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Successful modeling of aeroelastic and structural dynamics requires the use of system

identification techniques for model development and validation. Experimental methods for

such applications often generate large datasets of high input and output dimensions, and

identification methods that minimize maximum likelihood criteria are ill-suited for such

cases due to the non-convexity of the model parameters in the error. Realization-based

identification methods such as the Eigensystem Realization Algorithm and subspace iden-

tification methods have consequently gained widespread use for these applications, because

they require only a fixed number of linear algebra operations. Such methods, however, do

not guarantee certain system properties, such as stability, without modification.

Although realization-based identification methods are typically formulated as a sequence

of linear algebra equations with analytical solutions, they all nonetheless minimize some

Frobenius norm, the argument of which is affine in the parameters being identified. The

convexity of this minimization has so far been mostly unexploited. We present a method

for incorporating constraints into realization-based identification methods that requires the

eigenvalues of the identified model to lie within arbitrary convex regions of the complex

plane based on linear matrix inequalities. This results in a convex optimization problem

that remains easily solvable even for large datasets with high input and output dimen-

sions. Some specific constraints for particularly important regions of the complex plane

are presented and motivated with numerical examples.

I. Introduction

F
or a linear, time-invariant (LTI) system, output measured from some time t = 0 may be expressed as
the linear combination of past input (for t < 0) and input measured from the same initial time (for

t ≥ 0). For a finite-dimensional system, the mapping from past input to future output is a finite-rank linear
operator, and the effect of the past input may be stored in a finite-dimensional vector; this vector is the
state of the system. The central idea of realization theory is to factor this mapping from past input to future
output into two parts: a map from the input to the state, and another from the state to the output. This
factorization provides a complete description of the system dynamics and guarantees the representation is
both causal and finite-dimensional; thus it can be physically constructed, or realized.

Realization-based identification refers to system identification methods that construct system models by
identifying the mapping from past input to future output and constructing a state-space representation
via a rank-reducing factorization. The non-deterministic nature of the experimental process requires that
both these steps be carefully considered. The many ways of treating stochastic signals has resulted in the
development of many different realization-based identification methods, but all share a common ancestor
in the Ho-Kalman realization algorithm, which constructs a state-space representation of a system from
deterministic impulse-response coefficients, or Markov parameters.
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An often overlooked characteristic of realization-based identification methods is that the key step of
estimating the system dynamics, though often stated as a simple matrix product, can also be stated as the
minimization of the Frobenius-norm of a matrix expression that is linear in the system parameters. Though
this minimization has an exact analytical solution in the unconstrained case, it is nonetheless a minimization
of a convex cost function, and it can consequently be modified with convex constraints to form a well-posed
convex optimization problem.

One property of an LTI system often of interest is the location of the system eigenvalues, or poles. For
a particular matrix, constraints on the location of its eigenvalues in the complex plane may be stated as
linear matrix inequalities (LMIs). These constraints are not only convex, but linear in the parameters.
Additionally, the minimization of a Frobenius-norm expression that is linear in the parameters subject to
LMI constraints can be stated as a linear program with semidefinite constraints. Such problems can be easily
solved using interior-point methods that are guaranteed to converge to a unique minimizing solution in a
relatively small number of iterations.1

Examples of subspace identification methods which incorporate LMI constraints include Lacey and
Berstein,2 in which an LMI framework is proposed to constrain the eigenvalues of system estimates to
be stable, and Hoagg et. al.3 and McKelvey and Moheimani,4 which use similar frameworks to restrict
estimates to positive real systems. Hoagg and collaborators5 later extend this framework to provide a lower
bound on the natural frequencies of the poles of the identified model, creating a convex optimization pro-
cedure which restricts the eigenvalues to a non-convex region of the convex plane; the parameterization
used, however eliminates the possibility of also restricting the eigenvalues to lie within convex regions of the
complex plane, such as the unit circle. A method for constrained step-based realization procedures has also
been recently proposed by the authors.6

This paper presents a unifying model for performing realization-based identification subject to constraints
on eigenvalue locations via LMIs. The method is developed in a general form that may be applied to specific
realization-based identification methods by substitution of various parameters. A simulation example shows
how restricting pole locations can be interpreted as reducing the variance of a system estimate by the
incorporation of prior knowledge into the identification procedure.

The rest of the paper is organized as follows: Section II provides some preliminary definitions and notation
used throughout the rest of the paper. Section III restates several popular system identification methods in a
general framework of structured matrices and Frobenius-norm minimization. Section V applies the technique
to the identification of aeroelastic modes, and Section VI concludes with some suggestions on future work.

II. Preliminaries

This section presents definitions and notation that are used throughout the rest of the paper and reviews
some results from realization theory that are important to the identification problem. The identification
methods presented in this paper are restricted to those which identify discrete-time, linear, time-invariant
(LTI) systems. The dynamics of a discrete-time LTI system may be stated in several equivalent represen-
tations. One common representation of LTI systems is the state-space representation, in which a set of
matrices (A,B,C,D) defines the relationship

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(1)

where u(t) ∈ R
nu is the input signal, y(t) ∈ R

ny is the output signal, and x(t) ∈ R
n is the system state. The

time variable t is an integer signal index.
The system (1) is stable if A has all eigenvalues inside the unit circle. It is controllable if the state x(t)

may achieve an arbitrary value with a proper selection of u(t) in n time steps. This is true if and only if the
controllability matrix

Cn =
[

B AB · · · An−1B

]

has rank n. The system is observable if the initial state x(0) may be determined from n observations of the
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output. This is true if and only if the observability matrix

On =









C

CA
...

CAn−1









has rank n. Systems that are both controllable and observable are minimal and have the property that the
state dimension n cannot be reduced.7 In this paper, all systems are assumed minimal. The state-space
representation is guaranteed to be causal, and so it is called a realizable representation of a system since it
can always be constructed in reality.8

A discrete-time LTI system also has a representation of a convolution with an infinite series

y(t) =

∞∑

k=0

G(k)u(t− k) + v(t) (2)

where G(k) ∈ R
ny×nu are the system Markov parameters. Although this representation also guarantees

causal systems since the summation starts at 0, there are no tests for stability using the Markov parameters
that do not require knowledge of the entire sequence. It is easily found that the Markov parameters may be
constructed from the state-space parameters as

G(k) =







D k = 0,

CAk−1B k > 0.
(3)

The inverse problem of constructing a state-space representation from a sequence of Markov parameters is
more complicated. This is the problem of realization.

A positive definite (semidefinite) matrix is a matrix with real and strictly positive (nonnegative) eigenval-
ues. The notation P > 0 will be used to represent that a matrix is positive definite, and P ≥ 0 to represent
that a matrix is positive semidefinite. The symbol ⊗ denotes the Kronecker product.

III. Realization-Based Identification

The realization problem begins with the construction of structured data matrices. We first present the
Ho-Kalman algorithm, which constructs a state-space realization from a finite-length deterministic sequence
of Markov parameters. The method is then extended to noise-corrupted estimates of Markov parameters.
Two popular subspace identification methods are then presented that generalize the ideas of realization-
based identification to matrices of input and output data. Finally, hybrid subspace method is presented that
generalizes to the original Ho-Kalman algorithm when applied to a deterministic impulse response.

III.A. Realization from Exact System Markov Parameters

Suppose for now that the Markov parameters of a system are known perfectly. The matrix

Hk =









G(1) G(2) · · · G(l)

G(2) G(3) · · · G(l + 1)
...

...
...

G(k) G(k + 1) · · · G(k + l − 1)









(4)

is the system Hankel matrix with k block rows. It maps past input to future output, and in some respects
its 2-norm ||H||2 represents a “gain” of an LTI system. (Details can be found in the literature of robust
control9). Assume that k > n. Substitution of the state-space parameters from (3) reveals that (4) is the
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product of the extended observability matrix

Ok =











C

CA

CA2

...

CAk−1











with k ≥ n and the extended controllability matrix

Cl =
[

B AB A2B · · · Al−1B

]

.

with l ≥ n so that
Hk = OkCl.

Because rank(Ok) = rank(Cl) = n for a minimal system,

rank(Hk) = n.

Additionally, if the indices of Hk are shifted forward by 1 to form a shifted Hankel matrix

H ′
k =









G(2) G(3) · · · G(l + 1)

G(3) G(4) · · · G(l + 2)
...

...
...

G(k + 1) G(k + 2) · · · G(k + l)









, (5)

then substitution of (3) results in
H ′

k = OkACl. (6)

The index l is omitted from the subscripts of Hk and H ′
k because the column dimension is less significant in

the identification algorithms.
If Hk is known exactly, then any factorization

Hk = OkCl

with valid dimensions will result in an Ok and Cl for some arbitrary state basis. If H ′
k is also known exactly,

the parameter A in the same basis as Ok and Cl may be found from

A = O†
kH

′
kC

†
l , (7)

where (·)† is the Moore-Penrose pseudoinverse. Then with C taken from the top ny rows of Ok, B taken
from the first nu columns of Cl, and D = G(0), a complete and minimal state-space realization may be
found from a deterministic sequence of Markov parameters. The state-basis of the resulting realization will
of course depend on the factorization used to find Ok and Cl.

At times, only the extended observability matrix Ok is available. In these cases, A can be estimated
from the shift-invariance of Ok alone as follows: Let O2|k denote block rows 2 through k of the extended
observability matrix, so that

O2|k =









CA

CA2

...

CAk−1









.

Because
O2|kA = Ok−1,

A may be found from
A = O†

2|kOk−1. (8)

This relationship is the basis of the Eigensystem Realization Algorithm (ERA)10 and the Multivariable
Output-Error State-sPace (MOESP) methods.11 A similar method may be used to solve for A by shifting
the columns of the controllability matrix.12
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III.B. Realization from Estimated System Markov Parameters

We have not yet addressed the effects of noise on the estimate of Hk or on the factorization OkCl. Let Ĥk

be the estimate of Hk constructed from estimated Markov parameters. If Ĥk has an error term

Ĥk = Hk + E,

where E is the result of a stochastic process, then Ĥk will have full rank instead of rank n if k > n, and a
factorization into valid-dimensioned Ok and Ck will only be possible if n = k. Generally either the order of
the system is unknown, or we would like to use more than the first 2n + 1 Markov parameters to estimate
the system so that we may have an estimate Ĥk with 2-norm closer to Hk. This requires reducing the
rank of Ĥk. The obvious tool for reducing the rank of matrices is the singular-value decomposition (SVD).
Estimating the system parameters this way sometimes referred to as the method of Kung,12 who performed
the first rigorous analysis of the method, though in a model reduction setting.

Assume for now that n is known. The SVD of Ĥk is

Ĥk = UΣV T

where U and V T are orthogonal matrices and Σ is a diagonal matrix containing the nonnegative singular

values σi ordered from largest to smallest. The SVD for a matrix is unique and guaranteed to exist, and the
number of nonzero singular values of a matrix is equal to its rank.13 Because U and V T are orthogonal, it
also satisfies

Ĥk =
∣
∣
∣
∣UΣV T

∣
∣
∣
∣
2
= ||Σ||2 = σ1 (9)

where ||·||2 is the induced matrix 2-norm, and

Ĥk =
∣
∣
∣
∣UΣV T

∣
∣
∣
∣
F
= ||Σ||F =

(
l∑

i

σ2
i

)1/2

(10)

where ||·||F is the Frobenius norm. From (9) and (10), we can directly see that if the SVD of Hk is partitioned
into

Ĥk =
[

Un Us

]
[

Σn 0

0 Σs

][

V T
n

V T
s

]

,

where Un is the first n columns of U , Σn is the upper-left n × n block of Σ, and V T
n is the first n rows of

V T , the solution to the rank-reduction problem is13

Q = arg min
rank(Q)=n

∣
∣
∣

∣
∣
∣Q− Ĥk

∣
∣
∣

∣
∣
∣
2
= arg min

rank(Q)=n

∣
∣
∣

∣
∣
∣Q− Ĥk

∣
∣
∣

∣
∣
∣
F
= UnΣnV

T
n .

Additionally, ∣
∣
∣

∣
∣
∣Q− Ĥk

∣
∣
∣

∣
∣
∣
2
= σn+1,

which suggests that if the rank of Hk is not known beforehand, it can be determined from examining the
nonzero singular values in the deterministic case and from searching for a significant drop-off in singular
values if only a noise-corrupted estimate is available.

From the rank-n matrix Q, any factorization

Q = ÔkĈl

can be used to estimate Ok and Cl. The error in the state-space realization, however, will depend on the
chosen state basis. Generally we would like to have a state variable with a norm ||xk||2 in between ||uk||2
and ||yk||2. Choosing the factorization

Ôk = UnΣ
1/2
n and Ĉl = Σ1/2

n V T
n (11)

results in
∣
∣
∣

∣
∣
∣Ôk

∣
∣
∣

∣
∣
∣
2
=
∣
∣
∣

∣
∣
∣Ĉl

∣
∣
∣

∣
∣
∣
2
=

√∣
∣
∣

∣
∣
∣Ĥk

∣
∣
∣

∣
∣
∣
2
, (12)
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and thus, from a functional perspective, the choice of (11) will result in mappings from input to state and
state to output with equal norms, and the scalar entries of the state vector xk will have similar magnitudes.
State-space realizations that satisfy (12) are sometimes called internally balanced realizations.7 (Alternative
definitions of a “balanced” realization exist, however, and it is generally wise to verify the definition in each
context.)

With Ôk and Ĉl known, an estimate Â may be calculated by finding an estimate of the shifted Hankel
matrix H ′

k. If Ĥ
′
k is an estimate of H ′

k, then choosing the factorization (11) simplifies (7) to

Â =
(

Ôk

)†

Ĥ ′
k

(

Ĉl

)†

= Σ−1/2
n UT

n Ĥ ′
kVnΣ

−1/2
n .

By estimating B̂ as the first block column of Ĉl, Ĉ as the first block row of Ôk, and D̂ as G(0), a complete
state-space realization (Â, B̂, Ĉ, D̂) may be identified from estimates of the system Markov parameters.
Alternatively, if only Ôk is known, (8) may be used to estimate the system dynamics.

A number of realization-based identification methods construct system estimates from estimated Markov
parameters. The most notable of these is the Eigensystem Realization Algorithm (ERA) of Juang.10 Most
often the Markov parameter estimates are constructed from the inverse Fourier transform of an estimated fre-
quency response. An extension of the ERA uses an Observer/Kalman-Filter Identification (OKID) algorithm
to produce improved Markov parameter estimates for the identification procedure.14

III.C. Subspace Identification Data-Matrix Equations

Realization-based identification methods that generate a system estimate from a Hankel matrix constructed
of estimated Markov parameters have numerous difficulties when applied to noisy measurements. Measuring
an impulse response directly is often infeasible; high-frequency damping may result in a measurement that
has a very brief response before the signal-to-noise ratio becomes prohibitively small, and a unit pulse will
often excite high-frequency nonlinearities that degrade the quality of the resulting estimate. Taking the
inverse Fourier transform of the frequency response guarantees that the estimates of the Markov parameters
will converge as the dataset grows only so long as the input is broadband. Generally input signals decay at
higher frequencies, and calculation of the frequency response by inversion of the input spectrum will amplify
high-frequency noise.

To overcome these difficulties, realization-based methods that identify systems directly from measured
data have been developed. These include the so-called subspace identification methods, which estimate the
system dynamics from block-Hankel matrices of input-output data. The effects of the state on the output are
then isolated using geometrically inspired projection operations. Before presenting some popular algorithms,
we overview the data-matrix equations that they share in common.

Suppose the state-space system (1) has an additive noise signal v(t) ∈ R
ny such that

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + v(t).
(13)

v(t) may be white or colored, which also includes the case of additive state-noise. We will assume that v(t)
and u(t) are uncorrelated, which is the case when the system is operating in open loop. Suppose input data
u(t) and output data y(t) have been measured over the course of some experiment. Consider a block-Hankel
matrix of r block rows and l columns of measured output data starting with the sample y(0),

Y0|r−1 =









y(0) y(1) · · · y(l − 1)

y(1) y(2) · · · y(l)
...

...
...

y(r − 1) y(r) · · · y(r + l − 2)









∈ R
nyr×l, (14)

and a block-Hankel matrix of r block rows and l columns of measured input data starting with the sample
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u(0),

U0|r−1









u(0) u(1) · · · u(l − 1)

u(1) u(2) · · · u(l)
...

...
...

u(r − 1) u(r) · · · u(r + l − 2)









∈ R
nur×l. (15)

These data matrices satisfy
Y0|r−1 = HrUp + T0|r−1U0|r−1 + V0|r−1, (16)

where

Hr =









G(1) G(2) G(3) · · ·

G(2) G(3) G(4) · · ·
...

...
...

G(r) G(r + 1) G(r + 2) · · ·









∈ R
nyr×∞,

Up =









u(−1) u(0) · · · u(l − 2)

u(−2) u(−1) · · · u(l − 3)

u(−3) u(−2) · · · u(l − 4)
...

...
...









∈ R
∞×l,

T0|r−1 =









G(0)

G(1) G(0)
...

...
. . .

G(r − 1) G(r) · · · G(0)









∈ R
nyr×nur,

and V0|r−1 is a matrix of noise v(t) with the same dimensions and indices as Y0|r−1.
The column dimensions of Hr and H ′

r and the row dimension of Up may be infinite in the above equation,
but their product is finite. To express (16) with terms of finite dimensions, we note that a matrix of system
states satisfies

X =
[

x(0) x(1) · · · x(l − 1)
]

= ClUp ∈ R
n×l,

where Cl has infinite column dimension. Hence (16) may be alternatively stated as

Y0|r−1 = OrX + T ′
0|r−1U0|r−1 + V0|r−1. (17)

Assume that the input data matrix U0|r−1 has full row rank. The matrix

ΠU⊥ = Il − UT
0|r−1(U0|r−1U

T
0|r−1)

−1U0|r−1 (18)

is the projector for the null-space of U0|r−1 and satisfies the property

U0|r−1ΠU⊥ = 0.

Multiplication of Y0|r−1 on the right by ΠU⊥ results in

Y0|r−1ΠU⊥ = OrXΠU⊥ + V0|r−1ΠU⊥ (19)

Because U0|r has full row rank, the dimension of the null space of U0|r is the difference between its columns
and its rows:15

dim(null(U0|r)) = l − r,

and thus rank(ΠU⊥) = l−r. A necessary condition to preserve the rank of OrX and OrAX when multiplying
by ΠU⊥ is that ΠU⊥ have rank n. Hence

l ≥ n+ r

is a necessary condition to preserve the rank of OrX and OrAX. This provides a necessary condition on
the dimensions of the data matrices. We must also satisfy

rank(XΠU⊥) = n,
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so that the state dimension is preserved under the projection. This may safely be assumed true for nearly
all input signals. For an extensive analysis of both necessary and sufficient conditions to preserve the rank
of OrX under a null space projection and the relationship of the conditions to persistency of excitation see
Willems.16

III.D. Realization from the Extended Observability Matrix

Let W be some weighting matrix such that V0|r−1W → 0. Because u(t) and v(t) are uncorrelated, this also
implies V0|r−1ΠU⊥W → 0. Then the right-hand multiplication

1

N
Y0|r−1ΠU⊥W =

1

N
OrXΠU⊥ +

1

N
V0|r−1ΠU⊥W

will converge to
1

N
Y0|r−1ΠU⊥W =

1

N
OrXΠU⊥W. (20)

In this case, the SVD

1

N
Yk|r−1ΠU⊥W =

[

Un Us

]
[

Σn 0

0 Σs

][

V T
n

V T
s

]

has the property that row space of Un converges to the row space of Or. Thus we may use the estimate

Ôr = Un

to estimate the system dynamics from
Â = Ô†

2|rÔr−1. (21)

with Ôr−1 and Ô2|r defined similarly to Ok−1 and O2|k in (8).
Identification methods that use (21) are referred to as MOESP-type methods. The weighting W is usually

formed from past output (PO-MOESP) or past input (PI-MOESP) depending on the assumptions regarding
the content of v(t). Overviews of the MOESP family of subspace methods may be found in the book of
Verhaegen and Verdult.11

III.E. Realization from an Estimated State Sequence

If the noise v(t) is the result of additive white noise on the state and the output, then the SVD

Y0|r−1ΠU⊥ =
[

Un Us

]
[

Σn 0

0 Σs

][

V T
n

V T
s

]

may be interpreted as the factorization

Ôr = UnS
1/2
n X̃ = S1/2

n V T
n

in which X̃ = XΠU⊥ is a bank of Kalman filter states for the free response of the system. The state dynamics
may then be estimated using the shift-invariant structure of X̃. In fact, all parameters (A, B, C, D) as
well as a noise parameter K may be estimated via the least squares problem

min
[A B
C D ]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

X̃ ′

Y

]

−

[

A B

C D

][

X̃

U

]

−

[

K

I

]

E

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
F

where X̃ ′ is X̃ shifted forward by one index and E is a column-wise sequence of noise in innovations form.
This method is known as N4SID (an acronym for “Numerical Methods for Subspace System Identification.”)
Additionally, the null-space projection may be replaced with an oblique projection onto the null space of
U0|r−1 along a subspace of past output and past input. Details for these methods may be found in the book
of Van Overschee and De Moor.17
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III.F. Realization from Shift-Invariance of Time-Domain and Covariance-Function Data

The dynamics of A may also be estimated from shifting the data itself. A forward-shifted block-Hankel
output data matrix

Y1|r =









y(1) y(2) · · · y(l)

y(2) y(3) · · · y(l + 1)
...

...
...

y(r) y(r + 1) · · · y(r + l − 1)









∈ R
nyr×l (22)

may be expressed in terms of a shifted block-Toeplitz matrix

T1|r =









G(1) G(0)

G(2) G(1) G(0)
...

...
...

. . .

G(r) G(r − 1) G(r − 2) · · · G(0)









=







G(1)
... T0|r−1

G(r)






∈ R

nyr×nu(r+1)

as
Y1|r = OrAX + T1|rU0|r + V1|r, (23)

in which

U0|r =

[

U0|r−1

u(r) · · · u(r + l − 1)

]

∈ R
nu(r+1)×l (24)

and V1|r is a block-Hankel matrix of noise terms v(t) with the same indices as Y1|r. Note that the dynamics
matrix A appears in the output data itself in (23).

An important quality of (16) is that the index r in U0|r−1 may be replaced with any index r̄ ≥ r

without invalidating the equations; causality and dimensional consistency are retained by appending ‘0’s to
the right-hand side of T0|r−1. Thus U0|r−1 may be replaced with U0|r and T0|r−1 with

T ′
0|r−1 =







0

T0|r−1

...

0






.

in (16) so that both equations contain the same input matrix:

Y0|r−1 = OX + T ′
0|r−1U0|r
︸ ︷︷ ︸

=T0|r−1U0|r−1

+V0|r−1

Forming the projector matrix from the extended input matrix U0|r results in

ΠU⊥ = Il − UT
0|r(U0|rU

T
0|r)

−1U0|r. (25)

If we choose a weighting matrix W that satisfies the same conditions assumed in (20), then multiplication
of Y0|r−1 and Y1|r on the right by ΠU⊥W results in

Y0|r−1ΠU⊥W = OrXΠU⊥W + V0|r−1ΠU⊥W → OrXΠU⊥W (26)

Y1|rΠU⊥W = OrAXΠU⊥W + V1|rΠU⊥W → OrAXΠU⊥W. (27)

By taking the SVD

Y0|r−1ΠU⊥W =
[

Un Us

]
[

Σn 0

0 Σs

][

V T
n

V T
s

]

,
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we form the estimates
Ôr = UnΣ

1/2
n and X̂ΠU⊥W,

and estimate Â as

Â = Ô†
rY1|rΠU⊥W

(

X̂ΠU⊥W
)†

= Σ−1/2
n UT

n Y1|rΠU⊥WVnΣ
−1/2
n . (28)

This method has been referred to as the Generalized Realization Algorithm due to its similarity with the
original realization method of Ho and Kalman.18 This method may also be applied to covariance functions
as well, which eliminates the need for a weighting matrix W . Such an approach was recently applied to the
identification of the structural modes of an F/A-18 from in-flight data by the authors.19

IV. Eigenvalue Constraints for Realization-Based Identification

In this section, we augment the realization-based methods with convex constraints with the goal of
producing models that meet a priori requirements. Although the constrained solutions can no longer be
formulated as a finite sequence of linear algebra operations, they can be solved via convex optimization
techniques with guaranteed convergence. We first introduce the concept of LMI regions, which transform
statements about the location of the eigenvalues of a matrix into questions of feasibility. The constructed
LMIs are then incorporated into the realization problem as convex constraints.

An LMI region is a convex region D of the complex plane, defined in terms of a symmetric matrix α and
a square matrix β, as

D = {z ∈ C : fD(z) ≥ 0} (29)

where
fD(z) = α+ βz + βT z̄. (30)

We will call fD(z) for a given D the characteristic function of D. LMI regions generalize Lyapunov
notions of stability for continuous and discrete time systems, and the describing-function parameters α and
β may be used to form Lyapunov-type inequalities.

LMI regions were first introduced by Chilali and Gahenet,20 and we repeat the central theorem of LMI
regions here for future reference.

Theorem 1. The eigenvalues of a matrix A lie within an LMI region with characteristic function (30) if

and only if there exists a matrix P ∈ R
n×n such that

P = PT > 0, MD(A, P ) ≥ 0 (31)

in which

MD(A, P ) = α⊗ P + β ⊗ (AP ) + βT ⊗ (AP )T . (32)

The intersection of two LMI regions D1 and D2 is also an LMI region, described by the matrix function

fD1∩D2
(z) =

[

fD1
(z) 0

0 fD2
(z)

]

. (33)

Note that in general the (α, β) pair that describes an LMI region is not unique.

IV.A. Some LMI Regions Useful for Identification

In the following, we derive some LMI regions useful for identification purposes. Of course the user need not
be limited by these; LMI regions can be constructed for any convex intersection of half-spaces, ellipsoids, and
parabolas symmetric about the real axis. The following regions are straightforward to verify by algebraically
solving for the eigenvalues of (30).
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IV.A.1. Discrete-Time Stable Eigenvalues

Stable system estimates are often desirable in the identification problem. Realization-based identification
methods, however, do not guarantee stability of the identified model. To provide some known degree of
stability for the identified models, we may constrain eigenvalues to the disc of radius 1− δs.

Proposition 1. The set

S = {z ∈ C : |z| ≤ 1− δs, 0 ≤ δs ≤ 1}

is equivalent to the LMI region fS(z) ≥ 0,

fS(z) = (1− δs)I2 +

[

0 1

0 0

]

z +

[

0 0

1 0

]

z̄. (34)

Theorem 1 applied to this region with δs = 0 results in

P > 0, and

[

P AP

PAT P

]

> 0,

which, by means of Schur complements, is equivalent to the familiar discrete-time Lyapunov condition

P > 0, and P −APAT > 0.

This is also similar, though not identical, to the constraint in the method proposed by Lacey and Bernstein.2

In (34), however, the relaxation parameter δs has a specific interpretation in the complex plane.

IV.A.2. Eigenvalues with Positive Real Parts

It is also generally desirable to avoid models with poles that have negative real parts. Such systems cannot be
transformed to continuous time by inverting a zero-order hold without increasing the model order, since the
matrix logarithm is undefined for matrices with negative real eigenvalues. Consequently, we wish to construct
an LMI region that describes the positive right-half plane. This region should also be parameterized so that
the region begins some distance away from the imaginary axis.

Proposition 2. The set

P = {z ∈ C : Re(z) ≥ δp, δp ≥ 0}

is equivalent to the LMI region fP(z) ≥ 0,

fP(z) = δp

[

2 0

0 −2

]

+

[

0 0

0 1

]

z +

[

0 0

0 1

]

z̄. (35)

IV.A.3. Eigenvalues with Zero Imaginary Parts

If it is known that a process has strictly real eigenvalues (such as with many thermodynamic processes),
then it may be desirable to constrain the eigenvalues of the estimate to the real number line.

Proposition 3. The real number line R is equivalent to the LMI region f
R
(z) ≥ 0,

fR(z) =

[

0 1

−1 0

]

z +

[

0 −1

1 0

]

z̄.

This constraint, however, is computationally unfriendly for many numerical optimization procedures,
since it is effectively using two inequalities to define an equality, which can create problems for interior-
point-based solvers. Instead, we include a parameter to describe an arbitrarily small band around the real
axis in the complex plane.
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Proposition 4. The set

R = {z ∈ C : |Im(z)| ≤ δr, δr ≥ 0}

is equivalent to the LMI region fR(z) ≥ 0,

fR(z) = 2δrI2 +

[

0 1

−1 0

]

z +

[

0 −1

1 0

]

z̄. (36)

The parameter δr can be made small enough so that the complex parts of the resulting identified eigen-
values are near machine precision.

The geometric interpretation of each region in the complex plane is shown in Figure 1.

δs

δr
δp

S R P
Figure 1. Sample LMI Regions in the Complex Plane

IV.B. Incorporation of LMI Constraints into Realization-Based Identification

We now present a method for incorporating constraints based on LMI regions into realization-based identi-
fication methods. An interesting quality of all realization-based methods is that they may be stated as the
minimization of a linear expression inside a Frobenius norm:

Â = arg min
A

||R1AR2 −M ||F , (37)

where the matrices R1, R2, and M vary depending on the method. Parameters for the methods presented
in Section III are shown in Table 1.

Method R1 R2 M

ERA Ô2|r I Ôr−1

MOESP Ô2|r I Ôr−1

N4SID I −X̃ KE − X̃ ′

GRA Ô†
r X̂ΠU⊥W Y1|rΠU⊥W

Table 1. Parameters of Equation (37) for Realization-Based Methods

From the general form (37), we will develop a method of modifying any realization-based identification
method with convex constraints that constrain the eigenvalues of the resulting model to specific regions of
the complex plane. We start by defining the cost function

Jr(Â) =
∣
∣
∣

∣
∣
∣R1ÂR2 −M

∣
∣
∣

∣
∣
∣
F
. (38)

The unconstrained minimum of (38) is the analytic solution of the various identification methods when R1,
R2, and M are replaced with the values in Table 1. Note that (38) is affine in the parameter Â. Theorem 1
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contains the product AP , however, so we augment (38) to contain ÂP via a right-hand weighting Wr = R
†
2P ,

J ′
r(Â, P ) =

∣
∣
∣

∣
∣
∣

(

R1ÂR2 −M
)

Wr

∣
∣
∣

∣
∣
∣
F

=
∣
∣
∣

∣
∣
∣

(

R1ÂR2 −M
)

R
†
2P
∣
∣
∣

∣
∣
∣
F

(39)

=
∣
∣
∣

∣
∣
∣R1ÂP −MR

†
2P
∣
∣
∣

∣
∣
∣
F
. (40)

Though (40) has the same global minimum as (38), namely

Â = R
†
1MR

†
2, (41)

it does not necessarily have the same minimum over an arbitrary convex set. (This may be seen by calculating
the matrix differential in Â for both costs.) We must also ensure that P does not become arbitrarily small
during the minimization procedure, so we include the constraint

tr(P ) = 1

to ensure numerical stability.
Though (40) now contains ÂP , it is no longer affine in the parameters Â and P . We thereby re-

parameterize the cost function with an auxiliary term Q = ÂP , to create the final convex optimization
problem:

Given R1, R2, and M ; and an LMI region parameterized by α and β,

minimize Jc(Q, P )

subject to M(Q, P ) ≥ 0,

P = PT > 0

tr(P ) = 1

(42)

in which
Jc(Q, P ) =

∣
∣
∣

∣
∣
∣R1Q−MR

†
2P
∣
∣
∣

∣
∣
∣
F
,

and
M(Q, P ) = α⊗ P + β ⊗Q+ βT ⊗QT .

The solution for A is then given by Â = QP−1. Note that the strictly positive definite constraint for P
guarantees that P is invertible.

At this point we should remark that although the global minimizer (41) might be in the set of feasible
points, numerical optimization tools may not be able to find it exactly. Optimization routines based on
primal-dual gap methods1 may deviate from (41) even when it is feasible and supplied as an initial value. This
is because, although the analytic solution to primal and dual problems is the same, the numerical solution
might not be. Such numerical difficulties become more common as the row dimension of R1 increases. In
practice, it is best to confirm that the eigenvalues of (41) do not satisfy the LMI region’s characteristic
equation before solving the convex optimization problem.

V. Application to the Identification of Aeroelastic Dynamics

In this section, the eigenvalue-constrained procedure is applied to a high-order linear model of the struc-
tural modes of the NASA Active Aeroelastic Wing F/A-18. A 249th-order linear, continuous-time model of
the acceleration of the airframe due to differential aileron deflection was discretized to 400 Hz via zero-order
hold. The output signal consists of measurements from 53 accelerometers, shown in Figure 2. The input
signal was chosen to be white noise of variance 1. Prior to identification, each output signal was scaled to
have a variance of 1, and independent white noise signals of variance 0.1 were added to each output.

The eigenvalue LMI constraints were incorporated with the realization-based identification method pre-
sented in Section III.F to form a constrained realization-based identification method, as outlined in Section
IV.B. The number of block rows r was chosen to be 20, and an 18th-order model was identified. 1000
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Figure 2. AAW Accelerometer Locations

realizations of data of 1000 points each were generated, of which 81 resulted in unstable estimates of A.
Constrained estimates were generated using YALMIP21 with SeDuMi22 as the selected solver.

Pole locations for estimates generated by the unconstrained and constrained methods from the same
realization are shown in Figure 3. It can be seen that the poles outside the unit circle for the unconstrained
case are within the unit circle for the constrained case.
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Figure 3. Poles Locations for Unconstrained and Constrained Estimates

Maximum singular values in frequency for the transfer functions of the true (discretized) system and the
estimated system are shown in Figure 4. Note that only results from the constrained method are shown,
since it is not possible to compute a regressor to estimate B in (1) if A is unstable. The constrained method
successfully captures the dominant dynamics of the model.
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VI. Conclusion

We have presented a unifying method for the incorporation of eigenvalue constraints into realization-
based identification methods, which includes the ERA and subspace methods. The method incorporates the
idea of LMI regions into the identification procedure by restating the realization-based identification problem
as the minimization of a Frobenius-norm cost function. The method was demonstrated to enforce stability
when estimating the aeroelastic dynamics of the NASA F/A-18.

The most significant challenge to application of the theory so far has been numerical conditioning issues
resulting from system estimates with high condition numbers. The current implementation also relies on
the YALMIP tool to auto-generate the linear program needed for SeDuMi, and it is possible that explicitly
formulating the problem in primal-dual form could result in a better conditioned problem that is also capable
of identifying models from larger data sets.
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