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a b s t r a c t 

Indentation has been intensively used to characterize mechanical properties of soft materi- 

als such as elastomers, gels, and soft biological tissues. In most indentation measurements, 

residual stress or stretch which can be commonly found in soft materials is ignored. In 

this article, we aim to quantitatively understand the effects of prestretches of an elas- 

tomer on its indentation measurement. Based on surface Green’s function, we analytically 

derive the relationship between indentation force and indentation depth for a prestretched 

Neo-Hookean solid with a flat-ended cylindrical indenter as well as a spherical indenter. In 

addition, for a non-equal biaxially stretched elastomer, we obtain the equation determin- 

ing the eccentricity of the elliptical contacting area between a spherical indenter and the 

elastomer. Our results clearly demonstrate that the effects of prestretches of an elastomer 

on its indentation measurement can be significant. To validate our analytical results, we 

further conduct correspondent finite element simulations of indentation of prestretched 

elastomers. The numerical results agree well with our analytical predictions. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Indentation test has been intensively explored to measure mechanical properties of diverse materials ranging from metals

( Corcoran et al., 1997; Ma and Clarke, 1995; Nix and Gao, 1998 ), ceramics ( Gong et al., 1999; Pharr, 1998 ) to elastomers

( Briscoe et al., 1998; VanLandingham et al., 2001 ) and biological tissues ( Ebenstein and Pruitt, 2006; Oyen, 2010; Rho et al.,

1997 ). In the experiment, indentation force is measured as a function of indentation depth, which can be used to assess

fundamental mechanical properties of testing materials, such as elastic modulus and yield strength. Compared to many

other mechanical testing methods including simple extension and compression tests, indentation test requires less or even

no sample preparation, much smaller sample size and causes much less damage to the testing samples. In addition, by

reducing the size of indenter, local mechanical properties of a heterogeneous material can be measured with high spatial

resolution. 

Recently, interest has been growing to use indentation test to characterize mechanical properties of gels and soft bio-

logical tissues ( Constantinides et al., 2008; Ebenstein and Pruitt, 2004; Hu et al., 2012; Hu et al., 2010; Oyen, 2008 ). One

salient feature of biological tissues and gels is that they are usually not in stress-free state. Large residual stress and strain

can be commonly found in soft biological tissues ( Fung, 1991; Fung and Liu, 1989; Rausch and Kuhl, 2013 ) as well as gels

( Beebe et al., 20 0 0; Hong et al., 2009 ). The residual stress and strain can be either isotropic or highly anisotropic ( Amar and

Goriely, 2005; Goriely et al., 2016; Marcombe et al., 2010 ). As a consequence, residual stress and strain may also exist in
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the sample for indentation test, though they can be partially or fully released through careful sample preparation. In par-

ticular, indentation tests have been recently explored to be directly conducted onto biological tissues without any sample

preparation ( Huang et al., 2005; Silver-Thorn, 1999; Vannah and Childress, 1996 ) to maintain their integrity and functional-

ity. Therefore, measured relationship between indentation depth and indentation force should generally depend on both the

mechanical properties and residual stress or strain state of testing samples. For instance, Zamir and Taber have shown that

the calculated elastic modulus of soft biological tissues based on indentation test could be one order of magnitude higher

than its true value if residual stress is ignored ( Zamir and Taber, 2004 ). However, it is unclear how the residual stress or

strain may quantitatively affect the indentation tests on soft materials. 

According to our knowledge, Green, Rivlin, and Shield were the first who studied indentation of incompressible pre-

stretched elastomers ( Green et al., 1952 ). Later, the analysis was extended to compressible elastomers ( Beatty and Us-

mani, 1975 ) and indenter with arbitrarily axisymmetric shape ( Dhaliwal and Singh, 1978 ). Nevertheless, all the work was

focused on the elastomer subject to equal-biaxial stretch, which greatly limits the application of their results. Filippova first

studied indentation of a prestretched elastomer with non-equal biaxial prestretches ( Filippova, 1978 ). To obtain analytical

results of eccentricity of the contacting area between a spherical indenter and the elastomer as well as the indentation force

as a function of indentation depth, the difference of two principle prestretches was assumed to be small. To study the effect

of prestretch of an elastomer on its adhesion, Gay assumed deformation of elastomer stays in linear regime and took the

prestretch into consideration by “mapping” the spherical indenter into an ellipsoidal one ( Gay, 20 0 0 ). However, the intuitive

assumption has not been verified and may introduce significant errors. 

Although indentation is generally a nonlinear problem, deformation in the material caused by indentation is typically

small. Linear elasticity model was commonly adopted for the material in formulating indentation problem. In this article, we

study indentation of an elastomer in a homogenously prestretched state. The prestretch in the elastomer can be arbitrarily

large. However, following the commonly adopted assumption, additional deformation caused by indentation is assumed 

to be small. As a result, the problem can be regarded as a small deformation superimposed onto a finite deformation in

a material. Following the method developed by Biot and Ogden ( Biot, 1965; Ogden, 1997 ), we formulate the indentation

of a prestretched elastomer with both flat-ended cylindrical indenter and spherical indenter in Section 2 . To validate our

analytical results, in Section 3 , we conduct corresponding finite element simulations and compare the numerical results to

our analytical predictions. Concluding remarks of our investigation are included in Section 4 . 

2. Analytical modeling 

2.1. Surface Green’s function for a biaxially stretched elastomer 

Surface Green’s function for a biaxially stretched elastomer occupying half space has been derived by Filippova (1978) and

He (2008) , in which the elastomer is taken to be a homogeneous, isotropic, and incompressible Neo-Hookean solid. Since

we will use the derived surface Green’s function to solve the current indentation problem in the article, we will briefly

summarize the results obtained by Filippova and He in the following. 

We first introduce a Cartesian coordinate ( x 1 , x 2 , x 3 ) into the elastomer, which is bounded by the surface x 3 = 0 , as shown

in Fig. 1 (a). The elastomer is under prestretch λ1 and λ2 along x 1 and x 2 directions. When a unit external force in x j direction

is applied onto the surface of the elastomer at ξ = ( ξ1 , ξ2 , 0 ) , the induced displacement in x i direction at x = ( x 1 , x 2 , 0 ) is

defined as surface Green’s function G i j (x − ξ)(i, j = 1 , 2 , 3) . In the scenario that the additional strains induced by external

surface forces are small, the incremental displacement field u i ( x ) in the elastomer resulted from any distributed loading can

be obtained by linear superposition 

In our following analysis, the contact between indenter and the elastomer is assumed to be frictionless. Therefore, surface

Green’s function component G 33 ( x − ξ) is the only relevant one as given by Filippova (1978) and He (2008) , 

G 33 

(
x − ξ

)
= 

λ2 
1 λ

2 
2 ( t + r ) r 

2 πμ
(
t 3 + t 2 r + 3 t r 2 − r 3 

) , (1) 

in which μ is shear modulus of the elastomer, and r and t are defined by 

r = 

√ 

( x 1 − ξ1 ) 
2 + ( x 2 − ξ2 ) 

2 
, (2) 

t = λ1 λ2 

√ 

λ2 
1 ( x 2 − ξ2 ) 

2 + λ2 
2 ( x 1 − ξ1 ) 

2 
. (3) 

The normal surface displacement u 3 ( x ) caused by a general normal pressure distribution p ( x ) could be determined

through the integration: 

u 3 ( x ) = 

∫ ∫ 
S 

G 33 

(
x − ξ

)
p 
(
ξ
)
d ξ1 d ξ2 , (4) 

where S is the area with nonzero pressure. 



Y. Zheng et al. / Journal of the Mechanics and Physics of Solids 107 (2017) 145–159 147 

Fig. 1. Schematics of indentation of a prestretched elastomer. (a) A free-standing elastomer occupies half space. (b) A flat-ended cylindrical indenter is 

pressed onto the elastomer in a prestretched state. (c) A spherical indenter is pressed onto the prestretched elastomer. λ1 and λ2 are two lateral principle 

stretches applied onto the elastomer. R denotes the radius of both cylindrical and spherical indenter, F denotes indenting force, and D denotes indentation 

depth. 

 

 

 

 

For the convenience of calculation in the following sections, we further simplify the expression in Eqs. (1) –(3) using the

coordinate transformation: 

ξ1 = x 1 + r cos θ, (5)

ξ2 = x 2 + r sin θ . (6)

In this polar coordinate, surface Green’s function component G 33 ( x − ξ) can be rewritten as a function of r and θ : 

G 33 ( r, θ ) = 

h ( θ ) 

2 πμr 
, (7)
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where 

h ( θ ) = 

λ2 
1 λ

2 
2 ( g ( θ ) + 1 ) 

g ( θ ) 
3 + g ( θ ) 

2 + 3 g ( θ ) − 1 

, (8) 

and 

g ( θ ) = λ1 λ2 

√ 

λ2 
1 
sin 

2 θ + λ2 
2 
cos 2 θ. (9) 

2.2. Indentation of a prestretched elastomer with a flat-ended cylindrical indenter 

We first formulate indentation of a prestretched elastomer with a flat-ended cylindrical indenter. The problem is sketched

in Fig. 1 (b). A flat-ended cylindrical indenter with radius R is pressed onto the surface of an elastomer, which is in a pre-

stretched state with λ1 and λ2 as two principle stretches. Both indentation depth and indentation radius are assumed to be

much smaller than the characteristic size of the elastomer. The contact between the indenter and the surface of elastomer

is assumed to be frictionless. It has been proved that pressure distribution under a flat-ended cylindrical indenter takes the

form ( Willis, 1967 ): 

p ( x ) = 

(
p 0 + p 1 

x 1 
R 

+ p 2 
x 2 
R 

)(
1 − x 1 

2 

R 

2 
− x 2 

2 

R 

2 

)−1 / 2 

, (10) 

where p 0 , p 1 and p 2 are three constants to be determined. 

In equilibrium state, the reaction force exerted onto the indenter can be calculated as: 

F = 

∫ ∫ 
S 

p ( x ) d x 1 d x 2 = 2 π p 0 R 

2 . (11) 

During the indentation test, no torque is applied onto the indenter, which requires ∫ ∫ 
S 

p ( x ) x 1 d x 1 d x 2 = 

2 π

3 

p 1 R 

3 = 0 , (12) 

∫ ∫ 
S 

p ( x ) x 2 d x 1 d x 2 = 

2 π

3 

p 2 R 

3 = 0 . (13) 

Therefore, the pressure distribution in Eq. (10) can be further reduced to 

p ( x ) = p 0 

(
1 − x 1 

2 + x 2 
2 

R 

2 

)−1 / 2 

, (14) 

with 

p 0 = 

F 

2 πR 

2 
. (15) 

Recall Eq. (4) , the magnitude of normal displacement on the surface of prestretched elastomer under flat-ended cylindri-

cal indenter is given by 

u 3 ( x ) = 

∫ ∫ 
S 

G 33 

(
x − ξ

)
p 
(
ξ
)
d ξ1 d ξ2 , (16) 

in which S is the circular contacting area determined by the following equation: 

ξ1 
2 

R 

2 
+ 

ξ2 
2 

R 

2 
≤ 1 . (17) 

Using the coordinate transform shown in Eqs. (5) –(6) , the pressure distribution p ( ξ) can also be expressed in the polar

coordinate centered in x in the following form, 

p ( r, θ ) = p 0 R 

[
−r 2 − 2 r ( x 1 cos θ + x 2 sin θ ) + 

(
R 

2 − x 2 1 − x 2 2 

)]−1 / 2 
. (18) 

According to Eq. (17) , the two limits of r are on the edge of the circular contacting area as, 

r 1 , 2 = −( x 1 cos θ + x 2 sin θ ) ±
√ 

R 

2 − ( x 1 sin θ − x 2 cos θ ) 
2 
, (19) 

and θ ranges from 0 to π . 

Therefore, the integration in Eq. (16) can be rewritten as, 

u 3 ( x ) = 

∫ π

0 

∫ r 2 

r 

G 33 ( r, θ ) p ( r, θ ) r dr dθ . (20) 

1 
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The integration above results in a simple analytical form: 

u 3 ( x ) = 

p 0 R 

2 μ
I, (21)

where I only depends on λ1 and λ2 as 

I = 

∫ π

0 

h ( θ ) dθ . (22)

According to Eq. (21) , the obtained normal displacement remains constant in the contacting area, in agreement with

the uniform displacement boundary condition. For a flat-ended indenter, this constant displacement corresponds to the

indentation depth D . 

Substituting Eq. (15) into Eq. (21) , we get the relation between indentation force and indentation depth: 

F = 

4 πμR 

I 
D. (23)

Pressure distribution can be also rewritten as 

p ( x ) = 

2 μD 

IR 

(
1 − x 1 

2 + x 2 
2 

R 

2 

)−1 / 2 

. (24)

For an equal-biaxial stretched elastomer, λ1 = λ2 = λ, which reduces the above relation to a simpler form 

F = 

4 μR 

h 

D, (25)

h = 

λ4 
(
λ3 + 1 

)
λ9 + λ6 + 3 λ3 − 1 

. (26)

which agree with previous work ( Beatty and Usmani, 1975; Dhaliwal and Singh, 1978 ). In particular, if λ = 1 , F = 8 μRD ,

which recovers the classical solution as shown in most elasticity textbooks ( Bower, 2009 ). 

Based on Eq. (23) , the indentation force can be normalized as F / μRD . Through the normalization, indentation force be-

comes independent of indentation depth. If the elastomer is in a stress-free state before indentation, the normalized force

should simply be a constant: 8. However, when the elastomer is prestretched before indentation, the normalized indentation

force can greatly depend on the prestretched state as shown in Fig. 2 (a). For a given prestretch ratio λ2 / λ1 , larger prestretch

λ1 results in larger indentation force. In particular, the normalized indentation force can decrease to zero for different pre-

stretched states, which corresponds to Biot surface instability in a deformed elastomeric block. Based on linear stability

analysis, the critical strain for Biot surface instability of a deformed elastomer can be given by λ2 

√ 

λ1 = 0 . 543 ( Biot, 1963 ).

The critical stretched states given by the above prediction are marked by cross in Fig. 2 (a), which overlap with the pre-

stretched state with zero indentation force. In addition, it has been recently discovered that before Biot surface instability

happens, creases may form on the surface of a deformed elastomer. The critical conditions for the crease formation can be

given by λ2 

√ 

λ1 = 0 . 65 ( Hong et al., 2009 ), which are marked as circular points in Fig. 2 (a). One important assumption in

our formulation is that the additional strain caused by indentation is small. As expected, critical condition for Biot surface

instability in an deformed elastomer can be captured by letting indentation force on the elastomer equal to zero. However,

it is known that the additional strain caused by the crease formation is localized in space but finite in magnitude ( Cai et al.,

2012 ). Consequently, the condition for the onset of crease cannot be obtained through indentation analysis. 

2.3. Indentation of a prestretched elastomer with a spherical indenter 

We next formulate indentation of a prestretched elastomer with a spherical indenter, as sketched in Fig. 1 (c). A rigid

sphere with radius R is pressed onto the surface of an elastomer, which is in a prestretched state with λ1 and λ2 as two

principle stretches. As before, both indentation depth and indentation radius are assumed to be much smaller than the char-

acteristic size of the elastomer. The contact between indenter and the surface of elastomer is also assumed to be frictionless.

For a spherical indenter in contact with an anisotropic elastic solid, it has been proved that the contacting area is an ellipse

and the pressure distribution is ( Willis, 1966 ) 

p ( x ) = p 0 

(
1 − x 1 

2 

a 2 
− x 2 

2 

b 2 

)1 / 2 

, (27)

where p 0 is a constant, a and b are major and minor axes of the elliptical contacting area respectively. In the coordinate

system, the center of contacting area coincides with the origin, and semi axes are along x 1 and x 2 directions. 

The total force applied on the indenter is 

F = 

∫ ∫ 
p ( x ) d x 1 d x 2 = 

2 π

3 

p 0 ab. (28)

S 
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Fig. 2. Dependence of normalized indentation force on the prestretched state of a Neo-Hookean elastomer. Indentation force normalized by the indentation 

radius and indentation depth as shown in (a) flat-ended indenter and (b) spherical indenter is independent of indentation depth. For certain prestretched 

states, indentation force can decrease to zero, which corresponds to Biot surface instability of a deformed elastomer as marked by cross in both (a) and 

(b). Prestretched states for the onset of creases on the surface of the elastomers are marked by circular points in both (a) and (b). 

 
Recall Eq. (4) , the magnitude of normal displacement on the surface of the prestretched elastomer under spherical in-

denter is given by 

u 3 ( x ) = 

∫ ∫ 
S 

G 33 

(
x − ξ

)
p 
(
ξ
)
d ξ1 d ξ2 , (29) 

with elliptical contacting area: 

ξ1 
2 

2 
+ 

ξ2 
2 

2 
≤ 1 . (30) 
a b 
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Fig. 3. Finite element simulations of indentation of a prestretched elastomer. Contour plot of the stress distribution around (a) flat-ended indenter and (b) 

spherical indenter for the prestretched state: λ1 = 0 . 8 , λ2 = 1 . 6 and indentation depth D = 0 . 1 R . 

 

 

 

 

 

 

According to Eqs. (5) –(6) , the pressure distribution p ( ξ) can be transformed to the polar coordinate: 

p ( r, θ ) = 

p 0 
ab 

[
−
(
b 2 cos 2 θ + a 2 sin 

2 θ
)
r 2 − 2 r 

(
b 2 x 1 cos θ + a 2 x 2 sin θ

)
+ 

(
a 2 b 2 − b 2 x 2 1 − a 2 x 2 2 

)]1 / 2 
. (31)

Therefore, Eq. (29) can be rewritten as 

u 3 ( x ) = 

∫ π

0 

∫ r 2 

r 1 

G 33 ( r, θ ) p ( r, θ ) r dr dθ, (32)

where the integration limits r 1 and r 2 are given by the solution of the equation: 

( x 1 + r 1 , 2 cos θ ) 
2 

a 2 
+ 

( x 2 + r 1 , 2 sin θ ) 
2 

b 2 
= 1 . (33)

After integration, Eq. (32) can be finally simplified as: 

u 3 ( x ) = 

b p 0 
4 μ

(
I 0 − I 1 

x 1 
2 

a 2 
− I 2 

x 2 
2 

a 2 

)
, (34)

with 

I 0 = 

∫ π

0 

h ( θ ) (
1 − e 2 cos 2 θ

)1 / 2 
dθ, (35)

I 1 = 

∫ π

0 

h ( θ ) sin 

2 θ(
1 − e 2 cos 2 θ

)3 / 2 
dθ, (36)
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Fig. 4. Comparison between analytical prediction (solid line) and finite element computation (cross) of indentation force as a function of indentation depth 

for different prestretched state of an elastomer. The results are for flat-ended cylindrical indenter. In (a), ratio of the two lateral prestretches is set to be 

1.25, and in (b), the ratio is set to be 2. 
I 2 = 

∫ π

0 

h ( θ ) cos 2 θ(
1 − e 2 cos 2 θ

)3 / 2 
dθ, (37) 

where e = 

√ 

1 − ( b/a ) 2 denotes the eccentricity of the elliptical contacting area. 
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Fig. 5. Comparison between analytical prediction (solid line) and finite element computation (cross) of indentation force as a function of indentation depth 

for different prestretched state of the elastomer. The results are for spherical indenter. In (a), ratio of the two lateral prestretches is set to be 1.25, and in 

(b), the ratio is set to be 2. 

 

 

 

 

For a spherical indenter with radius R and indentation depth D , the displacement on the surface of the elastomer imposed

by the indenter can be approximated by, 

u 3 ( x ) = D − 1 

2 R 

x 2 1 −
1 

2 R 

x 2 2 . (38)

Comparing Eq. (38) with (34) , the calculated displacement agrees with the boundary condition when the following equa-

tions are satisfied 

D = 

b p 0 
4 μ

I 0 , (39)
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Fig. 6. Comparison between analytical prediction (solid line) and finite element simulation (markers) of contacting pressure between a flat-ended cylindri- 

cal indenter and biaxially prestretched elastomer. (a) and (b) show pressure distribution along x 1 and x 2 axis respectively. Simulation results at D/R = 0 . 02 , 

D/R = 0 . 03 , and D/R = 0 . 04 are marked with downward-pointing triangle, plus sign, and upward-pointing triangle markers. It is noted that through the 

normalization of indentation force and coordinates, the pressure distribution does not depend on indentation depth. 
1 

2 R 

= 

b p 0 
4 a 2 μ

I 1 , (40) 

1 

2 R 

= 

b p 0 
4 a 2 μ

I 2 . (41) 

Eqs. (40) and (41) require I 1 = I 2 , which determines the eccentricity of elliptical contacting area: 

∫ π

0 

h ( θ ) 
(
cos 2 θ − sin 

2 θ
)

(
1 − e 2 cos 2 θ

)3 / 2 
dθ = 0 , (42) 

which clearly shows that the eccentricity of elliptical contacting area is independent of indentation depth. 
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Fig. 7. Comparison between analytical prediction (solid line) and finite element simulation (markers) of contacting pressure between a spherical indenter 

and biaxially prestretched elastomer. (a) and (b) show pressure distribution along x 1 and x 2 axis respectively. Simulation results at D/R = 0 . 02 , D/R = 0 . 03 , 

and D/R = 0 . 04 are marked with downward-pointing triangle, plus sign, and upward-pointing triangle markers. It is noted that through the normalization 

of indentation force and coordinates, the pressure distribution does not depend on indentation depth. 

 

 

 

It can be noticed that I 0 = I 1 + ( 1 − e 2 ) I 2 from Eqs. (35) –(37) . Combing this relationship with Eqs. (39) –(41) , we can

further obtain that 

a = 

√ 

2 RD 

2 − e 2 
. (43)

A combination of Eqs. (28) and (39) gives, 

F = 

8 πμaD 

3 I 
. (44)
0 
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Fig. 8. For a spherical indenter, the contacting area between indenter and prestretched elastomer is generally elliptical. The figures (a) and (b) illustrate 

the dependence of eccentricity: e on the prestretched state of the elastomer. In (a), λ1 is set to be smaller than one. In (b), λ1 is set to be larger than one. 

In the figures, curves are analytical predictions and markers are taken from finite element simulations. Different λ1 are specified with different colors. 

 

Substituting Eq. (43) into Eq. (44) , we obtain that 

F = 

8 πμ

3 I 0 

√ 

2 R 

2 − e 2 
D 

3 
2 . (45) 

Eq. (45) shows that indentation force depends on the indentation depth to 3/2 power, which is exactly the same as no

prestretched case. 
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Pressure distribution can be rewritten by plugging Eqs. (28) , (43) , and (45) into Eq. (27) : 

p ( x ) = 

4 μ

I 0 

√ (
2 − e 2 

)
D 

2 

(
1 − e 2 

)
R 

( 

1 −
(
2 − e 2 

)
x 1 

2 

2 RD 

−
(
2 − e 2 

)
x 2 

2 (
1 − e 2 

)
2 RD 

) 1 / 2 

. (46)

The elliptical contacting area between the indenter and the elastomer can be given by: A = πab, which can be further

computed using Eq. (43) : 

A = π
2 

√ 

1 − e 2 

2 − e 2 
RD. (47)

For equal-biaxially stretched elastomer, λ1 = λ2 = λ, due to the symmetry, a = b and a 2 = RD , which reduce the

Eq. (45) to a simpler form 

F = 

8 μR 

1 / 2 

3 h 

D 

3 / 2 , (48)

h = 

λ4 
(
λ3 + 1 

)
λ9 + λ6 + 3 λ3 − 1 

. (49)

which agree with result of Green et al., (1952) . In particular, if λ = 1 , F = 

16 μR 1 / 2 D 3 / 2 

3 , the classical elasticity solution is

recovered. 

Based on Eq. (45) , the indentation force can be normalized as F / μR 1/2 D 

3/2 . Through the normalization, indentation force

becomes independent of indentation depth. If the elastomer is in a stress-free state before indentation, the normalized force

is a constant: 16/3. However, when the elastomer is prestretched before indentation, the normalized indentation force can

greatly depend on the prestretched state as shown in Fig. 2 (b). For a given prestretch ratio λ2 / λ1 , larger stretch λ1 results

in larger indentation force. Similar to Section 2.2 , the normalized indentation force can also decrease to zero for different

prestretched state, which corresponds to the same critical condition of Biot instability ( Biot, 1963 ). Similarly, the critical

conditions for the crease formation are marked as circular points in Fig. 2 (b). 

3. Finite element simulation 

To validate the analytical model, we simulate indentation of prestretched elastomers using commercial finite element

software ABAQUS (Version 6.12). Three dimensional models are set up in ABAQUS/Standard as shown Fig. 3: A flat-ended

cylindrical/spherical indenter is in contact with a block of elastomer. The indenter is assumed to be rigid and the elastomer

block is set to be incompressible Neo-Hookean material. Considering the symmetric geometry and loading conditions, we

only simulate a quarter of the elastomer, the width W and height H of which are set to be 50 times of the indenter radius.

The four side planes of the block are fixed in their normal directions, and bottom plane is fixed in the vertical direction; A

downward vertical displacement is applied on the indenter. The contact between the indenter and elastomer block is set to

be frictionless. We prestretch the elastomer along x 1 and x 2 directions by applying initial stresses on it. Before indentation,

the upper surface of the block remains flat, and the indenter is in contact with it with no applied force. The block is meshed

with 8 node linear hybrid brick elements with reduced integration(C3D8RH). There are approximately 30 0,0 0 0 elements in

a quarter of the elastomer block as shown in Fig. 3 . Around the contacting area, the mesh is further refined and the length

of the element side is 0.5% −1% of the indenter diameter. 

Load-displacement curves obtained from ABAQUS are compared to theoretical predictions as shown in Fig. 4 for a flat-

ended cylindrical indenter and Fig. 5 for a spherical indenter. In the simulations, several different prestretched states are

considered: λ1 = 0 . 68 , λ1 = 0 . 8 , λ1 = 1 , and λ1 = 2 with λ2 / λ1 = 1 . 25 or λ2 / λ1 = 2 . Both Figs. 4 and 5 clearly show dra-

matic effects of prestretches on the indentation measurements. In addition, the agreement between FEM simulations and

our analytical predictions is generally good. With the increase of indentation depth, some deviation can be seen between

FEM simulations and our analytical results, which may be due to the increase of the additional strain in the elastomer

caused by indentation. Based on the comparison between the simulation results and our analytical predictions shown in

Figs. 4 and 5 , D / R < 0.1 can be regarded as the range, within that analytical predictions of load-displacement results could

be used. 

Fig. 6 shows the contacting pressure between a flat-ended cylindrical indenter and biaxially prestretched elastomer.

Fig. 6 (a) and (b) present pressure distribution along radius coincident with x 1 and x 2 axis respectively. According to Eq. (24) ,

normalized pressure pR / μD is independent of indentation depth D . Several prestretched states with different λ1 and λ2 / λ1

are considered. The analytical predictions are represented by solid lines and finite element simulations when D/R = 0 . 02 ,

D/R = 0 . 03 , D/R = 0 . 04 are marked with downward-pointing triangle, plus sign, and upward-pointing triangle. As the figure

shows, simulation results fit well with the predictions of pressure distribution. 

Fig. 7 shows the contacting pressure between a spherical indenter and biaxially prestretched elastomer, where (a) and

(b) correspond to pressure distribution along semi axis a and b of contacting area. According to Eq. (46) , the relation be-

tween normalized pressure p 
μ

√ 

R 
D and normalized coordinates x / 

√ 

RD is independent of indentation depth D . The same
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Fig. 9. Normalized contacting area between a spherical indenter and a prestretched elastomer depends on the prestretched state of the elastomer. In the 

figure, solid lines and markers are analytical and numerical simulation results, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prestretched states as Fig. 6 are considered. The analytical predictions are represented by solid lines and finite element sim-

ulations ranging from D/R = 0 . 02 to D/R = 0 . 04 are represented by markers. As the plots show, simulation results fit well

with the theoretical predictions, which validates the pressure distribution provided by Willis (1966) . 

In addition to indentation force and contacting pressure, we also compare the contacting area between a spherical inden-

ter and a prestretched elastomer obtained from theoretical predictions and FEM simulations, as shown in Figs. 8 and 9 . The

theoretical value of the eccentricity of the contacting area in Fig. 8 is given by Eq. (42) . As expected, eccentricity increases

monotonically from zero to one when the prestretch ratio λ1 / λ2 is decreased from one to zero. It also clearly shows that

the eccentricity does not only depend on the prestretch ratio λ2 / λ1 as proposed by Gay (20 0 0) . Instead, the eccentricity of

the contacting area depends on both principle prestretches λ1 and λ2 as shown in Fig. 8 (a). It is noted that if both λ1 and

λ2 are larger than one as shown in Fig. 8 (b), it may be reasonable to assume the eccentricity is only a function of prestretch

ratio λ2 / λ1 as adopted in previous study ( Gay, 20 0 0; Zafiropoulou et al., 2016 ). 

Normalized contacting area A / A 0 between a spherical indenter and a prestretched elastomer is plotted in different pre-

stretched state in Fig. 9 , where A = πab is calculated using Eq. (47) and A 0 = πDR is the contacting area for non-prestretched

case. It is noted that the normalized contacting area does not depend on indentation depth anymore. For arbitrary λ1 , the

normalized contacting area decreases from one to zero as the prestretch ratio λ1 / λ2 decreases from one to zero. As indi-

cated in Eq. (47) , the normalized contacting area is only a function of eccentricity e . Therefore, the normalized contacting

area mainly depends on the prestretch ratio when λ1 and λ2 are much larger than one based on the results of Fig. 8 (b). 

4. Concluding remarks 

In this article, we study the effects of prestretched state of an elastomer on its indentation measurement. Using sur-

face Green’s function, we have analytically derived the relationship between indentation force and indentation depth for

both flat-ended cylindrical indenter and spherical indenter. Our results have shown that the existence of prestretches in an

elastomer can dramatically impact its indentation measurements, and thus it is critical to take consider prestretches of an

elastomer when conducting indentation experiments. In particular, for certain prestretch state, measured indentation mod- 

ulus can approach zero for an elastomer with finite elastic modulus. The formula derived in the article will provide the

basis for designing a new indentation method for measuring both elastic modulus and prestretches of an elastomer or soft

biological tissue, which will also be one of our future research directions of the topic. In addition, the results presented in

the article can also provide important insights into the understanding of the effects of prestretch on the contact, adhesion

and friction of soft elastomers. 
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