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Voltage-Induced Wrinkling
in a Constrained Annular
Dielectric Elastomer Film
Wrinkles can be often observed in dielectric elastomer (DE) films when they are sub-
jected to electrical voltage and mechanical forces. In the applications of DEs, wrinkle
formation is often regarded as an indication of system failure. However, in some scenar-
ios, wrinkling in DE does not necessarily result in material failure and can be even con-
trollable. Although tremendous efforts have been made to analyze and calculate a variety
of deformation modes in DE structures and devices, a model which is capable of analyz-
ing wrinkling phenomena including the critical electromechanical conditions for the
onset of wrinkles and wrinkle morphology in DE structures is currently unavailable. In
this paper, we experimentally demonstrate controllable wrinkling in annular DE films
with the central part being mechanically constrained. By changing the ratio between the
inner radius and outer radius of the annular films, wrinkles with different wavelength can
be induced in the films when externally applied voltage exceeds a critical value. To ana-
lyze wrinkling phenomena in DE films, we formulate a linear plate theory of DE films
subjected to electromechanical loadings. Using the model, we successfully predict the
wavelength of the voltage-induced wrinkles in annular DE films. The model developed in
this paper can be used to design voltage-induced wrinkling in DE structures for different
engineering applications. [DOI: 10.1115/1.4038427]

1 Introduction

A dielectric elastomer (DE) can deform when it is under the
action of electrical field or mechanical forces. Because of the
advantages of easy fabrication, low cost, excellent deformability,
and electromechanical robustness, DEs have been recently inten-
sively explored and developed to a variety of structures with
diverse functions [1,2]. For instance, DE films with different
shapes and sizes have been fabricated to harvest energy from dif-
ferent sources such as ocean wave [3], motions of human-beings,
wind, and even combustion [4]. DEs have also been used as artifi-
cial muscles in designing walking robots [5], programmable grip-
pers [6], camouflage devices [7], and antifouling systems [8]. In
addition to those, transparent DE loudspeakers [9], planar DE
rotary motors [10], and nonlinear DE strain gauges [11] have also
been successfully made recently.

In most of the applications, large deformation in DEs can be
ubiquitously observed. General three-dimensional (3D) models
for the finite deformation of DEs under the actions of an arbitrary
field of electrical potential and forces have been formulated by
different researchers [12–18]. Numerous phenomena associated
with the electromechanical coupling in DEs have been success-
fully analyzed using these developed models, such as the pull-in
instability in a DE membrane sandwiched by two compliant
electrodes [19–21], voltage-induced creasing and cratering insta-
bilities in a constrained DE layer [22], giant deformation and
shape bifurcation in DE balloons [23,24], and instabilities in lay-
ered soft dielectrics [25,26].

Because large deformation in a DE requires relatively large
electric field, thin DE films are frequently adopted in most

applications. As a consequence, multiple wrinkles can be often
observed in the experiments in DE structures when they are sub-
jected to electromechanical loading. Wrinkle formation has been
often regarded as one of the failure mechanisms in DE devices
[27–32]. In the last few years, it has been shown that in certain
conditions, wrinkle formation in DE structures can be reversible
and leads to no damage of the material [27,33–38]. Moreover, the
wrinkles in DE structures may provide additional functions which
cannot be easily obtained otherwise.

To predict the critical conditions of wrinkling in a DE film
under different electromechanical loading, the film is usually
assumed to be under plane stress condition. Because DE films are
thin and can bear little compression, the external electromechani-
cal loading which leads to the loss of tension at any point of the
DE film is commonly adopted to represent the critical condition
for the wrinkle formation [39–44] or failure of the structure. Rea-
sonable agreements between the predictions and experimental
measurements of the conditions for the onset of wrinkles in DE
membranes have been obtained in several different studies
[33,41,45,46].

Nevertheless, though the loss of tension can be used to estimate
the critical conditions for the wrinkle formation in a DE film,
analyses based on plane stress assumption cannot provide addi-
tional information about wrinkle morphology such as wavelength
of wrinkles. Considering the recent interests in harnessing insta-
bilities of soft active structures to achieve novel functions, a theo-
retical method which can accurately predict the critical conditions
of wrinkling and the morphology of wrinkles in a DE film sub-
jected to electromechanical loading is highly desired.

Most current electromechanical constitutive models of DE films
are based on membrane assumption. Specifically, stress in a DE
film is assumed to be uniform along its thickness direction, and its
bending stiffness is completely ignored. Such assumptions greatly
simplify the way of computing stress/stretch field and electrical
field in DE structures under different loading conditions. The
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computational results based on the membrane assumption often
agree well with experiments. However, the onset of wrinkles in a
film is a result of competition between its bending energy and
stretching energy. Therefore, taking account of the bending
energy of a DE film becomes critical in analyzing the wrinkle for-
mation and its morphology.

A general formulation of plate theory for DE films subjected to
electromechanical loading is extremely challenging, which mainly
stems from large deformation of the material, coupling between
mechanics and electrical field, and complex geometries. To
develop a model for predicting the critical condition of wrinkling
instability, instead of establishing a general plate theory for DE
thin films, we analyze the problem with a small three-dimensional
displacement field associated with bending deformation super-
posed onto a finite two-dimensional deformation state of a DE
film. Because the additional three-dimensional displacement field
is small and we only focus on the bending of the DE film, we pre-
scribe the form of additional displacement field by following
Kirchhoff assumptions of linear plate theory.

Wrinkling in an annular membrane, caused by surface tension
[47], inhomogeneous growth [48,49], and mechanical force
[50,51], has been intensively studied in the past. As a demonstra-
tion of the application of our model, in this paper, we analyze the
wrinkle formation in an annular DE film with internal constraint
as shown in Fig. 1.

2 Experiment

In the experiment, we use laser cutter to cut a circular DE film
(VHB 4905 purchased from 3M company (Maplewood, MN)) and

paint carbon grease on both surfaces of the DE film as compliant
electrode. To avoid electrical arcing across free edge of the film,
we intentionally leave an annular gap near the edge of the film
unpainted as shown in Fig. 1. We next glue a circular acrylate
plate with different diameters on the center of the DE film to con-
strain its deformation. The adhesion between VHB film and the
acrylate plate is strong enough, and no debonding and sliding
have been observed in our experiments. Finally, we apply an elec-
trical voltage across the thickness of the annular DE film with
gradually increasing the magnitude. When the voltage is high
enough, wrinkles can be clearly observed in the film. Depending
on the size of the central rigid plate, wrinkles with different wave-
length may appear as shown in Fig. 1. If the voltage in the experi-
ments is not too high (e.g., below 10 kV), the formation and
annihilation of wrinkles can repeat many times with the voltage
being turned on and off.

3 Model and Formulation

3.1 A Constrained Annular DE Film Subjected to an
Electrical Voltage. Figure 2 sketches an annular DE film with
clamped inner boundary. In the undeformed state, the thickness of
the film is denoted by H. The inner radius and outer radius of the
annular plate are denoted by A and B, respectively. In the actuated
state, a voltage U is applied between the two surfaces of the film.
When the voltage is small, the DE film deforms axisymmetrically
and maintains flat configuration (Fig. 2(b)). The hoop stress in the
DE film is compressive, while the radial stress is always tensile.
With increasing the voltage, the compressive hoop stress
increases, and finally, wrinkles form in the DE film as shown in

Fig. 1 Experimental photos of voltage-induced wrinkles in a constrained annular DE film
with different ratios between the inner radius A and outer radius B: (a) A/B 5 0.6, (b) A/B 5 0.7,
and (c) A/B 5 0.8. The wavenumber of wrinkling mode increases with increasing radius ratio.

Fig. 2 Schematics of an annular DE film constrained by an inner circular rigid plate. The inner
radius and outer radius of the annular DE film without deformation are denoted by A and B,
respectively. In the experiment, an electrical voltage U is applied across the thickness of the
DE film. Three different states of the annular DE film are sketched: (a) undeformed state, (b)
deformed state without wrinkles, and (c) wrinkled state.
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Figs. 1 and 2(c). In the following, we first analyze the deformation
of DE film without wrinkles.

In the reference state, we label each material particle by its
radial coordinate R in the interval ðA;BÞ. In a deformed state, the
material particle R takes the position of coordinate rðRÞ. The func-
tion rðRÞ describes the deformed state of the DE film. The radial
stretch and the hoop stretch can be calculated as

kr ¼
dr

dR
(1)

kh ¼
r

R
(2)

The DE is assumed to be incompressible, so that the stretch in
thickness direction is kz ¼ 1=krkh.

The electrical field E in the DE film is along the normal direc-
tion of the film and relates to the voltage U as

E ¼ U
h

(3)

where h is the thickness of the film in the deformed state, so
h ¼ Hkz.

The equation of force balance in the annular DE film is given
by

d

dR

rrr

kr

� �
� 1

R

rhh

kh
� rrr

kr

� �
¼ 0 (4)

In this paper, we adopt ideal dielectric elastomer model, which
assumes electrical permittivity e is a constant and unaffected by
the deformation and electrical field [16]. Meanwhile, neo-
Hookean model is adopted here to describe the hyperelasticity of
the material. As a consequence, we have the following constitu-
tive equation:

rrr ¼ lðk2
r � k�2

r k�2
h Þ � eE2 (5)

rhh ¼ lðk2
h � k�2

r k�2
h Þ � eE2 (6)

where the first term in Eqs. (5) and (6) originates from the elastic-
ity of the elastomer, and the second term is known as Maxwell
stress.

From the equilibrium equation (4), we can obtain the first deriv-
ative of krðRÞ

dkr

dR
¼

rhh

kh
� rrr

kr
þ kh � krð Þ @

@kh

rrr

kr

� �

R
@

@kr

rrr

kr

� � (7)

First derivative of khðRÞ in Eq. (2) gives that

dkh

dR
¼ kr � kh

R
(8)

The ordinary differential equations (ODEs) of Eqs. (7) and (8)
can be solved numerically with the following two boundary
conditions:

rðAÞ ¼ A (9)

rrrðBÞ ¼ 0 (10)

3.2 Linear Stability Analysis of Voltage-Induced Wrinkles
in a DE Film. As discussed earlier, voltage-induced compressive
hoop stress in the annular DE film may result in wrinkling. To

investigate the formation and morphology of wrinkles, we first
formulate a linear plate theory for a DE film under electromechan-
ical loading.

To derive the governing equations for the deflection of a DE
film, we first need to obtain the relationship between the stress
and deflection of the film subjected to electromechanical
loadings. For the purpose of clarity and simplicity, we first
derive the stress–deflection relationship of a DE film in a Carte-
sian coordinate, and then, we transfer the results to a polar
coordinate.

We consider an element of a DE film subjected to a homogene-
ous electrical field along the thickness direction. The deformation
gradient of the film from initial undeformed state denoted by Bi to
a flat state denoted by B0 is given by

F0 ¼
kx 0 0

0 ky 0

0 0 kz

2
664

3
775 (11)

where kx, ky, and kz are the principle stretches in three orthogonal
directions x, y, and z, where x and y are two perpendicular direc-
tions in the plane of the film, and z is the direction perpendicular
to the film.

Next, we assume the displacement field associated with wrin-
kling deformation can be represented by u, v, and w in the three
orthogonal directions x, y, and z. The deformation gradient from
the predeformed state B0 to wrinkled state B1 can be given by

F1 ¼

1þ @u

@x

@u

@y

@u

@z

@v

@x
1þ @v

@y

@v

@z

@w

@x

@w

@y
1þ @w

@z

2
66666664

3
77777775

(12)

Therefore, the deformation gradient from initial state Bi to
wrinkled state B1 can be calculated as

F ¼ F1 � F0 ¼

kx 1þ @u

@x

� �
ky
@u

@y
kz
@u

@z

kx
@v

@x
ky 1þ @v

@y

� �
kz
@v

@z

kx
@w

@x
ky
@w

@y
kz 1þ @w

@z

� �

2
666666664

3
777777775
(13)

The corresponding left Cauchy-Green strain tensor is

B ¼ F � FT

¼

k2
x 1þ 2

@u

@x

� �
k2

x

@v

@x
þ k2

y

@u

@y
k2

x

@w

@x
þ k2

z

@u

@z

k2
x

@v

@x
þ k2

y

@u

@y
k2

y 1þ 2
@v

@y

� �
k2

y

@w

@y
þ k2

z

@v

@z

k2
x

@w

@x
þ k2

z

@u

@z
k2

y

@w

@y
þ k2

z

@v

@z
k2

z 1þ 2
@w

@z

� �

2
6666666664

3
7777777775

(14)

Based on ideal dielectric elastomer model, Cauchy stress in a
DE film can be decomposed into elastic part and Maxwell stress,
namely,

r ¼ rela þ rm (15)
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where Maxwell stress is a tensor and can be represented by

rm ¼

� 1

2
eE2 0 0

0 � 1

2
eE2 0

0 0
1

2
eE2

2
666664

3
777775 (16)

and elastic stress rela is given by

rela ¼ F
@Wstretch

@F
� pI (17)

where Wstretch is the strain energy density of the elastomer, and p is the hydrostatic pressure for the incompressibility of the elastomer.
We adopt neo-Hookean model in the current paper, so Eq. (17) can be written explicitly as

rela ¼ lB� pI (18)

Substituting Eqs. (16) and (18) into Eq. (15) leads to

r ¼

�p� eE2

2
þ lk2

x 1þ 2
@u

@x

� �
l k2

x

@v

@x
þ k2

y

@u

@y

� �
l k2

x

@w

@x
þ k2

z

@u

@z

� �

l k2
x

@v

@x
þ k2

y

@u

@y

� �
�p� eE2

2
þ lk2

y 1þ 2
@v

@y

� �
l k2

y

@w

@y
þ k2

z

@v

@z

� �

l k2
x

@w

@x
þ k2

z

@u

@z

� �
l k2

y

@w

@y
þ k2

z

@v

@z

� �
�pþ eE2

2
þ lk2

z 1þ 2
@w

@z

� �

2
666666664

3
777777775

(19)

We can further rewrite Eq. (19) as

@u

@x
¼ 2rxx þ 2pþ eE2

4lk2
x

� 1

2
(20a)

@v

@y
¼ 2ryy þ 2pþ eE2

4lk2
y

� 1

2
(20b)

@w

@z
¼ 2rzz þ 2p� eE2

4lk2
z

� 1

2
(20c)

k2
x

@v

@x
þ k2

y

@u

@y
¼ rxy

l
(20d)

k2
x

@w

@x
þ k2

z

@u

@z
¼ rxz

l
(20e)

k2
y

@w

@y
þ k2

z

@v

@z
¼ ryz

l
(20f )

The incompressibility condition of the DE film requires that

@u

@x
þ @v

@y
þ @w

@z
¼ 0 (21)

A combination of Eqs. (20a)–(20c) and Eq. (21) gives that

p ¼
3lk2

xk
2
y � k2

yrxx � k2
xryy � k4

xk
4
yrzz � k4

xk
4
yeE

2

k2
x þ k2

y þ k4
xk

4
y

� eE2

2
(22)

Substituting Eq. (22) into Eqs. (20a)–(20f), we can further
obtain

@u

@x
¼

3lk2
xk

2
y � k2

yrxx � k2
xryy � k4

xk
4
yrzz � k4

xk
4
yeE

2

2lk2
x k2

x þ k2
y þ k4

xk
4
y

� � � 1

2
(23a)

@v

@y
¼

3lk2
xk

2
y � k2

xryy � k2
yrxx � k4

xk
4
yrzz � k4

xk
4
yeE

2

2lk2
y k2

x þ k2
y þ k4

xk
4
y

� � � 1

2
(23b)

@w

@z
¼

3lk4
xk

4
y � k2

xk
4
yrxx � k4

xk
2
yryy � k2

xk
2
y k2

x þ k2
y

� �
rzz � k6

xk
6
yeE

2

2l k2
x þ k2

y þ k4
xk

4
y

� �

�
k2

xk
2
yeE

2

2l
� 1

2
(23c)

k2
x

@v

@x
þ k2

y

@u

@y
¼ rxy

l
(23d)

k2
x

@w

@x
þ k2

z

@u

@z
¼ rxz

l
(23e)

k2
y

@w

@y
þ k2

z

@v

@z
¼ ryz

l
(23f )

A combination of Eqs. (23a)–(23f) and force balance equations
gives a complete set of governing equations for both additional
displacement field and stress field in a DE. However, without fur-
ther simplifications, these equations are very difficult to solve. As
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discussed previously, in this paper, we only focus on additional
bending deformation in a DE film, so we will follow Kirchhoff’s
hypotheses [52] to further simplify the problem. Kirchhoff’s
hypotheses developed for linear plate theory state that the straight
lines, initially normal to the middle plane of a plate before bend-
ing, remain straight and normal to the middle surface during bend-
ing, and the length of such plate elements does not change.
Mathematically, we have the following equations:

@w

@z
¼ 0 (24a)

@w

@x
þ @u

@z
¼ 0 (24b)

@w

@y
þ @v

@z
¼ 0 (24c)

The three new equations ((24a)–(24c)) originating from Kirchh-
off’s hypotheses make the problem overdetermined. Therefore, it
is necessary to drop three equations. Following conventional lin-
ear plate theory [52], Eqs. (23c), (23e), and (23f) are discarded.
Moreover, the stress normal to the middle plane of the plate is
assumed to be negligible compared with other stress components,
i.e., rzz ¼ 0. Finally, the nonzero stress components in the DE
film can be expressed as

rxx

ryy

rxy

8><
>:

9>=
>; ¼

l k2
x � k�2

x k�2
y

� �
� eE2

l k2
y � k�2

x k�2
y

� �
� eE2

0

8>>><
>>>:

9>>>=
>>>;

þ

2l k�2
x k�2

y þ k2
x

� � @u

@x
þ 2lk�2

x k�2
y

@v

@y

2l k�2
x k�2

y þ k2
y

� � @v

@y
þ 2lk�2

x k�2
y

@u

@x

l k2
x

@v

@x
þ k2

y

@u

@y

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(25)

Integrating Eqs. (24a)–(24c), we can obtain the displacement of
a material point in the DE film with distance z from the middle
plane

uz
x

uz
y

� �
¼

�z
@w

@x

�z
@w

@y

8>>><
>>>:

9>>>=
>>>;

(26)

where w ¼ wðx; yÞ is independent on z and denotes the deflection
of the DE film.

Substituting Eq. (26) into Eq. (25), we can further obtain the
stress components of a material point in the DE film with distance
z from the middle plane

rz
xx

rz
yy

rz
xy

8>><
>>:

9>>=
>>; ¼

l k2
x � k�2

x k�2
y

� �
� eE2

l k2
y � k�2

x k�2
y

� �
� eE2

0

8>>><
>>>:

9>>>=
>>>;

� z

C11 C12 0

C21 C22 0

0 0 2C66

2
64

3
75

@2w

@x2

@2w

@y2

@2w

@x@y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(27)

where C11 ¼ 2lðk�2
x k�2

y þ k2
xÞ, C22 ¼ 2lðk�2

x k�2
y þ k2

yÞ, C12 ¼
C21 ¼ 2lk�2

x k�2
y , and 2C66 ¼ lðk2

x þ k2
yÞ.

In our model, we assume that the thickness of the DE film is
small and the electrical field does not vary along the thickness
direction. Then, the bending moments Mxx, Myy, and twisting
moment Mxy can be integrated as

Mxx

Myy

Mxy

8><
>:

9>=
>; ¼

ðh=2

�h=2

rz
xx

rz
yy

rz
xy

8>><
>>:

9>>=
>>;zdz

¼ � H3

12k3
xk

3
y

C11 C12 0

C21 C22 0

0 0 2C66

2
64

3
75

@2w

@x2

@2w

@y2

@2w

@x@y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(28)

In a polar coordinate, the bending moments and twisting moment
can be similarly written as

Mrr

Mhh

Mrh

8><
>:

9>=
>; ¼ �

H3

12k3
r k

3
h

Crr Crh 0

Chr Chh 0

0 0 2Css

2
64

3
75

@2w

@r2

1

r

@w

@r
þ 1

r2

@2w

@h2

1

r

@2w

@r@h
� 1

r2

@w

@h

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
(29)

where Crr ¼ 2lðk�2
r k�2

h þ k2
r Þ, Chh ¼ 2lðk�2

r k�2
h þ k2

hÞ, Crh ¼
Chr ¼ 2lk�2

r k�2
h , and 2Css ¼ lðk2

r þ k2
hÞ. Therefore, in a polar

coordinate, we have

Mrr ¼ � Drr
@2w

@r2
þ Drh

1

r

@w

@r
þ 1

r2

@2w

@h2

� �� 	
(30a)

Mhh ¼ � Dhh
1

r

@w

@r
þ 1

r2

@2w

@h2

� �
þ Dhr

@2w

@r2

� 	
(30b)

Mrh ¼ Mhr ¼ �2Dss
1

r

@2w

@r@h
� 1

r2

@w

@h

� �
(30c)

where Drr ¼ lH3ðk�5
r k�5

h þ k�1
r k�3

h Þ=6, Dhh ¼ lH3ðk�5
r k�5

h
þk�3

r k�1
h Þ=6, Drh ¼ Dhr ¼ lH3k�5

r k�5
h =6, and Dss ¼ lH3ðk�1

r k�3
h

þk�3
r k�1

h Þ=24.
In the normal direction, force balance condition requires that

@2Mrr

@r2
þ 2

r

@Mrr

@r
þ 2

r

@2Mrh

@r@h
þ 2

r2

@Mrh

@h
� 1

r

@Mhh

@r
þ 1

r2

@2Mhh

@h2

þNrr
@2w

@r2
þ 2Nrh

1

r

@2w

@r@h
� 1

r2

@w

@h

� �
þNhh

1

r

@w

@r
þ 1

r2

@2w

@h2

� �
¼ 0

(31)

where Nrr ¼ rrrh, Nhh ¼ rhhh, and Nrh ¼ rrhh are the membrane
forces.

On the inner circular boundary, the DE film is clamped,
namely,

w ¼ 0 (32)

@w

@r
¼ 0 (33)
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On the outer circular boundary, the bending moment is zero
and vertical shear force is zero, namely,

Mrr ¼ 0 (34)

@Mrr

@r
þ 2

r

@Mrh

@h
þMrr �Mhh

r
¼ 0 (35)

A combination of Eqs. (30a)–(30c) and (31) with boundary
conditions (Eqs. (32)–(35)) sets an eigenvalue problem. We
assume the deflection of the DE film follows:

w ¼ f ð�rÞcos ðkhÞ (36)

where �r ¼ r=B, f ð�rÞ is a single variable function, and k is wave-
number of wrinkle.

Inserting Eq. (36) into Eqs. (30) and (31), we get the following
homogeneous ODE:

d4f

d�r4
þ 2

�r

d3f

d�r3

� �
�Drrþ 2

d3f

d�r3
þ 1

�r

d2f

d�r2

� �
d �Drr

d�r
þ d2f

d�r2

d2 �Drr

d�r2

þ 1

�r2

1

�r

df

d�r
� d2f

d�r2
þ k2� 2

�r2
k2f

� �
�Dhh�

1

�r2

df

d�r
� k2f

�r

� �
d �Dhh

d�r

þ 2k2

�r2
� f

�r2
þ 1

�r

df

d�r
� d2f

d�r2

� �
�Drhþ

2k2

�r2

f

�r
� df

d�r

� �
d �Drh

d�r

þ 1

�r
�k2f

�r
þ df

d�r

� �
d2 �Drh

d�r2
þ 4k2

�r2
� f

�r2
þ 1

�r

df

d�r
� d2f

d�r2

� �
�Dss

þ 4k2

�r2

f

�r
� df

d�r

� �
d �Dss

d�r
� 12

�H
2krkh

�rrr
d2f

d�r2
þ �rhh

�r

df

d�r
� k2f

�r

� �� 	
¼ 0

(37)

The corresponding homogeneous boundary conditions are

f j�r¼A
B
¼ 0 (38a)

Fig. 3 Distributions of radial stretch and hoop stretch in a constrained annular DE film for
several different voltages and ratios between its inner radius A and outer radius B: (a) and (b)
A/B 5 0.1, (c) and (d) A/B 5 0.6, and (e) and (f) A/B 5 0.9. The highest voltages in the figures
correspond to the critical voltage of inducing pull-in instability in the DE film.
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df

d�r






�r¼A

B

¼ 0 (38b)
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1
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df
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�r2
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¼ 0 (38c)
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� �
d �Drh

d�r
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d�r2

d �Drr

d�r

	



�r¼ b
B
¼ 0

(38d)

In Eqs. (37) and (38), we define the following dimensionless
quantities: dimensionless thickness: �H ¼ H=B; dimensionless mem-
brane stresses: �rrr ¼ rrr=l and �rhh ¼ rhh=l; dimensionless bend-

ing/twisting stiffness: �Drr ¼ 2ðk�5
r k�5

h þ k�1
r k�3

h Þ; �Dhh ¼ 2ðk�5
r k�5

h

þk�3
r k�1

h Þ; �Drh ¼ 2k�5
r k�5

h , and �Dss ¼ ðk�1
r k�3

h þ k�3
r k�1

h Þ=2: In

the equations above, dimensionless thickness �H and the ratio
between inner radius and outer radius of the annular DE film A=B
are the only two system parameters which can be varied in experi-
ments. The membrane stresses in the radial and hoop directions: �rrr

and �rhh, and the bending/twisting stiffness both depend on the elec-
trical field E or voltage U, which can be regarded as loading parame-
ters for the system. For a given set of parameters: �H and A=B, we
can solve the eigenvalue problem in Eq. (37) with boundary condi-
tions (38) numerically by using the function bvp4c in MATLAB. The
characteristic equation determines the critical condition, namely,
voltage, for the onset of wrinkles, and the associated eigenvectors
give the mode of wrinkling.

Fig. 5 Distributions of radial stress and hoop stress in the DE film without wrinkles, for sev-
eral voltages and radius ratios: (a) and (b) A/B 5 0.1, (c) and (d) A/B 5 0.6, and (e) and (f)
A/B 5 0.9. The radial stress in the film is tensile, while the hoop stress is compressive. The
compressive hoop stress may wrinkle the DE film.

Fig. 4 Dependence of the critical voltage of inducing pull-in
instability of the annular DE film on the ratio between its inner
radius and outer radius. When the ratio between inner radius
and outer radius approaches zero, the annular film becomes a
free-standing film; when the ratio approaches one, the deforma-
tion state of the film is pure-shear.
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4 Results and Discussion

Using the shooting method, we solve the ODEs of Eqs. (7) and
(8) associated with the boundary conditions (9) and (10) for a con-
strained annular DE film without wrinkle formation. Figure 3
plots the distributions of radial stretch and hoop stretch in the
annular DE film, for several different voltages and ratios between
inner and outer radius of the film. With increasing the voltage,
both radial stretch and hoop stretch increase.

As shown in Fig. 3, when the voltage is larger than a critical
value, no equilibrium solution can be found, which corresponds to
pull-in instability of the DE film. Pull-in instability is one of the
most important electromechanical failure modes in DE structures
[19–21]. The critical voltage for the pull-in instability increases
with the increase in the ratio A/B as plotted in Fig. 4. When the
ratio A/B approaches zero, the annular DE film behaves like a
free-standing film. It has been shown in previous studies that the
critical voltage for the pull-in instability of a free-standing neo-

Hookean DE film is Upull�in=ðH
ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 0:69 [19]. When the

ratio A/B approaches one, the deformation state in the annular DE
film is close to pure-shear. It can also be easily shown that for a
DE film with voltage-induced pure-shear deformation, the normal-

ized voltage for pull-in instability is Upull-in=ðH
ffiffiffiffiffiffiffi
l=e

p
Þ ¼ 1. Both

two limiting scenarios discussed earlier have been plotted in
Fig. 4.

Figure 5 plots the distribution of radial stress and hoop stress in
the annular DE film without wrinkle formation for several differ-
ent radius ratios and applied voltages. The results show that the
radial stress in the DE film is tensile, while the hoop stress in the
film is compressive. For a given radius ratio, both radial stress and
hoop stress in the DE film increase with increasing the voltage. In
addition, the radial stress in the DE film monotonically decreases
from the inner boundary to the outer boundary as shown in
Figs. 5(a), 5(c), and 5(e). The distribution of the hoop stress is lit-
tle bit more intricate. For small radius ratio, the hoop stress in the
DE film monotonically increases from the inner boundary to outer

boundary. However, for big radius ratio, the hoop stress in the DE
film may monotonically decrease from the inner boundary to the
outer boundary when the voltage is large as shown in Fig. 5(f).

When the voltage is high enough, compressive hoop stress can
induce wrinkles in the annular DE film as shown in our experi-
ments (Fig. 1). By solving the eigenvalue problem formulated in
Sec. 3, we can calculate the critical voltage for the onset of wrin-
kles with different wavelengths in the DE film for different values
of A/B. Our calculation results are plotted in Fig. 6. For a given
value of A/B and wavenumber k of wrinkles, the voltage for the
onset of wrinkles decreases with decreasing the thickness of
the film, namely, H/B. The results suggest that lower voltage is
needed to trigger wrinkle formation in thinner DE films. For
different values of A/B, the wrinkling mode which needs the low-
est critical voltage is also different. For instance, in Fig. 6(a), for
A/B¼ 0.1, the wrinkling mode with k¼ 2 needs the lowest
voltage; in Fig. 6(b), for A/B¼ 0.3, the critical mode is k¼ 3.
Figures 6(c) and 6(d) show that the critical modes are k¼ 4 and
k¼ 6 or 7 for A/B¼ 0.5 and 0.7, respectively. In Figs. 6(a)–6(d),
we also plot the voltage for inducing pull-in instability in the DE
film. For a thick DE film, the critical voltage for wrinkling may be
even larger than the critical voltage for pull-in instability. There-
fore, for thick DE films, the wrinkles form after pull-in instability,
which can be consequently regarded as an indication of material
failure.

In Fig. 7, we plot the dependence of critical wrinkling mode on
the ratio between the inner radius and outer radius of the DE film
for two different film thicknesses: H/B¼ 0.02 and 0.005, respec-
tively. The result shows that the wavenumber of the critical wrin-
kling mode increases with increasing the value of A/B. The trend
agrees well with the wrinkling instability observed in a con-
strained annular film induced by differential swelling or plastic
deformation [48,50]. The results also show that for a given radius
ratio, the DE film with different thickness may also have different
critical wrinkling modes. For the ratio: A/B¼ 0.75, the critical
wrinkling mode of the DE film with thickness H/B¼ 0.02 is k¼ 7,

Fig. 6 Dependence of critical voltage for inducing wrinkling instability on the thickness of
the DE film, for several radius ratios and wrinkling modes: (a) A/B 5 0.1, (b) A/B 5 0.3, (c)
A/B 5 0.5, and (d) A/B 5 0.7. For larger film thickness, the voltage for inducing pull-in instabil-
ity is smaller than the voltage for inducing wrinkling in the film.
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while k¼ 8 for the film with H/B¼ 0.005. However, it is noted
that when A/B is close to one, thin plate theory adopted in this arti-
cle will not be valid anymore.

In the experiment, it is usually challenging to precisely measure
the critical voltage for the onset of wrinkles in a DE film. How-
ever, the wavenumber of wrinkles in the DE film can be easily
measured as shown in Fig. 1. The experimental results of the
wavenumber of wrinkles in annular DE films for three different
values of A/B are plotted together with our predictions as shown
in Fig. 7. The wavenumber of wrinkles in the experiments is con-
sistently larger than the predictions. This difference can be under-
stood as follows: as described in Sec. 2 and also shown in Fig. 1,
to avoid electrical arcing, a gap near the free edge of the annular
DE film is intentionally not coated with electrode. Due to the
additional constraint from the gap which is not considered in
our model, stretching free energy penalty (compared to bending
energy penalty) in the film is actually larger than the prediction.
Therefore, in the experiments, wavenumber of wrinkles in the
film is larger than predictions to reduce stretching energy penalty.

Based on our calculation, we construct a phase diagram for a
constrained DE annular film with the thickness H/B¼ 0.02 as
shown in Fig. 8. Depending on the radius ratio and magnitude of
voltage, the DE film may stay in one of the three phases: flat,
wrinkling, and pull-in instability. It can be seen from Fig. 8 that
the critical voltage for triggering wrinkling in the DE film first
decreases and then increases with increasing the ratio between
inner radius and outer radius. When A/B¼ 0.4, the required volt-
age to induce wrinkles in the film is the lowest.

5 Conclusions

In this paper, we formulate a linear plate theory for a DE film
under electromechanical loading with small three-dimensional
deformation field superposed onto a finite two-dimensional
deformation. Based on the theory, we investigate the formation
and morphology of wrinkles in an annular DE film subjected to
a voltage and clamped on its inner radius. The theoretical pre-
dictions of wrinkling in the DE film agree well with our experi-
mental observations. Furthermore, we show that for certain
ranges of ratio between inner radius and outer radius of the DE
film, the critical voltage of inducing pull-in instability of the
system can be lower than the critical voltage of inducing wrin-
kles in the film. As a result, we construct a phase diagram with
three different regions depending on the magnitude of voltage
and the ratio between inner radius and outer radius of an annular
DE film: (1) the region corresponding to stable and flat configu-
ration of the film; (2) wrinkling region; and (3) the region for
pull-in instability. The results obtained in this paper and the
methodology developed here will be useful for the future design
of DE structures.
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