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Gels have been widely explored in many engineering applications, in which they often
swell with mechanical constraints. In this paper, we study mechanics of contact between a
constrained swelling gel and a rigid spherical probe. We first derive an analytical form
of the surface Green’s function of a laterally constrained swelling gel occupying a half
space. We then obtain an analytical form of the relationship between the indentation force
and indentation depth for a spherical rigid indenter pressing onto a laterally constrained
swelling gel, with and without taking account of the adhesion. Our theory also uncovers
the influences of the constrained swelling ratio of the gel on the contact area (as well as
its eccentricity), pull-off force and critical distance at separation. The essential parts of the
analytical results are validated by finite element simulations. The results obtained in this

Constrained swelling article may help to better interpret experimental measurements from indentation tests of

swollen gels.
© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Gels consist of crosslinked polymer networks and solvent molecules. Gels can swell or shrink by absorbing or extrud-
ing the solvent. The volume change of a gel can be as large as several hundred times of its original volume (Tanaka et al.,
1982). By incorporating different functional groups on to the polymer chain, gels can be made stimuli responsive: swelling
or shrinking in response to external stimuli, such as temperature (Hirotsu et al., 1987; Otake et al., 1990), pH (Tanaka et al.,
1980), electric field (Tanaka et al., 1982), and light (Suzuki and Tanaka, 1990). The large deformation and stimuli-
responsiveness of gels import them with many engineering applications, such as actuators (Bassil et al., 2008; Gerlach
et al., 2005), sensors (Buenger et al., 2012; Richter et al., 2008), microfluidic device (Beebe et al., 2000; Dong et al., 2006),
swellable packers (Cai et al., 2010), and many others.

Moreover, gels share many similarities to biological tissues, like low elastic modulus, high fluid content and high fluid
permeability. Many synthetic gels are also biocompatible, making them ideal materials in biomedical applications such as
drug delivery (Jeong et al., 1997; Merino et al., 2015; Qiu and Park, 2001), tissue engineering (Chaudhuri et al., 2015; Drury
and Mooney, 2003; Lee and Mooney, 2001), and biosensors (Annabi et al., 2014; Peppas et al., 2006; Ulijn et al., 2007).

In both the engineering settings and the nature bio-systems, the gels and tissues are usually in confined spaces. For
example, in the applications of self-regulating valves in microfluidic device (Beebe et al., 2000; Richter et al., 2004) and
swellable packers in oil well (Kleverlaan et al., 2005; Qamar et al., 2012), the gels are bonded to rigid posts or pipes, and let
swell against the outer boundary to completely seal the microfluidic channel or the oil well. Similarly in nature, plants use
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Fig. 1. Schematics of a gel in (a) reference state and (b) swollen state.

the constrained swelling gel to regulate the transport of water (Zwieniecki et al., 2001). Moreover, it is often the confined
swelling of the brain in the rigid skull after traumatic brain injury (Goriely et al., 2016; Weickenmeier et al., 2016) that
causes significant damages to the brain tissues. Therefore, understanding the contact mechanics of the gels under various
constrained swelling conditions is of significant importance in generating new understandings of the biological tissues and
guiding new engineering designs.

Another motivation of the current study lies in the recent ever-growing interests in using indentation to characterize
the mechanical properties of gels and biological tissues due to its simple sample preparation and non-destructive feature
(Constantinides et al., 2008; Ebenstein and Pruitt, 2004; Flanigan and Shull, 1999; Hu et al., 2012). Analytical study on the
indentation of a constrained swelling gel could potentially improve the accuracy of the indentation tests of the soft gels and
biological tissues (Miller et al., 2000; Rausch and Kuhl, 2013), and also promote new designs of indentation tests (Hui et al.,
2006; Oyen, 2008).

In recent years, significant efforts have been made in studying the contact mechanics of gels. Based on linear poroelas-
ticity, Hui and coworkers formulate a 2D Hertz problem of a horizontally placed rigid cylinder compressing a half-space
gel (Hui et al., 2006). Closed-form solutions are derived for extracting the elastic properties and permeability of gels from
indentation tests. The theory is also extended to cylindrical, conical, and spherical indenters, and the results are validated
by FEM and experiments (Hu et al., 2010, 2011b; Lin and Hu, 2006). Later, a dynamic oscillation indentation method is
also developed based on linear poroelasticity for characterizing gels in small scale using Atomic Force Microscope (Lai and
Hu, 2017; Lin et al., 2007). To link the phenomenological poroelastic parameters to the thermodynamic properties of gels,
the Flory-Huggins theory is employed and compared with the linear poroelasticity, demonstrating the significant effects of
swelling on the properties of gels (Hu et al., 2011b). In addition to poroelastic indentation, works have also been done to
study the viscoelastic and viscoporoelastic properties of gels using indentation (Galli et al., 2009; Kaufman et al., 2008; Liu
et al., 2009; Strange et al., 2013). In all the previous work, the gel sample is assumed to be a half-space sample without any
mechanical constraints and anisotropy. However, as mentioned previously, gels often undergo constrained swelling and it is
known that the mechanical constraints opposed to the swelling gels have significant effects on the gel properties such as
the effective stiffness and anisotropy (Chan et al., 2012; Delavoipiére et al., 2016; Galli and Oyen, 2008; Hu et al., 2011a). So
far, the effect of constrained swelling, especially the anisotropically constrained swelling, on the indentation of gels has not
been systematically explored yet.

In the article, both the non-adhesive and adhesive contact mechanics between a rigid spherical probe and a constrained
swelling gel are investigated. The paper is organized as follows. In Section 2, based on linear analysis, we obtain an analytical
form of surface Green’s function of a constrained swelling gel. In the first part of Section 2, the field theory of a constrained
swelling gel is summarized; in the second part, by assuming that the additional deformation caused by a concentrated force
on the surface of the gel is small, we formulate linearized governing equations and boundary conditions for the stress/strain
field induced by the force. We solve the surface Green'’s function using Fourier transformation and the detailed process is
listed in the Appendix. In Section 3, the indentation problem of the constrained swelling gel with a spherical indenter is
solved, which is verified using finite element simulations. As in Section 4, the adhesion effect is taken into consideration
based on JKR model. Concluding remarks of this study are included in Section 5.

2. Surface Green’s function of a gel under constrained swelling
2.1. Nonlinear field theory of a constrained swelling gel

We first briefly summarize the nonlinear field theory of gels developed by Hong et al. (2008) and apply it to analyze the
stress and strain field of a block of gel swelling in a solvent with mechanical constraints, as shown in Fig 1. In the current

study, we assume the gel is always in an equilibrium state, indicating that the loading process on the gel is very slow. Taking
the dry network as the reference state of the gel (Fig. 1(a)), a material element in the reference state is described by its
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coordinate X. After the network absorbs the solvent and reaches an equilibrium state under mechanical load, the element X
in the reference state moves to a new coordinate x in the swollen state (Fig. 1(b)). The deformation gradient is defined as
Fx = 9x;/0X.

In the swollen state, the chemical potential of the solvent in the gel reaches a constant value everywhere and equals the
chemical potential of the solvent in the external solution u. The nominal concentration of the solvent in the gel is donated
as C, which is defined as the number of solvent molecules per unit volume of the dry polymer. As suggested in the previous
work (Hong et al., 2008), the free energy density of the gel can be written as

W =W, + Wiy, — uC, (1)

where Ws and W, are the free energy contributions from stretching of polymer network and mixing between the polymer
network and solvent, given by Flory-Rehner theory (Flory and Rehner Jr, 1943) as following:

W, — %NkT[FiKF,»K _3_2log (detF)], 2)
kT 1 X
wm_fﬁ[szaog(ug—cwfgc], (3)

where N is the number of polymer chains per unit volume of dry polymers, T is the temperature, and k is the Boltzmann
constant, €2 is the volume of a solvent molecule, and y refers to a parameter measuring the enthalpy of mixing. Here we
adopt the widely used assumption of molecular incompressibility, namely,

J=detF=1+QC (4)

With the above assumption, the free energy of the gel becomes a function of deformation gradient F and chemical
potential of solvent u only, namely, W = W (F, ).
The nominal stress can be calculated from the free energy function as

~

w
Sik = 371:"((1:’ ). (5)
Combining Eqs. (1)-(5), we obtain that
sik = NkT[Fx — (& — ¥ )Hi], (6)
with
1 1 2x
c= (= - 1)+t 7
_J 1 1 x nu
‘/’—m[log@‘f)*ﬁ‘ﬁ—ﬁ} (8)

where HiK detF = B(det F)/E)F,K = %eijkeKLMFjLFkM‘
The nominal stress s should satisfy the force balance equations:

sikk =0, 9)
and boundary conditions:
siNk =T, (10)

where N and T are the normal vector of the surface and nominal traction in the reference configuration.

We next consider a constrained swelling gel. The gel block is constrained in the x; and x, directions with prestretches:
AP and AJ™ in the two directions, respectively. The swelling ratio of the gel in the third direction A3 can be determined
using the stress-free condition in the x3 direction, namely,

s33=0. (11)
Substituting FO = diag(A1¥"®, 15, 15) into Eqs. (6) and (11), we get
1 kT 1 1 X u
Nkr()\3 _ 7) + XL ppreppe g (1 _ ) LI SR SV ) (12)
)»3 Q 1 2 )\ﬁlre)\gre}»3 }\3 )L?rekgrek32 1 2 kT

which can also be simply written as £ — ¥ = )\32 using the previously defined symbols in Eqs. (7) and (8).
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Fig. 2. (a) Each material element is marked by a coordinate X in the reference state (dry polymer). (b) In the constrained swelling state, the hydrogel swells
and the chemical potential of the gel equilibrates with the chemical potential of the external solvent (. The material element moves to the coordinate x.
(c) A concentrated force fda is applied at X’ on the surface x3 = 0, which perturbs the swollen gel with a field of infinitesimal deformation u.

2.2. Surface Green’s function of a constrained swelling gel

Surface Green'’s functions for isotropic and anisotropic linear elastic solids have been obtained before (Barnett and Lothe,
1975; Lur'e, 1964; Willis, 1966), which have been successfully applied to solving several important linear elasticity problems
(Eshelby, 1961; Gladwell, 1980; Mura, 2013; Vlassak et al., 2003; Willis, 1967). More recently, surface Green’s function for a
Neo-Hookean elastomer with arbitrarily large prestretch has also been obtained (He, 2008). Despite the wide applications
of gels, the surface Green’s function of a constrained swelling gel is not yet available. In this section, we will formulate the
surface Green'’s function of a constrained swelling gel.

Following the nonlinear field theory of a gel summarized above, we regard a dry polymer network as the reference state,
which occupies a half space as shown in Fig. 2(a). When the dry polymer network is prestretched and put in contact with
a solvent, it can absorb solvent molecules, resulting in a constrained swelling gel as shown in Fig. 2(b). The prestretches of
the gel in the two lateral directions are denoted by A{"® and AJ™. The swelling ratio of the gel in the vertical direction can
be obtained by solving Eq. (12). To obtain the surface Green’s function of a constrained swelling gel, as shown in Fig. 2(c),
on the upper surface x3 = 0, we apply a force fda on an infinitesimal element area da at the location: X/, which causes an
incremental displacement field u. A material element with coordinate x in the constrained swelling state changes to X after
a concentrated force is applied, which can be written as,

)Zi:xi+ui. (13)
Therefore, the deformation gradient in the constrained swelling gel with an applied concentrated force is

WhereFl% = 8xi/8XK = )\1],71’68[1 8[(] + )\.gre(siz(sl(z =+ )\.38381{3 and F;'K = 8u,~/8XK = u,-.ka(;(.

Similarly, the nominal stress in the gel with the applied concentrated force, which is denoted by S$;, can be written as:

Sik = Six + Sik. (15)

where $y = W (F, i)/0Fy, and sy is the nominal stress in the constrained swelling gel without the application of the
concentrated force: sy = dW (FO, 1t)/dFy.

If the additional deformation gradient, namely, Fjy is small, we can keep just the linear order term of the difference
between S;; and s, namely,

BZW(FO, pc) P
OFxdF,

Similar to Egs. (9) and (10), the nominal stress S;x should also satisfy the force balance equations and boundary condi-
tions:

Sik = (16)

Sikk =0, (17)

SikNkdA = fi(x —x)da at x3=0, (18)

where dA and da are the element area in the reference state and constrained swollen state respectively.
Subtracting Egs. (9) and (10) from Egs. (17) and (18), we have

Sik.x =0, (19)

S5ikNgdA = fi§(x —x)da at  x3=0 . (20)
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Using the formula of Nanson JNgdA = Fj‘}(njda, Eq. (20) can be rewritten as

-
s’“jinjzfiS(x—x/) at x3=0 - (21)
The deformation in the swollen state is homogeneous, enabling the equivalent form of Eq. (19):
SiF?
( z JK) ) (22)
J J
The term s”,-KI-‘]%/j in Eq. (21)-(22) can be expressed in terms of tensor using Eq. (16):
SicFix
Tj = Gijkilig,1, (23)
where Cjjycan be regarded as incremental modulus tensor:
NKT
Giju = T[Sikl:]%ﬁ?( + (& = V)8ibj + Vi (24)

satisfying the symmetry Gjjj = Cygjj.
Egs. (21) and (22) can be simplified as

Gijuitt,1j = 0, (25)

Ci]-k,u,dnj = f,5 (X - X/) at x3=0. (26)

Egs. (25) and (26) are linearized governing equations for the incremental displacement field u. The general method of
solving surface Green’s function of an anisotropic linear elastic solid using Fourier transformation has been worked out by
Willis (1966, 1967). The detailed process of solving Eqs. (25) and (26) and the complete form of the surface Green’s function
are given in Appendix. For brevity, here we only summarize the surface Green’s function component Gs33(x —x’), which is
needed in the following sections.

APEALPE(E2 — 12)s
Gz (x—X) = 5 1]\117 L (2 ) , (27)
Tk kg[(t2+r2) —4r2ts]

in which r, t and s are

r= \/(Xl —x1)7 + (0 — %), (28)
. \/ () ik () 0 -7 09)
3
(M) e =2 + (157°) 1 =10 + 12
- e . (30)

3. Indentation of a constrained swelling gel by a rigid spherical indenter
3.1. Analytical results

With the surface Green’s function obtained in Section 2, we are able to formulate the indentation problem of a con-
strained swelling gel. As an example, we consider a rigid spherical indenter of radius R pressing onto the surface of a
constrained swelling gel, with prestretches AY™ and AJ" in two lateral directions. The schematic is shown in Fig. 3(a). The
indentation depth is denoted by D. Due to the anisotropic swelling of the gel, the contact radii between the indenter and
the gel in the x; and x, directions are generally different, which are denoted as a and b respectively. Both the lateral and
vertical dimensions of the gel is assumed to be much larger than the radius of the indenter and the indentation depth,
and thus the gel is assumed to occupy a half space in the following calculation. The contact between the indenter and the
surface of the gel is assumed to be frictionless and non-adhesive in this section. We will consider the effect of adhesion in
the next section as shown in Fig. 3(b).

It is noted that, in the current study, we assume the gel is always in an equilibrium state, indicating that the loading
on the gel is slow enough. For the indentation of a gel, the characteristic length for the solvent diffusion in the gel is the
indentation radius a, and the characteristic time for the solvent diffusion can be estimated as t~a?/Ds, where Ds is the
diffusivity of solvent in the gel. If we assume the indentation radius to be around 1 mm, we can estimate the characteristic
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Fig. 3. Schematic of indentation on a constrained swelling gel (a) without adhesion and (b) with adhesion and (c) the corresponding contact area.

time for the gel to reach equilibrium to be around 100s by using the diffusivity of water in gel Ds=10-8 m?/s (Hu et al.,
2010).

Willis (1966, 1967) has proved that for a linear elastic material, the contact area between the material and a rigid spher-
ical indenter is an ellipse and the corresponding pressure distribution in the contact area takes the form:

1/2
_pf1o _x / 31
P(X) = po 2 , (31)

where pg is the maximum pressure, a and b are the major and minor axes of the elliptical contact area as shown in Fig. 3(c),
respectively. The values of these three parameters are to be determined by the relationship between the depth of indentation
and the force applied onto the indenter.

The total force F applied on the indenter can be given by the integration:

F =//p(x)dx1dx2 = 2%Tpoab. (32)
S

Using surface Green'’s function, the normal displacement u3(x) caused by the pressure p(x) can be calculated through the
integration:

Uz (x) = //5633 (x —x') p(x')dx} dxs. (33)

We next perform the coordinate transformation:

X =X +rcosb, (34)
Xy =X, +rsinf. (35)
Using Egs. (34) and (35), we can rewrite the pressure distribution p(x’) as
Do .2 . 12
p(r,0) = E[—(bzcosze +a?sin®0)r? — 2r(b?x; cos 6 + a*x; sin6) + (a?b? — b*x3 — a®x3)] ", (36)
and the surface Green’s function Gs3(X — X’) as
_ _h®)
G (r0) = S NiTr (37)
with
ML (g(6)* = 1) £(0)
h®) = — , (38)
1o (07 +1)" - 48015 0)]
A7) %sin?6 + (A2¢)’cos20
3
A7) %sin?6 + (AP¢) cos26 +
A+

In the polar coordinate system, Eq. (33) can be rewritten as:

u3(X) =/O frZGgg(r,G)p(r,@)rdrdQ, (41)
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where the integration limits r; and r, are the two roots of the equation (x; +rcos@)2/a2 + (x, 4+ rsin6)2/b? = 1.
Eq. (41) can be integrated analytically and the result is:

bpo X2 Xy?
u3(x):41\]kT(10_11(12_12(12 N (42)
with

g

Io =/ —h(Q) 1/2d9, (43)
0 (1 - e2c0529)
bid i 02

I =/ h(6)sin“0 - d. (44)
0 (1 - e2c0529)
T 2

L =/ h(0)cos 93/2 a. (45)
0 (1 - ezcoszé)

where e = /1 — b2/a? denotes the eccentricity of the contact area as shown in Fig. 3(c).
For a spherical indenter with radius R and indentation depth D, the displacement imposed by the surface profile of the
rigid indenter can be approximated as,
1 1
ﬁxf - ﬁxg. (46)
Comparing Eq. (46) with (42), the calculated displacement agrees with the boundary condition when the following equa-
tions are satisfied

us(x) =D —

bpo ,

ankr 0 =P (47)
bp() 1

A2NKT " = 2R (48)

bp() 1
A@NRT 2 = 2R (49)
Egs. (48) and (49) indicate I; = I, which can be used to determine eccentricity e of the contact area:

/ﬂ h(6)(cos?6 — sin®6)
o (1- e2c0529)3/2

indicating that the eccentricity of the elliptical contact area is independent of indentation depth D.
We can also find that Eqgs. (43)-(45) satisfy Iy =I; + (1 — e%)L,. Combing this relationship with Eqs. (47)-(49), we can
further obtain that

2RD

de =0, (50)

= /—. 1
a 2 _e2 (51)
The elliptical contact area is given by A = wab, so that
J1—e2
A=27 %RD. (52)

The maximum pressure pg is obtained by plugging Eq. (51) into Eq. (47),

_4NKT [ (2-€?)D
b\ 2(1-e)R

Substituting Eq. (53) into Eq. (32), we have the force vs. depth relation of a constrained swelling gel indented by a rigid
spherical indenter as:

87 NkT 2R s
F= T /z_ezDZ, (54)

which shows that for a constrained swelling gel, the indentation force depends on the indentation depth to 3/2 power,
similar to that for general linear elastic solids (Johnson, 1987). Due to the power law relation of Eq. (54), we can further
normalize the indentation force by the indentation depth as:

_F__8& ] 2 (55)
NKTVRD3 3l '\ 2—e?’

(53)

Po
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Fig. 5. Normalized indentation force as a function of constrained swelling ratios (AJ" and A5) with chemical potential (a) s =0 and (b) u/kT = —0.01,
where the solid lines are the theoretical predictions and the different symbols are the simulation results obtained from ABAQUS.

Consequently, the normalized indentation force in Eq. (55) only depends on the constrained swelling A{™, A2 and chem-
ical potential u, and is independent of indentation depth and radius of indenter.

The main analytical results obtained above are plotted together with finite element simulations as described in the fol-
lowing.

3.2. Comparison and discussion

To validate the above analytical results, we simulate the indentation of a constrained swelling gel using commercial finite
element software ABAQUS with implemented user-defined subroutine (UHYPER) for gel materials (Hong et al., 2009). In the
finite element model, a rigid spherical indenter is in contact with a block of swollen gel, and only a quarter of the gel is
considered due to the symmetric geometry, as shown in Fig. 4. The width and height of the quarter gel block are set to be 50
times of the indenter radius with approximately 600,000 eight-node linear brick elements (C3D8). Mesh is further refined
around the contact area and the element’s lengths are around 1% of the indenter diameter (Fig. 4). Lateral displacement
boundary conditions are applied at the side surfaces of the gel to maintain the prestretches, and then vertical displacement
is applied on the indenter. The indentation force and deformation field of the gel are calculated by ABAQUS. The contact
between the indenter and gel block is set to be frictionless and non-adhesive. For the parameters used in the simulation,
NQ =0.001 and x =0.1.

According to Eq. (54), the indentation force depends on the indentation depth to 3/2 power, which is validated by the
finite element simulation (the validation is not provided here). In the following plots, the force is further normalized as
Eq. (55), which becomes independent of indentation depth. The normalized indentation force as a function of constrained
lateral swelling ratios (A" and A5"®) with chemical potential 4 = 0 and j/kT = —0.01 is plotted in Fig. 5(a) and (b), where
the solid lines are theoretical predictions and the different symbols are the simulation results obtained from ABAQUS. It is
interesting to note that the relationship between the indentation force and lateral swelling ratio is not always monotonic.
For instance, when A{™ =3 and A!"™ = 4 (Fig. 5(a)), the normalized indentation force increases and then decreases with the
increase of Agre. Such nonmonotonic relationship results from the combination of the following two competing effects: it
is found in our previous studies (Zheng et al., 2017) that for a Neo-Hookean solid, with the increase of lateral stretch, the
indentation force increases; on the other hand, it is known, with the increase of the lateral stretch, the swelling ratio of
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Fig. 6. The magnitude of the eccentricity of the contact area as a function of constrained swelling ratios (A} and A5") with chemical potential (a) i =0
and (b) u/kT = —0.01, where the solid lines are the theoretical predictions and the different symbols are the simulation results obtained from ABAQUS.
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Fig. 7. Normalized contact area as a function of constrained swelling ratios (A} and A5) with chemical potential (a) & = 0 and (b) 1/kT = —0.01, where
the solid lines are theoretical predictions and the different symbols are the simulation results obtained from ABAQUS.

the gel increases, which dilutes the polymer content in unit volume of the gel and thus also reduces the stiffness of the gel
(Hu et al., 2011b). This nonmonotonic relationship can only be observed when the chemical potential is close to zero, where
the swelling ratio of the gel is very sensitive to the variation of its prestretch.

Another important prediction in Fig. 5(a) and (b) is that for certain combination of the constrained lateral swelling ratios,
the normalized indentation force can drop to zero, which is clearly an indication of structural instability. Indeed, in previous
studies (Kang and Huang, 2010; Weiss et al., 2013), it was found that for a laterally constrained swelling gel layer, surface
wrinkle can appear when the constrained swelling ratios reach critical values. For three different Afre values, the critical
prestretch ratio Agre values predicted in the previous studies are marked by cross in Fig. 5(a) and (b), which agree perfectly
with the predictions from the current study.

In addition to the indentation force, we also plot the dependence of contact area on the constrained lateral swelling
ratios for two different chemical potential values of the solvent. We plot the eccentricity of the contact area and the total
contact area in Figs. 6 and 7 respectively, which can be used to fully determine the shape of the elliptical contact area. As
shown in Fig. 6, the magnitude of the eccentricity reaches zero for equal-biaxial swelling, and increases with the increase
of the difference between the swelling ratios in two lateral directions. There is one exception in Fig. 6(b) for A} = 1: when
)\gre gets close to one, the magnitude of eccentricity increases rather than decreases. It can be understood as following:
with the decrease of kgre, the swelling state of the gel approaches the critical condition (marked as crossing points at the
horizontal axis in Fig. 5(a) and (b)) for surface wrinkling instability, resulting in great extension of the elliptical contact area
in one direction.

Based on Eq. (52), we find that the normalized contact area A/ DR decreases from 1 to 0 monotonically with the increase
of the magnitude of eccentricity from O to 1. As a result, the contact area reaches maximum for equal-biaxial constrained
swelling as shown in Fig. 7(a) and (b), expect for one case in Fig. 7(b) with A¥"® =1 as explained above.
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4. Adhesive contact between a rigid spherical indenter and a constrained swelling gel

In this section, we develop an analytical solution of a rigid spherical indenter pressing onto the surface of a constrained
swelling gel with the consideration of the adhesion between the indenter and the gel (Fig. 3(b)), which is ignored in the
above section. Following JKR theory (Johnson et al., 1971), we assume the pressure distribution in the elliptical contacting
area has the following form:

1/2 1,2
p(X)=p T Y - e (56)
- a2 b ! a2 b ’

where p; is negative.
Following the similar procedure as Section 3, the normal displacement caused by the pressure distribution in Eq. (56) can
be integrated analytically as:

bpo X, bp,
Uz (x) = 4NIT<I° haz s )+2NI<TIO’ (57)

where Iy, I; andl, are the same as the ones given in Eqs. (43)-(45). The equation I; =1, = I/ (2 — e?) is still satisfied, so
that the eccentricity of the elliptical contact area is still determined by Eq. (50). In the current theory, the eccentricity of
the contact area is not affected by adhesion, which has also been obtained in previous studies (Frétigny and Chateauminois,
2017; Gay, 2000).

In addition, we can also get the following equations by comparing Eq. (57) with Eq. (46):

2NKT (2 —e?)a?

Do = ~ ILRb (58)
ANKTD
Po+2p1 = I(T (59)

The work done by the pressure will be stored as free energy in the gel system and also dissipated by solvent diffusion.
In the current work, we assume the gel is always in an equilibriums state, or in another word, the load is very slowly
applied, so the dissipated energy by solvent diffusion is negligible. It is also noted that the gel is initially equilibrated with
the external solvent, and the gel is equilibrated with the external solvent again after loading, so the chemical potential of
solvent does not change after loading. Consequently, the work done by the pressure is stored as elastic energy in the gel,
namely:

U =//%p(x)u(x)dx1dxz. (60)
S
Using Eqgs. (58) and (59), Eq. (60) can be integrated as:
2
T NKT 24 2(2_82)D 3 (2_62) 5
Ur = T |:2D 3R a’ + 0R2 a |. (61)

According to JKR model, adhesion can decrease the surface energy by the amount of:
Us = —Aymab, (62)

where Ay is the work of adhesion.
In the equilibrium state, it is assumed that the total energy reaches minimum, namely,

dUg  dUs
Fa "2 =% (63)
which results in
NKTAy
p1=-— blg (64)

Combining Eqs. (58), (59), and (64), we have

(2-e)a®  [aybl
D="—=r— VT (63)

The total force applied on the indenter can be calculated similarly as Eq. (32), that is

F= %poab + 27 pyab. (66)
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Fig. 8. The relationship between mean contact radius and indentation force for a gel in different constrained swelling states with surface energy
Ay /NKTR = 0.1 and chemical potential (a)-(c) =0 and (d)-(f) u/kT = —0.01. The pull-off force F. is marked with crosses and corresponding critical
contact radius at separation is denoted as a.

Substituting Eqs. (58) and (64) into Eq. (66), we obtain that

47 NKT (2 — e?)a3 2
Fo ( ) . NkTAya b. (67)
3RI() IO

By introducing the definition of the mean contact radius as @ = +/ab, we plot the radius a as a function of indentation
force in Fig. 8(a)-(f), where the chemical potential of solvent is chosen to be u =0 or u/kT = —0.01 and work of adhesion
is fixed as Ay /NkTR =0.1.

The combination of Eqs. (65) and (67) fully determines the relationship between the indentation force and indentation
depth. The result in Eq. (54) can be recovered by setting Ay = 0 in Egs. (65) and (67). The relationship between the indenta-
tion force and indentation depth for a gel in different constrained swelling states is plotted in Fig. 9(a)-(f), where the chem-
ical potential of the solvent is chosen to be © =0 or p/kT = —0.01 and the work of adhesion is fixed as Ay /NkTR = 0.1.
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When adhesion is considered, the relationship between the indentation force and indentation depth as shown in
Fig. 9(a)-(f) no longer obeys the simple power law and becomes non-monotonic. More importantly, a tensile force
can exist between the indenter and the gel surface, which corresponds to the negative force in Fig. 9(a)-(f). If
the tensile force applied onto the indenter gradually increases from zero, the separation between the indenter and
the gel surface happens when the tensile force reaches the maximal value (marked in Fig. 9(a)-(f)) which is de-
noted by F. and often named as pull-off force. The corresponding distance between the indenter and the gel sur-
face is denoted by D. (also marked in Fig. 9(a)-(f)). Its value can be determined by using dF/dD = 0, together with
Eq. (65) and Eq. (67), that gives D, = (Ay /NKT)23R13[31y? (1 — €2)/128(2 — e2)]1/3. Using the same three equations, we
can also get the pull-off force F. = —37RAy+/1—¢e2/(2 —e?), and the corresponding critical mean contact radius d. =
(Ay /NKT)13R2/3[9]5(1 — e2)”*/4(2 — €2)*]1/3, which are marked in Fig. 8(a)~(f).

If the displacement of the indenter is controlled during pulling, the distance between the indenter and the gel surface
can reach the maximal value before separation. The maximal distance is denoted by D; and the corresponding force is
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of constrained lateral swelling ratios with fixed chemical potential p = 0.

denoted by F;, both of which are marked in Fig. 9(a)-(c). By solving Eqs. (65) and (67), together with dD/dF = 0, we can
obtain that Dy = 3%/3D,. Using the same three equations, we can further get F; = 5/9F.and the corresponding contact radius
dy = 372/3a,, which is also shown in Fig. 8(a)-(f).

In Fig. 10(a)-(c), we plot the pull-off force (F. and F;), critical distance at separation (D, and Dy), and critical mean
contact radius at separation (d. and dy) as functions of one constrained lateral swelling ratio of the gel (A’z’re) with the other
one fixed at three different values (Afre). We can clearly see from Fig. 10(a)-(c) that the constrained swelling state of a
gel can have significant effects on the pull-off force, critical distance at separation, and critical contact radius at separation,
which has not been discussed in previous studies.

At last, it is worth mentioning that for the adhesion theory adopted in the current work, the stress intensity factor is not
a constant along the perimeter of the contact area. A new theory has been recently developed (Barber and Ciavarella, 2014;
Johnson and Greenwood, 2005), in which the pressure distribution takes a different form and the stress intensity factors at
the ends of the major and minor axes of the elliptical contact area can be enforced to be equal if the fracture toughness
is isotropic. Consequently, the stress intensity factor from the new theory varies to a lesser extent along the perimeter of
the contact area, with comparison to the current theory. In addition, the new theory predicts that the eccentricity of the
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contact area can be load-dependent, in contrast to the prediction from the current work. However, we have confirmed that
the relationship between the indentation force and indentation depth as well as the mean contact radius predicted by the
new theory are very close to the ones predicted by the current work.

5. Conclusion

In this paper, we have studied both non-adhesive and adhesive contact mechanics between a laterally constrained
swelling gel and a rigid spherical indenter. We have derived the surface Green’s function of a laterally constrained swelling
gel, which occupies a half space. Using the surface Green’s function, we first formulate non-adhesive contact between a
laterally constrained swelling gel and a rigid spherical indenter. Analytical relationship between the indentation force and
indentation depth of a laterally constrained swelling gel is obtained. Due to the anisotropic prestretch in the two lateral
directions, the contact area between the spherical indenter and the gel is generally elliptic. Our theory provides the ana-
lytical relationship between the contact area (as well as its eccentricity) and the prestretch ratios of the gel. Following the
classical JKR model, we further expand the theory to take account of the effect of adhesion between the gel and the inden-
ter. The theory developed in the article will potentially be helpful to extract more useful information from indentation tests
of swelling gels and provide important insights in designing gel structures. It is worthwhile to mention that, based on the
surface Green’s function of a laterally constrained swelling gel derived in this article, many other important gel mechanics
problems can be possibly formulated, such as adsorption of particles onto a gel surface and puncturing process of swelling
gels.
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Appendix

Egs. (25)-(26) can be solved using Fourier transformation. Performing the Fourier transforms of displacement u; in the
x1 and x, directions:

+00  p+oo .
Ui (§, X3) = / / u; (X, x3)e’§"‘dx1 dx;, (A1)
We can then express Eqs. (25)-(26) as
CiskaUk 33 — 160 (Gieks + Ciska)Uk 3 — EabpCiarglUk =0 . B =1,2, (A2)
GjuUinj = fie% at x3=0. (A3)
According to Eq. (24), the nonzero components of modulus tensor are followings:
NKT 2 NKT 2 NKT
G = T((Afm) + 5)’ Gz = T((“zm) + C), G = (A5 +¢). (A4)
NKT 2 NKT 2 NKT
G =Gzt = T()»fre) G =Gappp = T(Xg’”) , Cisi3 = Cog3 = T)»Z, (A5)
NKT
Ci22 = Goant = Cizs = Gaz11 = Coo33 = Gazz = Tlﬂ, (A6)
NKT
Gz = Ciza1 = Gz = Ci331 = Gz = O3 = T(é' - ). (A7)
Substituting Eq. (A4)-(A7) into Eq. (A2) yields the transformed force balance equations
. 2 2
AUy 33 —iCEUs 3 — ((Af”) £+ ()78 + zsf)w — &6, =0, (A8)
. 2 2
WUas ~ 862U~ Lerals — (M) '62 + (15°)°83 + ¢83 ) =0, (A9)

(A3 +¢)Us 33 — 8 Ur 3 — iCEUs 3 — (()wfre)zflz + (}»gre)zfzz)% =0. (A10)
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The ordinary differential equation system in Eq. (A8)-(A10) has the general solution U;(€, x3) = ZA 1t emA(E)’@ and my
can be solved from the characteristic equations:

Mip=1n,M3=y,Mys=—1,Msg=-Y, (A11)

where 71 = \/(Afre)zéf + (Agre)zézz/k3, y = \/(Afre)zé’f + (Agre)zé‘zz + (E2+ &3¢ /\/A% +¢. To meet the condition that the
stress vanishes when x3 approaches —oo, only positive values in (A11) (m, m, and m3) should be kept.

Substituting Eqs. (A4)-(A7) into Eq. (A3), and using the normal vector nj = J3; at x3 = 0, we can obtain the transformed
boundary conditions

W13~ ~IEUs = G fiet, (A12)
33— iC ~ )6V = e, (A13)
(43 +0)Uss — &) — Y&l = e, (A14)

Plugging the general solution U;(&,x3) = cle™s + c2x3e™3 + cJe?™3 into Eqs. (A8)-(A10) and Eqgs. (A12)-(A14), the param-
eters in the general solution can be determined

o1 _(’72+§2)(712+522)—477V§22f1+47)V—(772+52)

‘@ NkTw 7 ; Eigafy + 20y & foi |8, (A15)
_4 —(n? 2 2 2\ (2 2\ _4 2 7 -
qe e [ O N ) e o
= %%[(n +E2)E fii+ (0% + §2)E2 foil — 262y f3]e, (AT7)
cd=ca=c3=0, (A18)
= N}cTw[ 27751 fi —2n&&:f - (77 +& )Elfgl] elbx, (A19)
G = }cT [ &6 fi — 208 fr - (77 +& )Ezfgl] ¥ (A20)
Cg = ﬁ%[—sz&fﬂ - 27))/§2f2i+ (7}2 +§2))/f3]€i§'x/, (AZ])

where @ = A3[(n? +§2)2 —4&2ny /A AL and & is the norm of &. The above solutions work for the condition y #7 and

y #0.
Using the definition of surface Green’s function u;(x) = G;j;(x — x) fj, the transformed surface Green’s function takes the
form

1 (12 +€2)(n? +&2) —4ny&” - 202" gibx

r'q) = NKT on , (A22)
2 2 2 2\ _4 272 25 2 L

F22(E)zl\%’d(n +E2)(n +$12)n ny&’ - 2n2& itx. (A23)
)

Fae) = L T8 e (A24)

NKT w

dny — 2 - 32 "y
F12(5)=F21(§)=$<T( L4 sa)n P68 e (A25)
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1 (2ny —n?-&2)& ot

F3@)=-Tn ()= NKT w (A26)
1 2y - -8)86 .
3()=-Tn@)= NKT ) 1e=". (A27)
The surface Green'’s function can be further obtained using inverse Fourier transform
( ) 1 Af""kg“’[(tz +1?) <t2 + (%1 —xl’)2> — 4ts(x: —xl’)z - 2t%(x —xz’)z]
Gn(x—X) = s (AZS)
27 NkT [(t2 + r2)2 - 4r2ts]
( )= 1 Afrekgre[(tz + rz) <t2 Xy — X' ) 4st xz - xz’)2 —2t2(x; - x1’)2]
Gpn(x—X s (A29)
2 NkT k3[(t2 + r2)2 - 4r2ts]t
APTEARIE (12— 12)s
Gu(x—x) = 5 11VkT 172 (2 ) . (A30)
T A3[(t2+r2) —4r2ts]
APTELPTE (4ts — r2 — 32
Gra(x—X) =Gy (x—x) = 5 }\HT T S (%1 — x17) (Xo — X2/), (A31)
K Ag[(tz +12) —4r2ts]t
T )Lprekpre 2 _ 2 _ r2
Grs (xX) = ~Go (x ~X) = 5 [ 12 ( Mop )P, (A32)
TNKE Jo Ag[(p2+r2) —4r2pq] cos 6
APTERRTe (2 —r?
Ga3 (X —X) = ~Gaa(x = X) = 5 ZNkT/ (2pa—p* =)z do. (A33)
4 [ (p*+ r2) 4r2pq] cos
where
r= \/ (x1 —x17)% + (X2 — x2/)%, (A34)
kprezx — %)% + Aprezx —x1)?
t:\/(1)(2 2/) 2(2)(1 1)7 (A35)
A3
A (x2 — %2)? + (D7) (31 — x17)% + 12
e (1) (%, — x27) 2( ) (%1 —x17)? ¢ (A36)
AS+¢
P1 = (X1 —X17) €os 6 — (X3 — X,/) sin b, (A37)
P2 = (X1 —X1/)sinf + (x5 — x3/) cos b, (A38)
(kpre)2p22+(kpre)2plz
p= 1 2 , (A39)
)\‘2
3
APY 002 4 (AP) 9y 2 4 12
q= (1) P2 2(2)'01 3 (A40)
AS+¢C

As stated before, the above solution only works for the condition y #7 and y #0. When the conditions are not satis-
fied, degenerated solutions should be derived. There are only two cases when y =7: one is that AP = AJ™ = 15, which
corresponds to the gel with isotropic swelling; the other is { = 0, which is only possible when y > 0.5.
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For the first case AJ™ = A5 = A3 = A, the solution to Eq.(A2)-(A3) is

Ui(£ x3) =l e 4 c2x3e™,

in which
o= I\I;{Tzkg:(A2+c)§+zféfﬁ L, —;)slszf x;g] f3_ei5,x,’
= o % :(AZ —;;)5152 fia (A2+¢)§§+2§&2 fa xgz fgl_ o
- * 40 S sgfl]elgx
= %% Eng] + ?2 £+ ?f l}elsx
4= N2 ? fii+ ?le f; }eff*’,

The surface Green’s function of the first case is
1 a2 (R+0)x—x)*+2000 —x10)?

Gn(x=X) = 7 20 =
1 A (R +0) & —x1)? +20(x2 — x21)°
Coo(x = X) = R 3¢ = ’
1 AMA%+¢)1
Css (X =X) = ez (2§')r’

A(A2 - —
Gra (X~ X) = G (x~X) = 17 (2§ ¢) )0 —x07)

1 A p

Gi3(x = X) = =G (x - X) = 2m2NKT Jo 2C r2cos@

P2
2712NkT 2{ 12 cos @

where 1, p; and p, are defined as Eq. (A34) and (A37)—(A38).
For the second case ¢ = 0, the solution to Eq.(A2)-(A3) is

Ui(& x3) = cie™,

ng(x—x’) = —Gn(x— x)

with

1 )‘qre)“z)re n? — 522 51 &

G = o7 + 1 e’5x

vl R e e SR
1 A T8 N’ — &’ iEx
_ - ™M " 5182 | HiEX

2 = NiT (=) 1 frd T2 S5l €5,
1 )\’pre)\’pre . . . ,

(3= L2 (& fii — & i+ nfs)e.

NKT (’72 - 52))»3
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(A41)

(A42)

(A43)

(A44)

(A45)

(A46)

(A47)

(A48)

(A49)

(A50)

(A51)

(A52)

(A53)

(A54)

(A55)

(A56)

(A57)
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The surface Green'’s function of the second case is

1 A;]Jrekgre 2 — (X] _Xl/)z

Gn(x—X) = 5= = @) (A58)
B 1 )\‘fre)\‘gre 2 — (XZ _ Xz/)z
Cn(x—x) = NRT 7 G (A59)
1 APreppre
Gy (x—X) = N_kT%(tz—irZ) (A60)
1 aPearre (x; —x1')(xo — x'
Gra(x—X) = NET 1 MZ ( @ z(rz)t ), (A61)
) ) 1 e kfrekgre
G]g(X—X) = —G3] (X—X) = 272NKT A )\'3(p2 _r2) ,01d0, (AGZ)
prey pre
623 (X — X/) = —G32 (X — X/) 1 " )\1 )\2 ,02d9, (A63)

~ 272NKT Jo A3 (pz _ rz)
where the definitions of r, t, pq, po and p are given in Eqs. (A34)-(A35) and (A37)-(A39).
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