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a b s t r a c t 

Under the actions of internal pressure and electric voltage, a dielectric elastomeric membrane mounted 

on an air chamber can deform to a balloon shape. Due to the nonlinear deformation, snap-through in- 

stability can happen in the balloon, which has been harnessed to achieve giant voltage-triggered defor- 

mation. In addition to the snap-through instability, with an applied voltage, a new electromechanical 

instability mode with a localized bulging-out in the balloon has been recently observed in experiments. 

However, the reported phenomenon has not been well explained. In this article, through numerical com- 

putation, we obtain the relation between the volume of the balloon and its internal pressure, when the 

balloon is subjected to different voltages. We find out that when the applied voltage is small, the pres- 

sure vs. volume diagram of a balloon can be represented by an N-like curve, which is similar to the 

conventional hyperelastic balloon only subjected internal pressure; when the voltage is larger than a 

critical value, new instability modes in the balloon emerge, which have a localized bulging-out, similarly 

to the shape observed in the experiments. We further show that the critical voltage for the new instabil- 

ity mode of the DE balloon is closely associated with the prestretches applied to the membrane and the 

hyperelastic model for the elastomer. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Dielectric elastomer (DE) has been regarded as a promising soft

active material due to many of their unique properties such as

large voltage-induced deformation, low noise during operation, low

cost and fast response ( Carpi et al., 2011a ). In a recent decade,

DE has been intensively explored in various applications, includ-

ing artificial muscle ( Kornbluh, 2004; Kwak et al., 2005; Palli and

Berselli, 2013; Pelrine et al., 2002 ), haptic devices ( Carpi et al.,

2011b; Henann et al., 2013 ), micro-pumps ( Bowers et al., 2011;

Goulbourne et al., 2003; Goulbourne et al., 2004; Pope et al., 2004 )

and adaptive lens ( Hwang et al., 2013; Lau et al., 2014; Liang et al.,

2014; Son et al., 2012 ). DE adopted in the aforementioned applica-

tions is normally a sandwich structure with a soft elastomeric layer

covered by two compliant electrodes on the top and bottom sur-

faces ( Suo, 2010 ). The elastomer can dramatically reduce its thick-

ness and expand in area when external electric voltage is applied

across the thickness direction. 

Nonlinear field theory for elastic dielectric accounting for the

coupling between mechanics and electricity was originally pro-

posed by Toupin (1956 ). Relevant studies of elastic dielectric were
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urther developed by Landau (1960 ), Eringen (1963 ) and Tiersten

1971 ). The theory has been re-examined in recent years due to

he rapidly growing applications of DE. Constitutive models of DE

ccounting for large deformation have been developed to explain

iverse experimental observations and also provide guidelines for

esigning new DE devices ( Dorfmann and Ogden, 2005; McMeek-

ng and Landis, 2005; Suo et al., 2008 ). 

Among all the DE devices, balloon is one of the most frequently

dopted geometries. DE balloons have been successfully developed

s spherical-shape actuators and tactile devices ( Goulbourne et al.,

0 03, 20 04; Wang et al., 2012 ). Recently, more applications of DE

alloons have been explored due to their unique responses to dif-

erent electromechanical loadings. Nonlinear vibration with tun-

ble frequency has been demonstrated in spherical DE balloons

ubjected to a constant pressure and an AC voltage ( Zhu et al.,

010 ). Rudykh and Bhattacharya (2012 ) predicted snap-through ac-

uation in a thick-walled DE balloon. Liang and Cai (2015 ) has

ecently identified inhomogeneous shape bifurcation modes in a

pherical DE balloon subjected to internal pressure and a con-

tant electric voltage. Recently, Li et al. (2013 ) has observed voltage

nduced snap-through instability in DE balloons. In their experi-

ent, an acrylic elastomer membrane (3M ۛVHB ۛ4910), covered by

arbon grease over the top and bottom surfaces as soft electrodes,

s mounted on an air chamber. The membrane deforms to a bal-

oon shape after air is pumped into the chamber through a valve.

http://dx.doi.org/10.1016/j.ijsolstr.2017.09.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.09.021&domain=pdf
mailto:shqcai@ucsd.edu
mailto:shqcai@gmail.com
http://dx.doi.org/10.1016/j.ijsolstr.2017.09.021
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Fig. 1. Experimental observation of localized bulge-out in an inflated DE membrane ( Li et al., 2013 ). In the experiment, a soft DE membrane is mounted on a chamber and 

air is pumped into the chamber through a valve. The membrane deforms to a balloon shape (a) and the valve is then closed to fix the total amount of air inside the chamber 

and the balloon. A voltage is subsequently applied to the membrane to further deform the balloon (b-c). When the volume of chamber is small, the apex of the balloon 

bulges out significantly, which is greatly different from the shape expected from traditional balloon problem. The applied voltage ramps up until the membrane is failed by 

electrical breakdown (d). 
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y closing the valve, the amount of air enclosed by the chamber

nd balloon is fixed, and a voltage is subsequently applied be-

ween the electrodes to further deform the DE membrane. Sim-

lar to a hyperelastic balloon only subjected to an internal pres-

ure ( Alexander, 1971 ), snap-through instability in a DE balloon

as observed due to the non-monotonic relationship between the

nternal pressure and the volume of the balloon. Additionally, in

he experiment, an unusual deformation mode of a DE balloon has

een observed ( Li et al., 2013 ). When the volume of the chamber

s small, a region on top of the balloon is observed to expand sig-

ificantly more than its neighboring area ( Fig. 1 b and c). The area

eeps bulging-out as the voltage increases until electrical break-

own happens in the membrane as shown in Fig. 1 . Different from

he conventional snap-through instability, the new instability mode

s more localized around the apex of the balloon, with the rest of

embrane almost unperturbed. Such a instability in a balloon has

ever been reported before in other loading conditions and was

lso left unexplained in the paper ( Li et al., 2013 ). 

In this article, we will study the new instability mode observed

n a DE balloon described above. Our numerical calculations show

hat when the applied voltage is low, the relationship between the

nternal pressure and volume of a DE balloon is similar to that of

 hyperelastic balloon only subjected to an internal pressure, only

ith quantitative differences; when the applied voltage is high, a

ew instability mode emerges in the DE balloon for a certain range

f pressure. We believe that the new instability mode of the DE

alloon is associated with the non-convexity of the free energy

ensity function of DE. 

The remainder of the article is organized as follows.

ection 2 summarizes the field equations of a DE membrane

ounted on a circular hole of an air chamber and subjected to

nternal pressure and electric voltage. Those equations are solved

umerically in Section 3 . New instability mode in the balloon

ith localized bulging-out is identified when the applied voltage
 α  
s high. In Section 4 , we demonstrate that localized bulging-out

nstability modes of the DE balloon can be affected by pre-

tretches and material parameters in the hyperelasticity model.

e propose that the new instability mode is associated with

he non-convexity of the free energy density function of DE in

ection 5 . Section 6 summarizes our findings in the article. 

. Inhomogeneous deformation of a DE membrane mounted 

n an air chamber 

To make this article be self-contained, in this section, we sum-

arize the governing equations for a flat DE membrane with ho-

ogenous thickness H subjected to internal pressure p and elec-

ric voltage � as shown in Fig. 2 . These equations are mathemati-

ally identical to the ones presented in the paper of Li et al. (2013 ),

hough the derivation is slightly different. In the problem, an un-

eformed DE membrane with radius R 0 is mounted over a circular

idge of a chamber, as shown in Fig. 2 a. We assume the deforma-

ion of the actuated DE balloon is axisymmetric. A Cartesian coor-

inate system x–z is built upon the apex of the deformed mem-

rane, which coincides with the material point of the center of the

ndeformed membrane ( Fig. 2 b). For a point in the undeformed

at membrane: ( X , 0), it deforms to ( x, z ) under electromechan-

cal loading. Consider a material element of the membrane, be-

ween two particles X and X + dX . When the membrane is in the

eformed state, the particle X takes the position of coordinates

 ( X ) and z ( X ), while the particle X + dX takes the position of coor-

inates x ( X + dX ) and z ( X + dX ). In the undeformed state, the mate-

ial element is a straight segment, with length dX . In the deformed

tate, the material element becomes a curved segment, with length

1 dX , where λ1 is the longitudinal stretch. In a curved state, let

( X ) be the slope of a membrane at material particle X . Write
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Fig. 2. Schematics of the deformation of dielectric membrane under the action of pressure and applied voltage. (a) Undeformed dielectric membrane. (b) Deformed dielectric 

membrane. 
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dx = x ( X + dX )–x ( X ), so that, 

dx 

dX 

= λ1 cos α. (1)

Similarly, dz = z( X + dX ) −z ( X ), so that, 

dz 

dX 

= λ1 sin α. (2)

In the undeformed state, a circle of material particles is of a

perimeter 2 πX . In the deformed state, these material particles oc-

cupy a circle of perimeter 2 πx . The deformation corresponds to

the latitudinal stretch, λ2 . In summary, the two principle stretches

in the longitudinal and latitudinal direction in the DE balloon are

given by, 

λ1 = 

√ (
dx 

dX 

)2 

+ 

(
dz 

dX 

)2 

, (3)

λ2 = 

x (X ) 

X 

. (4)

Force balance equations of the deformed balloon in the x -

direction and the z -directions are given by 

d 

dX 

( σ1 hx cos α) + px 
dz 

dX 

− σ2 h 

sin α

dz 

dX 

= 0 , (5)

d 

dX 

( σ1 hx sin α) − px 
dx 

dX 

= 0 , (6)

where σ 1 and σ 2 are the true stresses in the longitudinal direc-

tion and latitudinal direction, respectively, p is the internal pres-

sure, and h(X) is the thickness of the deformed DE balloon. 

DE is assumed to be incompressible, namely, 

λ1 λ2 λ3 = 1 , (7)

where λ3 = h(X)/H is the stretch in the thickness direction. 

Ideal dielectric elastomer model ( Zhao et al., 2007 ) is adopted

here by assuming dielectric behavior of an elastomer is exactly the

same as that of a polymer melt and the electrical permittivity of

DE is not affected by its deformation. We relate the electric dis-

placement D with the electric field E by the following linear equa-

tion, 

D = εE , (8)

where ε is the electrical permittivity. The electric displacement is

equal to the charge density, namely, D = dQ/da , where da is the

area of the deformed DE membrane and dQ is the correspondent

charge accumulated over the area. Electric field in the membrane

can be calculated by E = �/h , which is inhomogeneous when the

thickness of the membrane becomes inhomogeneous. 
Using the incompressibility constraint ( Eq. (7) ), the relations

etween the true stresses and stretches in the DE membrane can

e given by ideal dielectric elastomer model ( Suo, 2010; Zhao et al.,

007 ) as, 

1 − σ3 = λ1 
∂ W s ( λ1 , λ2 ) 

∂ λ1 

− ε E 2 , (9)

2 − σ3 = λ2 
∂ W s ( λ1 , λ2 ) 

∂ λ2 

− ε E 2 , (10)

here W s ( λ1, λ2 ) is strain energy density of the elastomer in de-

ormed state with λ1, λ2 as its principle stretches, and Gent model

 Gent, 1996 ) is adopted: 

 s ( λ1 , λ2 ) = −μJ lim 

2 

log 

(
1 − λ2 

1 + λ2 
2 + λ−2 

1 
λ−2 

2 
− 3 

J lim 

)
, (11)

here μ is the shear modulus for infinitesimal deformation, and

 lim 

is a constant related to the stretching limit of the elastomer,

hich is taken to be J lim 

= 270 and 97.2 in this article ( Li et al.,

013; Wang et al., 2016 ). 

Considering the thickness of the DE balloon is much smaller

han its radius, the stress in the normal direction of the balloon

s negligible compared to the membrane stresses, namely, 

3 = 0 . (12)

Using the geometric relations in Eqs. (1) and (2) and expressing

 α/dX, dz/dX and h = H / λ1 λ2 explicitly, we rewrite the force bal-

nce Eqs. (5) and (6) as, 

dα

dX 

= −σ2 λ1 sin α

σ1 λ2 X 

+ 

pλ2 
1 λ2 

σ1 H 

, (13)

d λ1 

dX 

= 

(
X 

∂ 

∂ λ1 

(
σ1 

λ1 

))−1 

×
[

σ2 

λ2 

cos α − σ1 

λ1 

− ∂ 

∂ λ2 

(
σ1 

λ1 

)
( λ1 cos α − λ2 ) 

]
. (14)

The force balance Eqs. (13) and (14) , together with the geomet-

ic relations (1) and (2) , form a set of first-order differential equa-

ions that govern the inhomogeneous deformation of the DE mem-

rane. Using the constitutive model in Eqs. (9) –(12) and the def-

nition of the latitudinal stretch in Eq. (2) , the right hand side of

he governing Eqs. (1) , (2) , (13) and (14) can be expressed as func-

ions of x(X), z(X), λ1 (X) and α(X) . The boundary conditions for the

E membrane mounted over an air chamber are prescribed on the

pex and the edge of the membrane, 

 (0) = 0 , z(0) = 0 , α(0) = 0 (15)
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Fig. 3. Pressure vs. volume curve of a DE balloon under several different applied voltages. When the voltage �/ ( H 
√ 

μ/ε ) < 0.145, the pressure-volume relationship is 

represented by an N-like curve. When the voltage �/ ( H 
√ 

μ/ε ) > 0.145, a new instability mode of the DE balloon emerges. For a certain range of pressure, five different 

equilibrium states can be found in the balloon with different volumes. The triangles mark the equilibrium configurations of the DE balloon under the normalized pressure: 

pR 0 / μH = 1.5. The dash lines describe the state equation of ideal gas under three different amounts of air enclosed in the balloon ( N/N 0 = 1, 6 and 10), where N 0 is the 

amount of air molecule when pressure and volume are unity. 
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 ( R 0 ) = R 0 . (16)

Together with the boundary conditions (15) and (16) , the inho-

ogeneous deformation of the DE membrane subjected to differ-

nt pressures and voltages can be obtained. 

. Numerical computation of inhomogeneous deformation of 

he DE membrane 

In this section, we conduct numerical calculations to obtain all

quilibrium configurations of the DE balloon under the actions of

nternal pressure and electric voltage, which are governed by the

quations formulated in Section 2 . 

The set of first order differential Eqs. (1) , (2) , (13) and (14) can

e solved numerically by shooting method. Except for the bound-

ry values at the apex: x(0) = 0, z(0) = 0 , and α(0) = 0 , an value of

1 (0) = λa is assigned as an additional boundary condition. Those

alues are used as initial conditions and numerically integrated in

qs. (1) , (2) , (13) and (14) to obtain the values of x(X), z(X), λ1 (X)

nd α(X) . The value of λa is continuously varied until the boundary

ondition at the edge, x ( R 0 ) = R 0 , is satisfied. 

In Fig. 3 , we plot the relation between internal pressure and

olume of the DE balloon in equilibrium state with different ap-

lied voltages. Pressure, volume and electric voltage are scaled to

he dimensionless forms as pR 0 / μH , V/R 3 
0 

and �/ ( H 

√ 

μ/ε ) , respec-

ively. The pressure vs. volume diagram of the balloon remains an
-like shape, when the normalized voltage is less than 0.145, sim-

lar to the traditional hyperelastic balloon only subjected to pres-

ure ( Alexander, 1971; Chen and Healey, 1991; Fu and Xie, 2014;

aughton and Ogden, 1978; Needleman, 1977 ). If the internal pres-

ure of the balloon is controlled in experiments, when the inter-

al pressure is increased to the first pressure peak in the pressure

s. volume curve: p max , further increase of the pressure will make

he DE balloon discontinuously jump from one state with small

olume to another state with large volume through snap-through

nstability. Similarly, when the internal pressure is decreased to

he first valley in the pressure vs. volume curve: p min , further de-

rease of the pressure will make the DE balloon discontinuously

ump from a large volume to a small volume. Such snap-through

nstability has already been widely observed in different experi-

ents. As the normalized voltage exceeds 0.145, additional equi-

ibrium configurations can be obtained in the descending path of

ressure vs. volume curve of the balloon as shown in Fig. 3 . Con-

equently, for a certain range of pressure, five different equilibrium

tates of a DE balloon are found. This is different from the shape

ifurcation in a spherical DE balloon, where a non-uniform defor-

ation branch bifurcates from a homogenously deformed state ( Fu

nd Xie, 2014; Liang and Cai, 2015 ). 

We further visualize the deformed shapes and electric field in

he DE balloons in Fig. 4 . As marked by triangles in the pressure

s. volume curve of the balloon in Fig. 3 , the DE balloons are in-

ated by an internal pressure: pR 0 / μH = 1.5 and the electric volt-

ges �/ ( H 

√ 

μ/ε ) ranging from 0.12 ∼0.16. For the voltage smaller
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Fig. 4. Deformed shapes and electrical fields in the DE balloons under pressure pR 0 / μH = 1.5. The equilibrium states of the DE balloons are marked with triangles in Fig.3 and 

arranged by volume (from small to large) in each row. The color stands for the dimensionless true electric field, E/ 
√ 

μ/ε . 
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than 0.145, there are three equilibrium configurations under cer-

tain pressures. The different shapes of the balloon under the same

pressure and voltage have significantly different volumes, which

is attributed to the snap-through instability discussed previously.

With the increase of the volume, the membrane of the balloon

thins down drastically in most part of the balloon, generating a

high electric field. By increasing the voltage from 0.12 to 0.14, the

deformed shapes of the DE balloons are similar, with only an in-

crease in the volume and the electric filed. However, when the

voltage is increased to 0.16, in addition to the deformed shapes

observed at lower voltages, two additional configurations emerge.

As shown in the third row of Fig. 4 , when the applied voltage is

0.16, the first, fourth and fifth configurations of the DE balloon are

similar to the lower voltage cases. The second and third configura-

tions of the balloon in the row show different shapes, with local-

ized bulging-out formed around the apex of the balloon, which are

similar to what were observed in the experiments ( Fig. 1 c and b).

After forming the localized bulging-out, the volume of the DE bal-

loon decreases compared to the counterpart without the bulging-

out, but the electric field at the apex increases dramatically as the

membrane thins down greatly. The generation of high electric field

accompanied with the formation the bulging-out makes the DE

balloon susceptible to electrical breakdown ( Li et al., 2013; Liang

and Cai, 2015 ). 

Although the balloon with a bulging-out around its apex is

an equilibrium state as shown in Fig. 4 , it cannot be easily

achieved in the experiment with pressure-controlled loading con-

dition ( Alexander, 1971; Keplinger et al., 2012; Kyriakides and Yu-

Chung, 1990; Li et al., 2013 ). When the internal pressure reaches

the first peak p max in the pressure vs. volume curve of the balloon,

further increase of internal pressure will result in snap-through in-

stability of the balloon as described previously. To reach the equi-

librium configurations of the balloon in the descending path of

the pressure vs. volume curve, different loading paths need to be

adopted in the experiment. As described in the paper ( Li et al.,

n  
013 ), the new instability mode of the balloon can be observed

hen the applied voltage is increased while the total amount of

ir enclosed by the balloon is fixed. To obtain the relation between

he applied and the volume of the balloon, we simply need to in-

roduce the ideal gas law as the state equation of the enclosed air:

 k B T = ( p + p atm 

) ( V + V c ) , (17)

here p is the excessive internal pressure of the enclosed air in the

alloon relative to the atmospheric pressure p atm 

, V and V c are the

olume of the balloon and the air chamber, respectively, N is the

umber of the gas molecule, k B is the Boltzmann constant and T is

he temperature. The amount of the air molecules in the chamber

nd balloon is fixed after the valve is closed in the experiment, and

t is scaled as N/N 0 , where N 0 is the number of molecules when

imensionless pressure and volume are unity. 

Without losing generality, we assume the deformation of the

alloon is isothermal, the volume of the chamber V c = 0 in the fol-

owing analysis. By selecting different amount of air enclosed in

he balloon, the curves describing the state equation of ideal gas

 Eq. (17) ) are sketched as dash lines in Fig. 3 . The crossing points

etween the curves describing the state equation of ideal gas and

he pressure vs. volume curves of the DE balloon represent the

quilibrium configurations of the DE balloon with certain amount

f enclosed air. By selecting the crossing points, we can obtain the

elations between the applied-voltage vs. volume of the DE bal-

oons with fixed amount of enclosed air as plotted in Fig. 5 . For

 small amount of enclosed air ( N/N 0 = 1), the excessive internal

ressure p is smaller than the first pressure peak p max in the pres-

ure vs. volume curve. The balloon is slightly inflated and relatively

tiff toward expansion. Consequently, increase of the applied volt-

ge results in a small change of balloon volume. For a large amount

f air ( N/N 0 = 10), the curve describing the state equation of ideal

as also only intersects with the pressure vs. volume curve of the

E balloon at one point for one applied voltage. However, the stiff-

ess of DE balloon decreases a lot with a large volume. A small
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Fig. 5. Voltage vs. volume curve for the DE balloon with different amounts of enclosed air. The number of air molecule N is normalized by N 0 , which is the number of 

molecule when the normalized pressure and volume are unity. The voltage-volume relation is monotonic for small ( N/N 0 = 1) and large ( N/N 0 = 10) amount of air, while 

non-monotonic for N/N 0 = 6. The deformed shapes and electric field with varied loading conditions (A ∼D) in the DE balloon are plotted in the inset. 
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ncrease of voltage can result in large volume change of the bal-

oon as shown in Fig. 5 , which was also demonstrated in the ex-

eriments ( Keplinger et al., 2012; Li et al., 2013 ). For an interme-

iate amount of enclosed air with N/N 0 = 6, the curve describing

he state equation of ideal gas may intersect with pressure vs. vol-

me curves of the balloon at multiple points for a given voltage.

n another word, for a fixed amount of enclosed air and applied

oltage, multiple equilibrium states of the balloon may exist. We

lot several deformed shapes and electric field in the DE balloons

ith varied loading conditions (A ∼D) in the inset of Fig. 5 . To de-

ermine if any configurations of the DE balloon is stable or not,

erturbation analyses are necessary, which is beyond the scope of

he current article. 

Last, we compared the electric breakdown field of the ma-

erial to the true electric fields in the DE balloon of different

hapes. It is apparent that if the bulging-out shape of the DE bal-

oon is physically realizable, the maximum electric field in the

alloon has to be lower than the electric breakdown field of

he DE material. Given that the DE material used in the experi-

ent ( Li et al., 2013 ) was VHB ۛ4910, we use the following rep-

esentative values of shear modulus μ= 10 ∼ 45 kPa , the dielec-

ric constant ε = 4.16 × 10 −11 F/m and the electric breakdown field

 B = 2.18 × 10 8 V/m ( Plante and Dubowsky, 2006; Wang et al., 2016;

hao and Suo, 2010 ). The dimensionless electric breakdown field

an be estimated as E B / 
√ 

μ/ε = 6 . 7 ∼ 10 . The maximum electric

eld in some DE balloons with bulging-out configurations shown

n Fig. 4 and inset of Fig. 5 are slightly smaller than or comparable

o the electric breakdown field. This is consistent with the experi-
 c  

c  
ental observations that the formation of localized bulging-out of-

en quickly results in the failure of the material ( Li et al., 2013 ). 

. Effects of prestretches and stretching limit on the new 

nstability modes 

Actuating behavior of DE can be greatly affected by its pre-

tretches ( Ha et al., 2006; Huang et al., 2012; Kofod, 2008; Pelrine

t al., 20 0 0; Wissler and Mazza, 20 05 ). In particular, electrome-

hanical instability in a DE membrane can be delayed or even

liminated by applying prestretches. Consequently, for most appli-

ations of DE devices, prestretches are often applied onto the ma-

erial. In this section, we first study the effects of prestretches in

he DE membrane on the new bulging-out instability modes of the

E balloon. 

As shown in the inset of Fig. 6 , the DE membrane is of flat

ircular shape with radius R 0 in the reference state, and is pre-

tretched equal-biaxially and held by a rigid ring before actua-

ion. The pressure vs. volume curves of equilibrium states of a DE

alloon are shown in Fig. 6 with prestretch λp = 2. By comparing

ig. 6 with Fig. 3 , we can clearly see the effects of prestretches

n the actuation behavior of a DE balloon. With the applied

restretch, when the dimensionless voltage �/ ( H 

√ 

μ/ε ) < 0.14,

he internal pressure applied to the balloon increases monoton-

cally with its volume; no snap-through instability is expected,

hich is in direct contrast to the results shown in Fig. 3 . When

.14 < �/ ( H 

√ 

μ/ε ) < 0.17, the pressure vs. volume relationship be-

omes non-monotonic. For such a range of voltage, a DE balloon

an undergo snap-through instability as it jumps from one state



102 X. Liang, S. Cai / International Journal of Solids and Structures 132–133 (2018) 96–104 

Fig. 6. Pressure vs. volume curves of a DE balloon with prestretch λp = 2.0 as shown in the inset. Both snap-through and localized bulging out instability modes are delayed 

by prestretches on the DE membrane. For dimensionless voltage �/ ( H 
√ 

μ/ε ) < 0.14, the pressure increases monotonically with the volume. For 0.14 < �/ ( H 
√ 

μ/ε ) < 0.17, the 

pressure vs. volume curves remain N-shape, with three equilibrium configurations within a range of pressures. For �/ ( H 
√ 

μ/ε ) = 0.17, two additional configurations emerge 

as the localized bulging-out configurations for certain pressures. 
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to another at the local maximum or minimum pressures ( p max and

p min ). However, the volume change of a DE balloon is much smaller

than the one without prestretch as shown in Fig. 3 . The additional

configurations, which correspond to the localized bulging-out, only

appear when �/ ( H 

√ 

μ/ε ) is further increased to 0.17. The emer-

gence of the new instability mode with bulging-out shape requires

a higher voltage when prestretches are applied. Consequently, the

DE material is prone to electric breakdown due to the application

of prestretch. Therefore, our results show that prestretches can be

used to tune the critical voltages for both snap-through instability

and the emergence of the bulging-out instability modes of a DE

balloon subject to electromechanical loading. 

Different hyperelastic models have been used in DE model

to interpret different experimental results ( Li et al., 2013; Liang

and Cai, 2015; Wang et al., 2016; Xie et al., 2016 ). Even with

the same hyperelastic model, different material parameters have

been adopted. For example, recent experimental measurements of

acrylic elastomer (VHB ۛ4910) which is used in the referred exper-

iments ( Li et al., 2013 ), revealed a stretching limit λlim 

∼ 9.0 un-

der quasi-static (low stretch-rate), monotonic simple tension test

( Wang et al., 2016 ), corresponding to the value of J lim 

= 97.2 in

Gent model. The value of J lim 

is much smaller than the one used

in the previous studies ( Li et al., 2013 ) and the aforementioned nu-

merical computation ( J lim 

= 270). Therefore, in the section, we next

study the effects of material parameter J lim 

on the actuating be-

havior of DE balloon. 

An elastomer with smaller value of J lim 

shows stiffening ef-

fect at smaller stretches. To reveal the effects of J lim 

on the ac-

tuating behavior of a DE balloon, we carried out simulations with
 lim 

= 97.2 and compared the results to the one with J lim 

= 270. As

hown in Fig. 7 , the pressure vs. volume curves of a DE balloon

hare a similar shape under pressure and electric field as shown

n Fig. 3 . When the voltage is lower than a critical value ( ∼0.25),

he pressure-volume curve remains an N-shape curve; when volt-

ge is higher than the critical value, two additional configurations

merge with the localized bulging-out for certain pressure. Similar

o the effect of prestretch, reducing the value of J lim 

also increases

he voltage for triggering the bulging-out instability mode. 

. Non-convex free energy and new instability modes in DE 

alloon 

For an elastomeric balloon, the relationship between its inter-

al pressure and volume can be usually represented by an N-like

urve ( Fu and Xie, 2010; Haughton and Ogden, 1978; Needleman,

977 ), which often results in snap-through instability of the bal-

oon in experiments ( Alexander, 1971; Kyriakides and Yu-Chung,

990 ). Such a non-monotonic relationship between the internal

ressure and volume of a balloon is due to its large and nonlin-

ar deformation instead of any special constitutive model of the

lastomer. Explicitly speaking, strain energy density functions of

n elastomer given by different constitutive models are typically

onvex ( Haughton and Ogden, 1978; Suo, 2010 ). As a result, simi-

ar N-like curves between the pressure and volume have also been

heoretically predicted ( Li et al., 2013; Liang et al., 2014 ) and ex-

erimentally validated ( Keplinger et al., 2012; Li et al., 2013 ) for a

E balloon subjected to a constant voltage across its thickness. 
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Fig. 7. Pressure vs. volume curves of a DE balloon with smaller stretch limit as J lim = 97.2. When the voltage �/ ( H 
√ 

μ/ε ) < 0.25, the pressure-volume relationship is rep- 

resented by an N-like curve. When �/ ( H 
√ 

μ/ε ) > 0.25, new instability modes with bulging-out of the DE balloon emerge. The voltage required for the emergence of the 

bulging-out instability mode increases when J lim of the elastomer is reduced from 270 to 97.2. 
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However, it is known that free energy density function of a DE

embrane may become non-convex when the applied voltage is

igh, which can lead to electromechanical instability of a DE mem-

rane with homogenous deformation ( Zhao et al., 2007; Zhao and

uo, 2007 ). We believe the additional instability modes of the DE

alloon observed in the experiment and captured by our numeri-

al computation in Section 3 are due to the non-convexity of the

ree energy density function of the DE membrane when the ap-

lied voltage is high. 

The convexity of free energy density function of a DE mem-

rane can be assessed by computing its Hessian (Appendix A1).

s shown in Fig. A1, each curve represents a critical condition

hen the free energy density function of becomes non-convex. The

lobal minimum of the contour plots stays at the voltage: �min =
 . 123 H 

√ 

μ/ε for DE with J lim 

= 270, and �min = 0 . 2085 H 

√ 

μ/ε for

E with J lim 

= 97.2. When the applied voltage � < �
min 

, the free

nergy density function of the DE is convex for any deformation

tate; when the applied voltage is larger than �min , the free en-

rgy density function of the DE becomes non-convex for certain

eformation state, which is believed to be the main reason for the

mergence of the bulging-out configuration of the DE balloon. 

It is noted that in this article, we do not intend to precisely

redict the onset of the newly observed bulging-out instability by

valuating Hessian, which is only valid for predicting critical con-

itions for instability with homogeneous deformation ( Dorfmann

nd Ogden, 2014; Suo, 2010 ). To predict onset of instability of a

tructure with inhomogeneous deformation or other fields, per-

urbation analyses may be required ( Dorfmann and Ogden, 2010;

a  
orfmann and Ogden, 2014; Fu and Xie, 2014; Liang and Cai, 2015 ).

n the paper, we would like to propose that the additional bulging-

ut instability modes of the DE balloon are associated with its non-

onvex free energy density function of DE at high voltage. 

. Concluding remarks 

In this article, we have studied new instability modes in a DE

alloon subjected to internal pressure and electric voltage. By nu-

erically solving the governing equations, we obtain the equilib-

ium configurations of a DE balloon under different internal pres-

ures and voltages. We find out that when the applied voltage is

mall, the pressure vs. volume diagram of a DE balloon can be rep-

esented by an N-like curve, which is similar to the conventional

yperelastic balloon problem; when the voltage is larger than a

ritical value, new instability modes in the balloon emerge, which

ave an abnormal localized bulging-out, similar to the shape ob-

erved previously ( Li et al., 2013 ). Based on our numerical calcula-

ions, we show that the bulging-out modes recently observed in a

E balloon can be an equilibrium configuration. Such a bulging-

ut shape does not rely on any specific material or geometrical

efects. In addition, the prediction of the bulging-out configura-

ion does not require any modifications of the DE balloon model.

e further show that the DE balloon with a bulging-out shape can

e realized in the experiment by gradually increasing the applied

oltage while fixing the total amount of air enclosed in the bal-

oon. We believe the bulging-out instability modes of a DE balloon

re related to the non-convexity of the free energy density func-
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tion of DE when the applied voltage is high. We finally show that

prestretch as well as the material parameter ( J lim 

) can affect the

voltage required for triggering the emergence of the bulging-out

instability of a DE balloon. 
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