Number	Reaction		A	n	E	Ref.	
1f	$\mathrm{H} + \mathrm{O}_2$	$\stackrel{\frown}{\leftarrow}$	OH + O	$3.520E{+}16$	-0.70	71.4	[1]
2f	$H_2 + O$	\rightleftharpoons	OH + H	5.060E + 04	2.67	26.3	[1]
3f	$H_2 + OH$	\rightleftharpoons	$H_2O + H$	1.170E + 09	1.30	15.2	[1]
4f	$H_2O + O$	\rightleftharpoons	2 OH	7.600E + 00	3.84	53.5	[1]
$a5f^a$	$H + O + M^{(2)}$	\rightleftharpoons	$OH + M^{(2)}$	6.200E+16	-0.60	0	[2, 3]
a6f	$H_2 + O_2$	\rightleftharpoons	2 OH	1.700E + 13	0.00	200	[4, 3]
$5f^a$	$2 H + M^{(1)}$	$\stackrel{\longrightarrow}{\leftarrow}$	$H_2 + M^{(1)}$	7.200E + 17	-1.00	0	[1]
$6f^a$	$H + OH + M^{(2)}$	\rightleftharpoons	$H_2O + M^{(2)}$	2.200E + 22	-2.00	0	[1]
$7 f^a$	$2 \text{ O} + \text{M}^{(2)}$	$\stackrel{\longrightarrow}{\leftarrow}$	$O_2 + M^{(2)}$	6.170E + 15	-0.50	0	[1]
$8f^a$	$H + O_2 + M^{(6)}$	$\stackrel{\frown}{\leftarrow}$	$HO_2 + M^{(6)}$	2.600E + 19	-1.20	0	[5]
$a11f^a$	O + OH + M	$\stackrel{\frown}{=}$	$HO_2 + M$	1.000E + 16	0.00	0	[4, 3]
9f	$HO_2 + H$	\rightleftharpoons	2 OH	1.700E + 14	0.00	3.66	[1]
10f	$HO_2 + H$	$\stackrel{\frown}{\leftarrow}$	$H_2 + O_2$	4.280E + 13	0.00	5.9	[1]
11f	$\mathrm{HO}_2 + \mathrm{H}$	\rightleftharpoons	$H_2O + O$	3.100E+13	0.00	7.2	[1]
12f	$HO_2 + O$	$\stackrel{\frown}{\leftarrow}$	$OH + O_2$	2.000E + 13	0.00	0	[1]
13f	$HO_2 + OH$	\rightleftharpoons	$H_2O + O_2$	2.890E+13	0.00	-2.08	[1]
$14f^{a,b}$	$2 \text{ OH} + M^{(7)}$	$\stackrel{\frown}{\leftarrow}$	$H_2O_2 + M^{(7)} k_0$	2.300E + 18	-0.90	-7.12	[5]
			k_{∞}	7.400E + 13	-0.37	0	
15f	2 HO_2		$\mathrm{H}_{2}\mathrm{O}_{2}+\mathrm{O}_{2}$	3.020E + 12	0.00	5.8	[1]
16f	$H_2O_2 + H$		$\mathrm{HO}_2 + \mathrm{H}_2$	4.790E+13	0.00	33.3	[1]
17f	$H_2O_2 + H$	$\stackrel{\checkmark}{\leftarrow}$	$H_2O + OH$	1.000E + 13	0.00	15	[1]
18f	$H_2O_2 + OH$	$\stackrel{\frown}{\leftarrow}$	$H_2O + HO_2$	7.080E + 12	0.00	6	[1]
19f	$H_2O_2 + O$		$HO_2 + OH$	9.630E + 06	2.00	16.7	[1]
20f	$\rm CO + OH$	$\stackrel{\sim}{\leftarrow}$	$\rm CO_2 + H$	4.400E + 06	1.50	-3.1	[1]
21f	$\rm CO + HO_2$	$\stackrel{\sim}{\leftarrow}$	$\rm CO_2 + OH$	6.030E+13	0.00	96	[1]
$22f^a$	$CHO + M^{(4)}$	$\stackrel{\sim}{\leftarrow}$	$CO + H + M^{(4)}$	$1.860E{+}17$	-1.00	71.1	[6]
23f	CHO + H	$\stackrel{\sim}{\leftarrow}$	$\rm CO + H_2$	1.000E + 14	0.00	0	[1]
24f	CHO + O	\rightarrow	$\rm CO + OH$	3.000E+13	0.00	0	[1]
25f	CHO + O	$\stackrel{\sim}{\leftarrow}$	$\rm CO_2 + H$	3.000E+13	0.00	0	[1]
26f	CHO + OH	$\stackrel{\frown}{\leftarrow}$	$\rm CO + H_2O$	5.020E + 13	0.00	0	[1]
27f	$CHO + O_2$	$\stackrel{\sim}{\leftarrow}$	$\rm CO + HO_2$	3.000E+12	0.00	0	[1]
$28f^a$	$\mathrm{CH}_{2}\mathrm{O}+\mathrm{M}^{(1)}$	\rightleftharpoons	$\mathrm{CHO} + \mathrm{H} + \mathrm{M}^{(1)}$	6.260E+16	0.00	326	[1]
29f	$CH_2O + H$	\rightleftharpoons	$CHO + H_2$	1.260E + 08	1.62	9.06	[1]
30f	$CH_2O + O$	\rightleftharpoons	CHO + OH	3.500E+13	0.00	14.7	[1]
31f	$CH_2O + OH$	$\stackrel{\frown}{\leftarrow}$	$CHO + H_2O$	$3.900 \overline{E+10}$	0.89	1.7	[1]
32f	$CH_4 + H$	\rightarrow	$H_2 + CH_3$	$1.300 \overline{E+04}$	3.00	33.6	[7]

Number	R	eacti	on	A	n	E	Ref.
33f	$CH_4 + OH$	\rightleftharpoons	$H_2O + CH_3$	1.600E + 07	1.83	11.6	[7]
34f	$CH_4 + O$	\rightleftharpoons	$CH_3 + OH$	1.900E+09	1.44	36.3	[8]
35f	$CH_4 + O_2$	\rightleftharpoons	$CH_3 + HO_2$	3.980E+13	0.00	238	[6, 9]
36f	$CH_4 + HO_2$	\rightleftharpoons	$\mathrm{CH}_3 + \mathrm{H}_2\mathrm{O}_2$	9.030E+12	0.00	103	[6, 9]
37f	$CH_3 + H$	\rightleftharpoons	$\mathrm{T}\text{-}\mathrm{CH}_2 + \mathrm{H}_2$	1.800E + 14	0.00	63.2	[8]
38f	$CH_3 + H$	$\stackrel{\longrightarrow}{\leftarrow}$	$S-CH_2 + H_2$	$1.550E{+}14$	0.00	56.4	[8]
39f	$CH_3 + OH$	$\stackrel{\frown}{\leftarrow}$	$S-CH_2 + H_2O$	1.000E + 13	0.00	10.5	[10]
40f	$CH_3 + O$	$\stackrel{\frown}{\leftarrow}$	$CH_2O + H$	8.430E+13	0.00	0	[8]
41f	$CH_3 + T-CH_2$	$\stackrel{\frown}{\leftarrow}$	$C_2H_4 + H$	4.220E + 13	0.00	0	[11]
42f	$CH_3 + HO_2$	\rightleftharpoons	$CH_3O + OH$	2.000E + 13	0.00	0	[8]
43f	$CH_3 + O_2$	$\stackrel{\frown}{\leftarrow}$	$CH_2O + OH$	$3.300E{+}11$	0.00	37.4	[11]
44f	$CH_3 + O_2$	\rightleftharpoons	$CH_3O + O$	1.330E + 14	0.00	131	[11]
45f	2 CH_3	$\stackrel{\frown}{\leftarrow}$	$C_2H_4 + H_2$	1.000E + 14	0.00	134	[12]
46f	2 CH_3	$\stackrel{\frown}{\leftarrow}$	$C_2H_5 + H$	3.160E + 13	0.00	61.5	[13]
47f	$CH_3 + H$	\rightleftharpoons	$CH_4 k_0$	6.260E + 23	-1.80	0	[14]
			k_{∞}	2.110E+14	0.00	0	
48f	$2 \mathrm{CH}_3$	$\stackrel{\longrightarrow}{\leftarrow}$	C_2H_6 k_0	1.270E + 41	-7.00	11.6	[7]
			k_∞	1.810E+13	0.00	0	
m1f	$CH_3OH + OH$	$\stackrel{\sim}{\leftarrow}$	$CH_2OH + H_2O$	1.440E + 06	2.00	-3.51	[15]
m2f	$CH_3OH + OH$	\rightarrow	$CH_3O + H_2O$	6.300E + 06	2.00	6.3	[15]
m3f	$CH_3OH + H$	\rightarrow	$CH_2OH + H_2$	1.640E + 07	2.00	18.9	[15]
m4f	$CH_3OH + H$	$\stackrel{\sim}{\leftarrow}$	$CH_3O + H_2$	3.830E+07	2.00	24.5	[15]
m5f	$CH_3OH + O$	\rightarrow	$CH_2OH + OH$	1.000E + 13	0.00	19.6	[15]
m6f	$CH_3OH + HO_2$	$\stackrel{\sim}{\leftarrow}$	$CH_2OH + H_2O_2$	6.200E + 12	0.00	81.1	[15]
m7f	$CH_3OH + O_2$	$\stackrel{\sim}{\leftarrow}$	$CH_2OH + HO_2$	2.000E + 13	0.00	188	[15]
49f	$S-CH_2 + OH$	\rightarrow	$CH_2O + H$	3.000E + 13	0.00	0	[8]
50f	$S-CH_2 + O_2$	\rightarrow	CO + OH + H	3.130E+13	0.00	0	[8]
51f	$S-CH_2 + CO_2$	$\stackrel{\sim}{\leftarrow}$	$\rm CO + CH_2O$	3.000E+12	0.00	0	[16]
$52f^a$	$S-CH_2 + M^{(5)}$	\rightarrow	$T-CH_2 + M^{(5)}$	6.000E + 12	0.00	0	[8]
53f	$T-CH_2 + H$	\rightleftharpoons	$CH + H_2$	6.020E + 12	0.00	-7.48	[11]
54f	$T-CH_2 + OH$	$\stackrel{\sim}{\leftarrow}$	$CH_2O + H$	$2.500E{+}13$	0.00	0	[8]
55f	$T-CH_2 + OH$	$\stackrel{\frown}{\leftarrow}$	$CH + H_2O$	1.130E + 07	2.00	12.6	[8]
56f	$T-CH_2 + O$	$\stackrel{\frown}{\leftarrow}$	CO + 2 H	8.000E+13	0.00	0	[17]
57f	$T-CH_2 + O$	$\stackrel{\frown}{\leftarrow}$	$\rm CO + H_2$	4.000E+13	0.00	0	[17]
58f	$T-CH_2 + O_2$	\rightleftharpoons	$\mathrm{CO}_2 + \mathrm{H}_2$	2.630E+13	0.00	6.24	[16]
59f	$T-CH_2 + O_2$	\rightarrow	$\rm CO + OH + H$	$6.580\overline{E+13}$	0.00	6.24	[16]

Number	Reaction		A	n	E	Ref.	
60f	2 T-CH_2	$\stackrel{\frown}{\leftarrow}$	$C_2H_2 + 2 H$	1.000E + 14	0.00	0	[8]
61f	CH + O	$\stackrel{\longrightarrow}{\leftarrow}$	$\rm CO + H$	4.000E+13	0.00	0	[18]
62f	$CH + O_2$	$\stackrel{\longrightarrow}{\leftarrow}$	CHO + O	1.770E+11	0.76	-2	[19]
63f	$CH + H_2O$	$\stackrel{\longrightarrow}{\leftarrow}$	$CH_2O + H$	1.170E + 15	-0.75	0	[16]
64f	$CH + CO_2$	$\stackrel{\longrightarrow}{\leftarrow}$	CHO + CO	4.800E+01	3.22	-13.5	[19]
65f	$CH_2OH + H$	\rightleftharpoons	$CH_2O + H_2$	3.000E+13	0.00	0	[15]
66f	$CH_2OH + H$	$\stackrel{\frown}{\leftarrow}$	$CH_3 + OH$	$1.750E{+}14$	0.00	11.7	[15]
67f	$CH_2OH + OH$	$\stackrel{\frown}{\leftarrow}$	$CH_2O + H_2O$	2.400E+13	0.00	0	[15]
68f	$CH_2OH + O_2$	\rightleftharpoons	$CH_2O + HO_2$	5.000E+12	0.00	0	[15]
$69 f^a$	$\mathrm{CH}_{2}\mathrm{OH} + \mathrm{M}^{(5)}$	\rightleftharpoons	$\mathrm{CH}_{2}\mathrm{O} + \mathrm{H} + \mathrm{M}^{(5)}$	5.000E+13	0.00	105	[15]
70f	$CH_3O + H$	\rightleftharpoons	$CH_2O + H_2$	2.000E+13	0.00	0	[15]
71f	$CH_3O + H$	$\stackrel{\frown}{\leftarrow}$	$S-CH_2 + H_2O$	1.600E + 13	0.00	0	[15]
72f	$CH_3O + OH$	$\stackrel{\frown}{\leftarrow}$	$CH_2O + H_2O$	5.000E+12	0.00	0	[15]
73f	$CH_3O + O$	$\stackrel{\frown}{\leftarrow}$	$OH + CH_2O$	1.000E+13	0.00	0	[15]
74f	$CH_3O + O_2$	\rightarrow	$CH_2O + HO_2$	4.280E-13	7.60	-14.8	[15]
$75 f^a$	$CH_3O + M$	\rightleftharpoons	$CH_2O + H + M$	1.000E+13	0.00	56.5	[15]
$76f^a$	$CH_{3}O + M^{(2)}$	\rightleftharpoons	$\mathrm{CH}_{2}\mathrm{OH} + \mathrm{M}^{(2)}$	1.000E+14	0.00	80	[15]
77f	$C_2H_6 + H$	\rightleftharpoons	$C_2H_5 + H_2$	5.400E + 02	3.50	21.8	[8]
78f	$C_2H_6 + O$	\rightleftharpoons	$C_2H_5 + OH$	1.400E+00	4.30	11.6	[8]
79f	$C_2H_6 + OH$	\rightleftharpoons	$C_2H_5 + H_2O$	2.200E+07	1.90	4.7	[8]
80f	$C_2H_6 + CH_3$	\rightleftharpoons	$C_2H_5 + CH_4$	5.500E-01	4.00	34.7	[8]
81f	C_2H_6	\rightleftharpoons	$C_2H_5 + H k_0$	4.900E+42	-6.43	448	[7]
			k_∞	8.850E + 20	-1.23	428	
82f	$C_2H_5 + H$	\rightleftharpoons	$C_2H_4 + H_2$	3.000E+13	0.00	0	[8]
83f	$C_2H_5 + O$	\rightleftharpoons	$C_2H_4 + OH$	3.060E + 13	0.00	0	[8]
84f	$C_2H_5 + O$	\rightleftharpoons	$CH_3 + CH_2O$	4.240E + 13	0.00	0	[8]
85f	$C_2H_5 + O_2$	\rightleftharpoons	$C_2H_4 + HO_2$	2.000E+12	0.00	20.9	[8]
86f	C_2H_5	$\stackrel{\frown}{\leftarrow}$	$C_2H_4 + H k_0$	3.990E+33	-4.99	167	[20]
			k_∞	1.110E + 10	1.04	154	
87f	$C_2H_4 + H$	\rightleftharpoons	$C_2H_3 + H_2$	4.490E + 07	2.12	55.9	[21]
88f	$C_2H_4 + OH$	\rightleftharpoons	$C_2H_3 + H_2O$	5.530E + 05	2.31	12.4	[21]
89f	$\overline{C_2H_4} + O$	\rightleftharpoons	$CH_3 + CHO$	2.250E + 06	2.08	0	[11]
90f	$C_2H_4 + O$	$\stackrel{\frown}{\leftarrow}$	$CH_2CHO + H$	1.210E + 06	2.08	0	[11]
91f	$2 C_2 H_4$	\rightleftharpoons	$C_2H_3 + C_2H_5$	5.010E + 14	0.00	271	[22]
92f	$C_2H_4 + O_2$	\rightleftharpoons	$C_2H_3 + HO_2$	4.220E+13	0.00	241	[23]
93f	$C_2H_4 + HO_2$	\rightleftharpoons	$C_2H_4O + OH$	2.230E + 12	0.00	71.9	[11]

Number	Reaction		A	n	E	Ref.	
s93f	$C_2H_4O + HO_2$	$\stackrel{\frown}{\leftarrow}$	$CH_3 + CO + H_2O_2$	4.000E+12	0.00	71.2	[11]
$94f^a$	$C_2H_4 + M$	\rightleftharpoons	$C_2H_3 + H + M$	2.600E+17	0.00	404	[14]
$95f^a$	$C_2H_4 + M$	$\stackrel{\frown}{\leftarrow}$	$C_2H_2 + H_2 + M$	3.500E+16	0.00	299	[14]
96f	$C_2H_3 + H$	$\stackrel{\frown}{\leftarrow}$	$C_2H_2 + H_2$	1.210E+13	0.00	0	[14]
$97f^{a,b}$	$C_2H_3 + M$	\rightleftharpoons	$C_2H_2 + H + M k_0$	1.510E + 14	0.10	137	[24]
			k_∞	6.380E+09	1.00	157	
98f	$C_2H_3 + O_2$	\rightleftharpoons	$CH_2O + CHO$	1.700E+29	-5.31	27.2	[25]
99f	$C_2H_3 + O_2$	\rightleftharpoons	$CH_2CHO + O$	7.000E+14	-0.61	22	[24, 25]
100f	$C_2H_3 + O_2$	\rightleftharpoons	$C_2H_2 + HO_2$	5.190E+15	-1.26	13.9	[24, 25]
101f	CH ₂ CHO	\rightleftharpoons	$CH_2CO + H$	1.047E+37	-7.19	186	[23]
102f	$C_2H_2 + O$	$\stackrel{\frown}{\leftarrow}$	HCCO + H	4.000E+14	0.00	44.6	[17]
103f	$C_2H_2 + O$	\rightleftharpoons	$T-CH_2 + CO$	1.600E + 14	0.00	41.4	[17]
104f	$C_2H_2 + O_2$	$\stackrel{\frown}{\leftarrow}$	$CH_2O + CO$	4.600E+15	-0.54	188	[26]
105f	$C_2H_2 + OH$	\rightleftharpoons	$CH_2CO + H$	1.900E+07	1.70	4.18	[6, 27]
106f	$C_2H_2 + OH$	\rightleftharpoons	$C_2H + H_2O$	3.370E+07	2.00	58.6	[6, 27]
107f	$CH_2CO + H$	\rightleftharpoons	$CH_3 + CO$	1.110E+07	2.00	8.37	[6, 27]
108f	$CH_2CO + O$	\rightleftharpoons	$T-CH_2 + CO_2$	2.000E+13	0.00	9.6	[6, 27]
109f	$CH_2CO + O$	\rightleftharpoons	HCCO + OH	1.000E+13	0.00	8.37	[6, 27]
110f	$CH_2CO + OH$	\rightleftharpoons	$CH_2OH + CO$	1.020E+13	0.00	0	[6, 27]
111f	$CH_2CO + CH_3$	\rightarrow	$C_2H_5 + CO$	9.000E+10	0.00	0	[6, 27]
112f	HCCO + H	\rightleftharpoons	$S-CH_2 + CO$	1.500E + 14	0.00	0	[17]
113f	HCCO + OH	\rightarrow	CHO + CO + H	2.000E+12	0.00	0	[28]
114f	HCCO + O	\rightarrow	2 CO + H	9.640E+13	0.00	0	[17]
115f	$HCCO + O_2$	\rightarrow	2 CO + OH	2.880E+07	1.70	4.19	[24]
116f	$HCCO + O_2$	\rightleftharpoons	$\rm CO_2 + \rm CO + \rm H$	1.400E+07	1.70	4.19	[24]
117f	$C_2H + OH$	\rightarrow	HCCO + H	2.000E+13	0.00	0	[8, 27]
118f	$C_2H + O$	\rightarrow	$\rm CO + CH$	1.020E + 13	0.00	0	[8, 27]
119f	$C_2H + O_2$	$\stackrel{\longrightarrow}{\leftarrow}$	HCCO + O	6.020E+11	0.00	0	[8, 27]
120f	$C_2H + O_2$	\rightarrow	$CH + CO_2$	4.500E + 15	0.00	105	[8, 27]
121f	$C_2H + O_2$	\rightarrow	CHO + CO	2.410E+12	0.00	0	[8, 27]
122f	$C_2H_2 + S-CH_2$	$\stackrel{\longrightarrow}{\leftarrow}$	$C_3H_3 + H$	8.000E+13	0.00	0	[16]
123f	$C_2H_2 + S-CH_2$	$\stackrel{\longrightarrow}{\leftarrow}$	C_3H_4	8.000E+13	0.00	0	[16]
124f	$C_2H_2 + T-CH_2$	\rightleftharpoons	$C_3\overline{H_4}$	1.200E + 13	0.00	27.7	[16]
125f	$C_2H_2 + CH_3$	\rightleftharpoons	$C_3H_4 + H$	6.740E+19	-2.10	132	[16]
126f	$C_3H_4 + O$	$\stackrel{\frown}{\leftarrow}$	$CH_2O + C_2H_2$	1.000E+12	0.00	0	[28]
127f	$C_3H_4 + O$	\rightleftharpoons	$CHO + C_2H_3$	1.000E+12	0.00	0	[28]

Number	I	React	tion	A	n	E	Ref.
128f	$C_3H_4 + OH$	\rightleftharpoons	$CH_2O + C_2H_3$	1.000E + 12	0.00	0	[28]
129f	$C_3H_4 + OH$	$\stackrel{\frown}{\leftarrow}$	$CHO + C_2H_4$	1.000E+12	0.00	0	[28]
130f	C_3H_4	$\stackrel{\frown}{\leftarrow}$	$C_3H_3 + H$	5.000E + 14	0.00	370	[18]
131f	C_3H_5	\rightleftharpoons	$C_3H_4 + H$	3.980E+13	0.00	293	[28]
132f	$C_3H_5 + H$	$\stackrel{\frown}{\leftarrow}$	$C_3H_4 + H_2$	1.000E + 13	0.00	0	[28]
133f	$C_3H_5 + O_2$	$\stackrel{\frown}{\leftarrow}$	$C_3H_4 + HO_2$	6.000E+11	0.00	41.9	[28]
134f	$C_2H_4 + S-CH_2$	$\stackrel{\frown}{\leftarrow}$	C_3H_6	6.600E+13	0.00	0	[28]
135f	$C_2H_4 + T-CH_2$	\rightleftharpoons	C_3H_6	1.800E + 10	0.00	0	[28]
136f	C_3H_6	$\stackrel{\frown}{\leftarrow}$	$C_3H_5 + H$	1.000E + 13	0.00	326	[28]
137f	C_3H_6	$\stackrel{\frown}{\leftarrow}$	$C_2H_3 + CH_3$	3.150E + 15	0.00	359	[28]
a137f	C_3H_6	$\stackrel{\frown}{\leftarrow}$	$C_2H_2 + CH_4$	3.500E + 12	0.00	293	[28]
138f	$H + C_3 H_6$	$\stackrel{\frown}{\leftarrow}$	$C_3H_5 + H_2$	5.000E + 12	0.00	6.3	[28]
139f	$C_3H_6 + O$	$\stackrel{\frown}{\leftarrow}$	$C_2H_4 + CH_2O$	5.900E+13	0.00	21	[28]
140f	$C_3H_6 + O$	$\stackrel{\frown}{\leftarrow}$	$C_2H_5 + CHO$	3.600E + 12	0.00	0	[28]
141f	$C_3H_6 + OH$	$\stackrel{\frown}{\leftarrow}$	$C_2H_5 + CH_2O$	7.900E+12	0.00	0	[28]
142f	$C_3H_6 + OH$	$\stackrel{\frown}{\leftarrow}$	$C_3H_5 + H_2O$	4.000E+12	0.00	0	[28]
143f	$CH_3 + C_3H_6$	$\stackrel{\frown}{\leftarrow}$	$CH_4 + C_3H_5$	8.960E+12	0.00	35.6	[28]
144f	$\mathrm{C}_{3}\mathrm{H}_{6}+\mathrm{C}_{2}\mathrm{H}_{5}$	\rightleftharpoons	$C_3H_5 + C_2H_6$	1.000E + 11	0.00	38.5	[28]
145f	$N-C_3H_7$	$\stackrel{\frown}{\leftarrow}$	$CH_3 + C_2H_4 k_0$	5.490E + 49	-10.00	150	[29]
			k_∞	$1.230E{+}13$	-0.10	126	
146f	$N-C_3H_7$	\rightleftharpoons	$H + C_3 H_6 \qquad k_0$	7.881E+39	-6.66	178	[30]
			k_{∞}	1.674E + 14	0.00	162	
147f	$N-C_3H_7+O_2$	\rightleftharpoons	$C_3H_6 + HO_2$	9.000E + 10	0.00	0	[31, 30]
p1f	C_3H_8	$\stackrel{\longrightarrow}{\leftarrow}$	$CH_3 + C_2H_5 k_0$	7.830E+18	0.00	272	[14]
			k_∞	1.100E + 17	0.00	353	
p4f	$C_3H_8 + O_2$	\rightleftharpoons	$I-C_3H_7 + HO_2$	4.000E + 13	0.00	199	[32]
p5f	$C_3H_8 + O_2$	$\stackrel{\frown}{\leftarrow}$	$N-C_3H_7 + HO_2$	4.000E + 13	0.00	199	[32]
p6f	$C_3H_8 + H$	\rightleftharpoons	$I-C_3H_7 + H_2$	1.300E + 06	2.40	18.7	[32]
p7f	$C_3H_8 + H$	\rightleftharpoons	$N-C_3H_7 + H_2$	1.330E + 06	2.54	28.3	[31, 29]
p8f	$C_3H_8 + O$	$\stackrel{\longrightarrow}{\leftarrow}$	$I-C_3H_7 + OH$	4.760E + 04	2.71	8.82	[31, 30]
p9f	$C_3H_8 + O$	$\stackrel{\longrightarrow}{\leftarrow}$	$N-C_3H_7 + OH$	1.900E + 05	2.68	15.6	[31, 30]
p10f	$C_3H_8 + OH$	\rightleftharpoons	$I-C_3H_7 + H_2O$	4.670E + 07	1.61	-0.146	[32]
p11f	$C_3H_8 + OH$	\rightleftharpoons	$N-C_3H_7 + H_2O$	1.054E + 10	0.97	6.64	[32]
p12f	$C_3H_8 + HO_2$	\rightleftharpoons	$I-C_3H_7 + H_2O_2$	9.640E + 03	2.60	58.2	[31, 29, 30]
p13f	$C_3H_8 + HO_2$	\rightleftharpoons	$N-C_3H_7 + H_2O_2$	4.760E + 04	2.55	69	[31, 29, 30]
p196f	$I-C_3H_7 + C_3H_8$	$\stackrel{\frown}{\leftarrow}$	$\mathrm{N-C_3H_7} + \mathrm{C_3H_8}$	8.400E-03	4.20	36.3	[31, 33]

Number	Reaction	A	n	E	Ref.
p17f	$I-C_3H_7 \rightleftharpoons C_3H_6 + H k_0$	2.167E+17	0.00	118	[14, 29]
	k_{∞}	8.760E + 07	1.76	149	
p19f	$I-C_3H_7 + O_2 \rightleftharpoons C_3H_6 + HO_2$	$1.300E{+}11$	0.00	0	[31, 30]

Units are mol, cm³, kJ, K.

The backward rates for all reversible reactions can be calculated from thermodynamic data. a Third-body efficiencies are:

[M2] = 2.5 [H2] + 12 [H2O] + 1.9 [CO] + 3.8 [CO2] + 1 [other].[M1] = 2.5 [H2] + 16.3 [H2O] + 1.9 [CO] + 3.8 [CO2] + 1 [other].[M6] = 0.5 [AR] + 0.3 [O2] + 7 [H2O] + 0.75 [CO] + 1.5 [CO2] + 1.5 [C2H6] + 1 [other].[M] = 1 [other]. [M7] = 0.7 [AR] + 2 [H2] + 6 [H2O] + 1.5 [CO] + 2 [CO2] + 2 [CH4] + 3 [C2H6] + 1 [other].[M4] = 1.9 [H2] + 12 [H2O] + 2.5 [CO] + 2.5 [CO2] + 1 [other].[M5] = 2.4 [H2] + 15.4 [H2O] + 1.8 [CO] + 3.6 [CO2] + 1 [other].^bPressure dependent reactions are described by the TROE-formulation [34]. The centering parameters are given by: $F_{c,14f} = 0.265 \exp(-T/94 \text{ K}) + 0.735 \exp(-T/1756 \text{ K}) + \exp(-5182 \text{ K/T}).$ $F_{c,47f} = 0.37 \exp(-T/61 \text{ K}) + 0.63 \exp(-T/3315 \text{ K}).$ $F_{c,48f} = 0.38 \exp(-T/73 \text{ K}) + 0.62 \exp(-T/1180 \text{ K}).$ $F_{c.81f} = 0.16 \exp(-T/125 \text{ K}) + 0.84 \exp(-T/2219 \text{ K}) + \exp(-6882 \text{ K/T}).$ $F_{c,86f} = 0.832 \exp(-T/1203 \text{ K}).$ $F_{c,97f} = 0.7.$ $F_{c,145f} = 2.17 \exp(-T/251 \text{ K}) + \exp(-1185 \text{ K/T}).$ $F_{c,146f} = \exp(-T/1000 \text{ K}) + \exp(-48097 \text{ K/T}).$ $F_{c,p1f} = 0.76 \exp(-T/38 \text{ K}) + 0.24 \exp(-T/1946 \text{ K}).$ $F_{c,p17f} = \exp(-T/260 \text{ K}) + \exp(-3000 \text{ K/T}).$

References

- M.L. Rightley and F.A. Williams. Structures of co diffusion flames near extinction. Combustion Science and Technology, 125:181, 1997.
- [2] R. A. Yetter, F. L. Dryer, and H. Rabitz. A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics. *Combustion Science and Technology*, 79:97– 128, 1991.
- [3] G. Balakrishnan and F. A. Williams. Turbulent combustion regimes for hypersonic propulsion employing hydrogen-air diffusion flames. *Journal of Propulsion and Power*, 10(3):434–437, 1994.
- [4] M. D. Smooke. In Reduced Kinetic Mechanisms and Approximations for Methane-Air Flames. Springer-Verlag, New York, 1991.

- [5] E. L. Petersen and R. K. Hanson. Reduced kinetics mechanisms for ram accelerator combustion. *Journal of Propulsion and Power*, 15(4):591–600, 1999.
- [6] R. P. Lindstedt and G. Skevis. Chemistry of acetylene flames. Combustion Science and Technology, 125(1-6):73-137, 1997.
- [7] J.C. Hewson and F.A. Williams. Rate-ratio asymptotic analysis of methane-air diffusion flame structure for predicting production of oxides of nitrogen. *Combustion and Flame*, 117(3):441–476, 1999.
- [8] M. Frenklach, H. Wang, and M. Rabinowitz. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - combustion of methane. *Progress in Energy and Combustion Science*, 18(1):47–73, 1992.
- [9] S. C. Li and F. A. Williams. Reaction mechanisms for methane ignition. Journal of Engineering for Gas Turbines and Power, 2001, to appear. ASME Paper No. 2000-GT-0145.
- [10] S. C. Li and F. A. Williams. Nox formation in two-stage methane-air flames. Combustion and Flame, 118(3):399–414, 1999.
- [11] D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, T. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, and J. Warnatz. Evaluated kinetic data for combustion modeling. *Journal of Physical and Chemical Reference Data*, 21(3):411–749, 1992.
- [12] Y. Hidaka, T. Nakamura, H. Tanaka, K. Inami, and H. Kawano. High-temperature pyrolysis of methane in shock-waves - rates for dissociative recombination reactions of methyl radicals and for propyne formation reaction. *International Journal of Chemical Kinetics*, 22:701–709, 1990.
- [13] K.P. Lim and J.V. Michael. The thermal reactions of CH₃. Twenty-Fifth Symposium (International) on Combustion, page 713, 1994.
- [14] D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, T. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, and J. Warnatz. Summary table of evaluated kinetic data for combustion modeling: Supplement 1. *Combustion and Flame*, 98:59–79, 1994.
- [15] S.C. Li and Williams F.A. Formation of NO_x, CH₄, and C₂ species in laminar methanol flames. *Proceedings of the Combustion Institute*, 27:485–493, 1998.
- [16] K.M. Leung and R.P. Lindstedt. Detailed kinetic modeling of $C_1 C_3$ alkane diffusion flames. *Combustion and Flame*, 102:129–160, 1995.
- [17] P. Frank, K.A. Bhaskaran, and T. Just. Acetylene oxidation: The reaction C₂H₂ + O at high temperatures. In *Twenty-First Symposium (International) on Combustion*, page 885, Pittsburgh, Pennsylvania, 1986. The Combustion Institute.

- [18] N. Peters. Flame calculations with reduced mechanisms an outline. In N. Peters and B. Rogg, editors, *Reduced Kinetic Mechanisms for Applications in Combustion Systems*, volume **m 15** of *Lecture Notes in Physics*, chapter 1, pages 3–14. Springer-Verlag Berlin, 1993.
- [19] M.W. Markus, P. Roth, and T. Just. A shock tube study of the reactions of ch with CO₂ and O₂. International Journal of Chemical Kinetics, 28:171, 1996.
- [20] Y. Feng, J. T. Niiranen, A. Bencsura, V. D. Knyazev, and D. Gutman. Weak collision effects in the reaction c2h5 = c2h4 + h. *Journal of Physical Chemistry*, 97(4):871–880, 1993.
- [21] A. Bhargava and P. R. Westmoreland. Measured flame structure and kinetics in a fuel-rich ethylene flame. *Combustion and Flame*, 113(3):333–347, 1998.
- [22] Y. Hidaka, T. Nishimori, K. Sato, Y. Henmi, R. Okuda, and K. Inami. Shock-tube and modeling study of ethylene pyrolysis and oxidation. *Combustion and Flame*, 117(4):755– 776, 1999.
- [23] N. M. Marinov and P. C. Malte. Ethylene oxidation in a well-stirred reactor-stirred reactor. International Journal of Chemical Kinetics, 27(10):957–986, 1995.
- [24] B. Varatharajan and F. A. Williams. Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen-diluent systems. *Combustion and Flame*, 124(4):624–645, 2001.
- [25] N. M. Marinov, W. J. Pitz, C. K. Westbrook, A. M. Vincitroe, M. J. Castaldi, S. M. Senkan, and C. F. Melius. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame. *Combustion and Flame*, 114:192–213, 1998.
- [26] A. Laskin and H. Wang. On initiation reactions of acetylene oxidation in shock tubes a quantum mechanical and kinetic modeling study. *Chemical Physics Letters*, 303:43–49, 1999.
- [27] M. M. Y. Waly, S. M. A. Ibrahim, S. C. Li, and F. A. Williams. Structure of two-stage flames of natural gas with air. *Combustion and Flame*, 125(3):1217–1221, 2001.
- [28] C.K. Westbrook and F.L. Dryer. Chemical kinetic modeling of hydrocarbon combustion. Progress in Energy and Combustion Science, 10:1–57, 1984.
- [29] N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. J. Castald, and S. M. Senkan. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. *Combustion Science and Technology*, 116–117:211–287, 1996.

- [30] S. G. Davis, C. K. Law, and H. Wang. Propene pyrolysis and oxidation kinetics in flow reactor and in laminar premixed flames. *Combustion and Flame*, 119:375–399, 1999.
- [31] W. Tsang. Chemical kinetic data base for combustion chemistry. part 3. propane. Journal of Physical and Chemical Reference Data, 17(2):887–951, 1988.
- [32] B. Varatharajan and F. A. Williams. Reduced chemistry descriptions for ignition and detonation of higher hydrocarbons. In 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2002. AIAA 2002-0611.
- [33] W. Qin. *Detailed Studies on the Combustion of Landfill Gases*. PhD thesis, Department of Aerospace and Mechanical Engineering, University of Southern California, 2000.
- [34] R. G. Gilbert, K. Luther, and J. Troe. Theory of thermal unimolecular reactions in the fall-off range. ii. weak collision rate constants. *Ber. Bunsenges. Phys. Chem.*, 87:169– 177, 1983.