b, it is possible
that the growth rate of the second radial mode is significant enough to develop in
the flow. The viscous analysis of Sipp & Jacquin (2003) does not consider additional
radial modes, although it does indicate an earlier growth of higher kb (e.g. kb0 = 10).
As indicated earlier, we do observe comparable growth rates for wave modes in the
range 6π/3 � kb0 � 10π/3. Although we expect viscosity to damp the growth rates of
high wavenumbers, the Fr= 1 flow exhibits a shorter adjustment phase and higher
growth rates, which may minimize damping and allow the selection of higher wave
modes. In general, stratification effects are significant in this flow and we should not
expect existing stability results to apply. In addition to changes in a and b, the vortices
are no longer elliptical or Gaussian. The base flow changes significantly in time and
we may be observing the corresponding changes and/or competition in instability
modes.

The increased growth rates in the stratified flows can be explained physically by
the reduction in the vortex separation, b, which enhances the strain in the vortices.
Figure 19 shows cross-sections of the vortex pair indicating the local structure of the
flow for Fr = ∞ and Fr= 2. Superimposed on contours of axial vorticity magnitude ωy

(grey shading) are instantaneous streamlines (black lines) and vectors indicating the
magnitude and direction of the eigenvectors of the principal extensional strain, α. The
vectors are scaled to the same length in both flows, thus indicating an enhancement
of strain in the stratified flow (figure 19b).

According to elliptic instability theory (Waleffe 1990), the growth rate is
proportional to the strain rate. For a vortex pair, the growth rate is typically
non-dimensionalized with the external strain, Γ/2πb2

0, which is the strain induced
by one vortex at the centre of the other if that vortex is not there. The actual strain
near the core centre is Γ/πb2, i.e. the internal strain (LW98; Sipp & Jacquin 2003).
From the DNS results, we evaluate directly the principal extensional strain, α, at
the vortex centre (axial average). Figure 20(a) shows the time development of α

normalized by its inital value, α0. Initially, the value of α corresponds to that of
the external strain, i.e. α0 = Γ/2πb2

0. However, the results show that α quickly attains
the value expected for the internal strain and thus α/α0 ≈ 2. This is in agreement
with the results of Sipp & Jacquin (2003) who show the behaviour of |S| for the
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Figure 19. Cross section of the vortex pair for (a) Fr = ∞, t∗ = 12.0, (b) Fr = 2, t∗ = 5.25.
Grey shading, solid black lines and arrows show axial vorticity, instantaneous streamlines and
vectors indicating direction and magnitude of principal extensional strain, respectively.
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Figure 20. Principal extensional strain at vortex centre. (a) Magnitude normalized by initial
value, α/α0, (b) magnitude normalized by estimated external strain, α∗ = (α/α0)/(Γ/2πb2) =
(α/α0)/(W0/b) ≈ (α/α0)(b/b0). Symbols: �, Fr = ∞; �, Fr = 10; �, Fr = 5; �, Fr = 2; �, Fr = 1.

two-dimensional Lamb–Oseen dipole. For Fr= ∞, there is a steady decline in α

before a rapid increase near the end of the linear phase. Note that the increase occurs
at the same time as the corresponding eigenvector indicates a directional change
(figure 14a). With weak to moderate stratification, there appears to be a compensating
enhancement in α which increases with increasing stratification. Comparison with
figure 12(a) suggests a direct correspondence between separation distance reduction
and strain rate enhancement. A normalized strain is defined here as,

α∗ =
α

Γ/2πb2
≈ α

W0/b
=

α/α0

b0/b
, (3.10)

where W = Γ/2πb is taken to be constant as indicated by the simulation results
(see figure 11, Fr > 2). Figure 20(b) shows the time development of α∗. For weak
stratification, the curves collapse onto that of the unstratified flow suggesting that



Short-wavelength instability and decay of a vortex pair 311

the strain rate is not distinctly altered by stratification, but only enhanced through
a reduced separation distance. For Fr � 2, however, the effects of stratification are
significant and change the behaviour of the strain rate. In fact, for Fr = 1, the strain
rate shows a decrease at the onset of the instability. This may explain the changing
trends in σ ∗ for Fr =1 (table 1).

We can consider a modified non-dimensional growth rate, σ ∗
b , which accounts for

the change in b,

σ ∗
b =

σ

W0/b
, (3.11)

where b is a representative value during the time interval that σ is evaluated. The
results are given in table 1. Values of σ ∗

b for weak to moderately stratified flows
(10 � Fr > 2), are comparable to that of the unstratified flow. However, for strong
stratification (Fr < 2), σ ∗

b actually decreases.
We now consider the results reported by Delisi & Robins (2000). Recall that they

peformed both experiments (ReΓ = 24 000) and simulations (ReΓ = 1465) with Fr
ranging from 0.73 to 1.10; thus, our strongly stratified flow (ReΓ = 2400, Fr= 1) falls
within their range of flow conditions. Our results are consistent with their qualitative
observations of an earlier onset and more rapid growth of the instability in the strati-
fied flows. However, they observe longer wavelengths (1 � λ/b0 � 2) than in the un-
stratified flows (λ/b0 � 1). They also observe the wavelength increasing in time, which
is not indicated in the present results. The reasons for these differences are not clear.
Delisi & Robins (2000) indicate an initial vortex radius of 0.16b0 in their simulations
and smaller radii in their experiments. A smaller a would, however, produce shorter
wavelengths and thus does not explain the observed difference with our results.
Since ReΓ =24 000 in their experiments, the differences should not be attributed to
viscous effects. In comparing their simulations with those of the present study, a key
difference is their axial domain length which is 10b0. This allows the development
of the Crow instability which may influence the short-wavelength instability and in
particular, modify the development of the wavelength. Another, related, difference
is their initialization of the perturbation field which consists of a superposition of
sinusoidal deformations of the vortices. The axial phase of each mode is random
and the wavenumbers include the low-frequency range, which is not included in our
simulations owing to the shorter axial length. These additional modes could develop,
at a slower rate, and interact with the short wave, resulting in their growth. In their
experiments, although the development of the Crow instability was not observed, it is
likely that the associated modes are present and growing in time. In addition, the range
of Fr considered in their study, 0.73−1.10, includes Fr< 1 which represents very strong
stratification. At Fr less than some critical value, Frcr (where Frcr < 1), the separation
distance increases and the flow behaves fundamentally differently (Mahoney 2002).
Thus, Fr ∼ 1 may correspond to the transition between two distinct flow regimes. As
indicated by our results, Fr =1 shows significantly different characteristics from those
in the unstratified and moderately stratified flows. The condition of Fr ∼ 1 along
with the possible presence of the Crow instability may have caused the short-wave
instability to be susceptible to variation in their flows.

In summary, the present results show that in the case of weak to moderate strati-
fication (∞ > Fr � 2), the elliptic short-wave instability is exhibited and fundamentally
similar to that in unstratified flow. In this case, the time scale of buoyancy is greater
than that of the flow instability. Although stratification effects are present, they do
not interact significantly with the instability. The principal effect is to reduce the
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separation distance which enhances the strain rate thereby increasing the growth rate
of the instability. This is consistent with linear stability theory for unstratified flow.
In the case of strong stratification (Fr = 1), the time scale of buoyancy is comparable
to that of the instability. The effects of stratification interact significantly with the
instability growth. The two-dimensional base flow changes considerably and alters
the three-dimensional development of the flow.

3.4. Nonlinear phase

We now consider the development of the flow during the nonlinear phase in which the
perturbation amplitudes are significant and, as seen in the flow visualizations (figures
2–4), secondary structures are formed which lead to the breakdown of the vortex pair.

In the unstratified flow, the early stage of the nonlinear phase is marked by the form-
ation of ‘knobs’ which appear at the peaks of the sinusoidal deformation (figure 2c,
t∗ = 13.5). Vorticity concentrates within the knobs as indicated at the subsequent time
(figure 2d , t∗ = 15.0). Transverse secondary structures develop at the leading edge,
i.e. the bottom of the descending vortex pair oval, and eventually dominate the flow
(figure 2e, f , t∗ � 16.5). These structures consist primarily of transverse vorticity, ωx .
During this time period, the vortex circulation Γ (figure 7a), exhibits an enhanced
decay while the perturbation energy spectrum shows the development of harmonics
of the primary instability (figure 15a).

As discussed in LW98, the formation of these structures is explained by considering
the distinct geometry of the cooperative elliptic instability which brings the primary
vortices closer together at the leading edge of the vortex pair (see figure 13c). As dis-
cussed in § 3.3, the phase relationship of the deformation is such that inner and outer
layers of a vortex are displaced in opposite directions. Figure 21(a) is an enlarged
view of figure 13(a) which clearly shows the relative deformation of the inner core and
outer layer of each vortex. Figure 22(a) depicts, at the same instant in time, a vertical
slice through the centre of one of the vortices. The plot shows contours of transverse
vorticity ωx . Note that with respect to this particular plane, ωx essentially corresponds
to the azimuthal vorticity of the vortex which exhibits this characteristic structure
(see figure 12 in LW98). The centre row of alternating signed ωx , corresponds to
the deformation of the primary core. Above and below this is a row of alternating
signed ωx , corresponding to the deformation of the outer layer. At a given axial loca-
tion, the ωx in the outer layer is of opposite sign to that in the core consistent with
the respective phase relationship. As the outer layers of one vortex come into close
proximity with the inner core of the other at the leading edge, fluid is extracted from
one vortex into the other (LW98). This is shown in figure 21(b) (see also figure 25b).
The transverse vorticity within the outer layer is thereby stretched and amplified as
indicated in figure 22(b) which shows enhanced ωx in the bottom row (leading edge).
Subsequently, ωx becomes the dominant component of vorticity and the resulting
structure extends over the leading edge of the vortex pair oval (figure 2e, t∗ = 16.5).
An array of transverse counter-rotating vortex pairs results, two pairs for every wave-
length of the primary instability (one pair from each vortex – see figures 21b and
22b), in agreement with the experimental observations of LW98.

For times t∗ > 15, figure 15 indicates a broadening of the spectrum. The high-
wavenumber modes are no longer distinct, indicating the development of a small-scale
structure. Eventually, the primary instability becomes saturated and the corresponding
growth rate is reduced to zero. At t∗ = 18.0, the corresponding energy spectrum
(figure 15a) is quite broad with no preferred mode, although coherent structures
remain in the flow (figure 2). Evidently, there is sufficiently complex small-scale
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Figure 21. Bottom view of vortex pair for Fr = ∞ showing isosurfaces of high and low
vorticity magnitude at (a) t∗ = 12.0 and (b) t∗ =15.0.

structure and effective energy transfer across all modes. Laporte & Corjon (2000)
suggest that transition to turbulence occurs when all modes have reached the same
order of magnitude and all growth rates are zero or less. Late-time spectra (t∗ > 18.0,
not shown) for the present results do indicate growth rates of zero or less for all modes.

In weakly to moderately stratified flows, knob structures also form (figure 3c,
Fr = 5 at t∗ = 9.75; figure 4b, Fr= 2 at t∗ = 6.0). The corresponding energy spectra
(figures 15b, c) show the development of harmonics. The extraction of outer layer
fluid from one vortex into the other at the leading edge of the vortex pair also
occurs and transverse structures are exhibited in the weakly stratified flow (Fr = 5,
figure 3e, t∗ = 11.25). However, in the moderately stratified flow (Fr =2, figure 4),
the transverse structures no longer dominate. This is due to the deceleration of the
vortex pair descent caused by baroclinic torque which results in a reduced extensional
strain at the leading edge. Consequently, amplification of ωx at the leading stagnation
point is not as significant. Alternatively, pairs of counter-rotating vertical structures
develop, between and above the primary vortices, with one pair for every wavelength
of the primary instability (figure 4, t∗ = 6.75). Such vortex structures were observed
in the simulation results of Delisi & Robins (2000) and Holzäpfel et al. (2001). These
structures are dominated by vertical vorticity, ωz.



314 K. K. Nomura, H. Tsutsui, D. Mahoney and J. W. Rottman

z

y

z

(a)

(b)

Figure 22. Vertical slice through one vortex core showing contours of transverse vorticity, ωx ,
associated with the deformation of inner core and outer layer for Fr = ∞. (a) t∗ =12.0, Contour
level increments �ωx/ωyo = ±0.0125. (b) t∗ =15.0, Contour level increments �ωx/ωyo =
±0.025.

Figure 23(a) shows contours of vertical vorticity, ωz, in a horizontal slice ((x, y)-
plane) through the vortex pair in the unstratified flow. Analogous to figure 22, ωz

effectively corresponds to the azimuthal vorticity with respect to this particular plane.
There are two rows of alternating signed ωz corresponding to the deformation of the
two primary vortex cores. On either side of each core is a row of alternating signed
ωz corresponding to the deformation of the outer layers. Figure 23(b) shows the
corresponding plot for the moderately stratified flow, Fr= 2. Owing to the reduced
separation distance, the outer layers with like-signed vorticity overlap in between
the cores, resulting in locally enhanced ωz (at the end of the linear phase, ωz is
approximately twice the magnitude of that in the outermost rows). Figure 24 displays
vertical slices ((x, z)-plane) of the vortex pair showing vorticity magnitude (contour
levels) and the magnitude and orientation of the principal extensional strain (vectors).
In the unstratified flow (figure 24a), there is no significant stretching in the vertical
direction between the vortices and thus, there is no significant development of ωz and
associated vertical structures. In the stratified flow (figure 24b), there is significant
vertical strain between and above the vortices. The already enhanced ωz thereby
becomes further amplified. The vertical strain is due to both the reduced separation
distance and the baroclinically generated secondary vortices which pulls fluid upward
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Figure 23. Horizontal slice through vortex pair showing contours of vertical vorticity, ωz,
associated with the deformation of inner cores and outer layers for (a) Fr = ∞, t∗ = 12.0 and
(b) Fr =2, t∗ =5.25. Contour level increments �ωx/ωy0 = ±0.005.
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Figure 24. Cross-section of the vortex pairs. Grey shading shows the vorticity magnitude with
maximum vorticity shaded white, and vectors show direction and magnitude of extensional
strain in the (x, z)-plane. Length of vectors are equally scaled; longer vertical vectors in
(b) indicates significant enhancement of the principal extensional strain in-between and inside
the vortex cores. (a) Fr = ∞, t∗ = 15.0. (b) Fr = 2, t∗ = 6.75.
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from the trailing edge, i.e. the top of the descending vortex pair oval (see figure 25e).
This leads to the formation of downstream vertical structures in the Fr = 2 flow. By
t∗ = 7.5 (figure 4d), ωz is the dominant component of vorticity in the flow. In the
case of weak stratification (Fr = 5, figure 3), the transverse and vertical structures are
comparable in strength and both are observed in the flow.

The development of these vertical structures was discussed by Holzäpfel et al. (2001).
Their results indicate that the opposite signed baroclinically generated ωy surrounding
the vortex pair is influenced by the short-wave instability resulting in rib-like structures
near the trailing edge. It was suggested that these structures induce a transverse velo-
city field, u, with high gradients in the axial direction, ∂u/∂y, thereby establishing
ωz. The ωz is then amplified through vortex stretching caused by the accelerating
downward motion between the primary vortices. Their analysis, however, did not
consider the distinct geometry of the cooperative elliptic instability which controls the
development of the transverse secondary structures in the unstratified flow. Our results
indicate that the ωz associated with the vertical structures originates as azimuthal
vorticity in the outer layers which is intrinsic to the primary instability and not
particular to stratification as suggested in Holzäpfel et al. (2001). The effects of the
baroclinic vorticity which do promote ωz are indirect: the reduced vortex separation
causes merging of the outer layers in between the vortices and the induced flow at
the trailing-edge region establishes an enhanced vertical strain.

The spectrum corresponding to the Fr = 2 flow (figure 15c, t∗ =6.75) exhibits the
development of the first harmonic. Beyond this time, the primary mode saturates
and the spectrum broadens at the high wavenumbers. The peaks associated with the
primary mode and first harmonic tend to persist owing to the generated baroclinic
torque which persists downstream of the vortex pair. Although the spatial structure
at this late stage differs significantly between the unstratified and weak to moderately
stratified flows, the behaviour of the energy spectrum is otherwise generally similar.

The implication of the different secondary structures in the unstratified and moder-
ately stratified flows on the breakdown process is now considered. Figure 25 shows
contours of axial vorticity, ωy , in a vertical slice ((x, z)-plane) at several times for
the unstratified and stratified (Fr = 2) flows. In the unstratified flow, the extraction
of fluid from one vortex to the other (figure 25b) brings vorticity of opposite sign
in close proximity (figure 25c). This mechanism of fluid exchange in the transverse
direction promotes mixing and decay of the vortices (LW98). In the stratified flows,
this mechanism also occurs to varying degree, depending on the level of stratification.
In the Fr = 2 flow, as indicated in figure 25(d, e), positive axial vorticity originating
from the left-hand vortex is seen to occur on the right-hand side near the leading edge.
However, the presence of counter-rotating vertical structures enables an additional
mechanism of fluid exchange in the transverse direction. This is observed in figure
25f which shows positive axial vorticity originating from the left-hand vortex on
the right-hand side near the trailing edge. In addition, there is detrainment of the
primary vortices at the trailing edge by the secondary baroclinic vortex structures.
These additional mechanisms of vortex breakdown result in a more rapid decay of
the vortex pair in the stratified flows (figure 10).

In the case of strongly stratified flow (Fr = 1), the primary vortices decay significantly
during the linear phase. As discussed earlier, the time scale of buoyancy is comparable
to that of the instability and significant interaction is observed. Figure 26 shows time
sequences of (x, z)-plane contours of temperature, T , and axial vorticity, ωy; the times
correspond to those of the three-dimensional visualizations in figure 5. As indicated
in the plots, the effects of baroclinic torque are so significant that they eventually



Short-wavelength instability and decay of a vortex pair 317

(a)

(b)

(c)

(d)

(e)

( f )

Figure 25. Contours of axial vorticity, ωy , in (x, z)-plane for (a)–(c) Fr = ∞ at t∗ = 13.5, 15.0,
16.5 and (d)–(f ) Fr = 2 at t∗ =6.0, 6.75, 7.5 (solid line: ωy > 0, dashed line: ωy < 0).

dominate the flow. At early times (t∗ � 4.5, linear phase), as a result of these effects,
the primary vortices are brought together and interdiffuse. In addition, there is
detrainment of the primary vortices at the trailing edge. These mechanisms result in
rapid decay of the primary vortex pair (figure 10) before significant development of
the three-dimensional instability and associated secondary structures (figure 5a, b).
At subsequent times, there is some indication of the secondary vertical structures
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Figure 26. Cross-section showing contours of (a) temperature, T̃ , and (b) axial vorticity, ωy ,

for Fr = 1 at t∗ = 3.75, 4.5, 5.25, 6.0, 6.75 (from left to right). Contour levels at �T̃ /�T =
0.5, 1.0, 1.5, etc. and �ωy/ωymax(t

∗ = 0) = ± 0.05, ±0.1, etc. (where �T = b0dT /dz). Contours
with negative value are indicated by dashed lines.

associated with the original vortex pair (figure 5c, t∗ = 5.25). At the same time, as
the baroclinically generated vorticity moves upwards, it advects heavier fluid into
regions of light fluid (figure 26a). This leads to secondary baroclinic torque which
is of opposite sign to the preceding baroclinic vorticity. This process of successive
generation of opposite signed baroclinic torque occurs at the buoyancy period Nt = 2π,
which corresponds to the observed oscillation in Γ of figure 7(b). In fact, these results
indicate that moderately stratified flows (2 � Fr � 5) eventually become buoyancy
dominated once the primary vortex pair decays. At very late times, internal waves
dominate the Fr =1 flow and, as discussed in § § 2 and 3.2, the influence of the image
vortices resulting from the periodic boundary conditions are no longer negligible. The
internal waves generated by the periodic array of vortices establish a standing wave
pattern near the buoyancy frequency (figure 7b).

The baroclinic vorticity structures are themselves influenced by the elliptic instability
(see middle region of figure 5d , t∗ = 6.0 and compare, e.g. with figure 4b). The corres-
ponding spectra (figure 15d) shows some indication of the first harmonic. As in the
other cases, the primary mode saturates and the spectrum broadens at the high
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wavenumbers. The primary mode peak persists throughout the times shown in figure 5.
We also observe evidence of the two-dimensional instabilities reported by Garten et al.
(1998). One instability, which Garten et al. refer to as the ‘vortex head instability’,
is associated with the primary vortex pair which exhibits sinusoidal motion as it
propagates. This is a result of preferential detrainment of the primary vortices by
the baroclinic torque which alternates from one vortex to the other. There is some
indication of this in our Fr= 2 flow (figure 25d–f ). The other instability is a jet
instability of the baroclinically generated vorticity (which corresponds to a jet flow).
In the strongly stratified flow Fr= 1, there is some indication of a sinuous mode in
the vertical vortex structures at the later times (figure 26b, t∗ = 6.75). Both of these
instabilities result in asymmetry in the two-dimensional flow (Garten et al. 1998).

4. Conclusions
The effects of stable stratification on the development of the short-wavelength

instability and subsequent decay of a counter-rotating vortex pair have been investi-
gated using direct numerical simulations. A range of Froude numbers, 1 � Fr � ∞, is
considered. A more quantitative assessment of the flow is carried out than in previous
studies. Depending on the level of stratification, as characterized by Fr which indicates
the ratio of the time scale of buoyancy to that of the instability, and the stage of
evolution, stratification effects may significantly alter the behaviour of the flow. The
evolution of the flow is described in terms of the adjustment phase, in which the
vortices adjust to the presence of each other and develop a mutually induced strain
field, the linear phase, in which perturbation amplitudes grow and the instability
develops, and the nonlinear phase, in which perturbation amplitudes are significant
and secondary vortex structures dominate the flow. This study considers the linear
and nonlinear phases where three-dimensional effects are significant.

In the linear phase of evolution, the vortex pair in unstratified fluid (Fr = ∞)
exhibits the elliptic short-wavelength instability with characteristics and behaviour in
agreement with the experiments of LW98.

In weak to moderately stratified flows (∞ >Fr > 2), in which the time scale of
buoyancy is greater than that of the flow instability, the observed instability is funda-
mentally similar to that in unstratified flow. Although stratification effects are present,
they do not affect the qualitative characteristics of the instability. The principal effect is
to reduce the separation distance which enhances the induced strain, thereby increasing
the growth rate of the instability. Consequently, the instability exhibits an earlier onset
and higher growth rate with increasing stratification. The behaviour is essentially de-
scribed by linear stability theory for unstratified flow if the varying separation distance
is taken into account. Our analysis suggests the growth rate scaling as Γ/2πb2 =W0/b

where b = b(t) is given by two-dimensional theory (Saffman 1972; Crow 1974).
In the case of strong stratification (Fr = 1), the time scale of buoyancy effects is

comparable to that of the instability. The effects of stratification interact significantly
with the development of the instability and alter its characteristics and behaviour.
As a result of strong baroclinic torque, the primary vortices are brought together
and interdiffuse. In addition, there is detrainment by the baroclinically generated
vorticity. The associated reduction in radii of the vortices results in a higher axial
wave mode and a more complex radial structure of the instability. Since the shape
of the vortices is significantly altered, it may be that the observed instability can no
longer be considered an elliptic instability.
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Our results of an earlier onset and more rapid growth of the instability in the
stratified flows is in agreement with previous studies (Delisi & Robins 2000; Holzäpfel
et al. 2001). However, the longer wavelengths which increase in time, reported by
Delisi & Robins (2000), are not consistent with our results. This may be due to the
presence of the Crow instability in their flows. Additionally, the range of Fr considered
in their study, 0.73−1.10, may correspond to the transition between two distinct flow
regimes. As indicated by our results, Fr = 1 shows significantly different characteristics
from those in the unstratified and moderately stratified flows. Detailed features such as
the presence of the second radial mode would be difficult to determine experimentally.
Further experiments over a greater range of Fr would be valuable.

Overall, our analysis of the linear phase provides more quantitative information
than in previous studies of the short-wave instability in the presence of stratification.
Although the behaviour of weak to moderately stratified flows can be explained using
stability analysis results for unstratified flow, this is not the case for the strongly
stratified flow. In general, a linear stability analysis is required to obtain accurate
estimates of the growth rates and axial wavelengths of the fastest growing short-wave
instabilities in stratified conditions. This requires an analysis of the type developed by
Billant et al. (1999) and Sipp & Jacquin (2003), but generalized to include the effects
of stratification. Such an analysis would have to account for the time-varying effects of
both viscous diffusion, which acts to increase the size of the vortex radii and damp the
perturbation growth rates, and stratification, which decreases the separation distance
thereby amplifying growth rates and may also decrease the vortex radii. In this case,
the reduction in vortex radii represents a combined effect of viscosity and stratification.

In the nonlinear phase of evolution, the early stages of development in unstratified
and weak to moderately stratified flows are controlled by the distinct geometry of
the short-wave instability. The phase relationship of the initial deformation results
in periodic extraction of outer-layer fluid from one vortex into the other at the
leading edge of the vortex pair. This initiates the vortex breakdown process in the
unstratified flow. The azimuthal vorticity in the outer layers of the primary vortices
are amplified owing to the extensional strain at the leading stagnation point and
transverse secondary vortex structures are formed.

In weak to moderately stratified flows (∞ >Fr � 2), although buoyancy effects
do not significantly alter the nature of the linear phase, they can dominate in the
nonlinear and late stages of evolution. In these flows, vortex decay is enhanced owing
to additional mechanisms not present in unstratified flow. The effects of baroclinic
torque result in the amplification of azimuthal vorticity in between the primary vortices
leading to the formation of vertical vortex structures. These structures provide an
additional mechanism of fluid exchange in the transverse direction. Detrainment of the
primary vortices by the generated baroclinic torque also contributes to the breakdown
of the vortices. These additional mechanisms lead to a more rapid breakdown and
decay of vortex pair.

In the case of strong stratification (Fr= 1), the significant reduction in vortex separa-
tion along with detrainment, results in an accelerated decay of the primary vortices.
Late-time evolution is dominated by the successive generation of alternate signed
baroclinic torque which results in an oscillation of the total flow circulation at the
buoyancy frequency.
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Holzäpfel, F. & Gerz, T. 1999 Two-dimensional wake vortex physics in the stably stratified
atmosphere. Aerosp. Sci. Technol. 5, 261–270.
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