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Abstract

Wrinkles can be often observed in dielectric elastomer (DE) films when they are

subjected to electrical voltage and mechanical forces. In the applications of DEs,

wrinkle formation is often regarded as an indication of system failure. However, in

some scenarios, wrinkling in DE does not necessarily result in material failure and

can be even controllable. Although tremendous efforts have been made to analyze

and calculate a variety of deformation modes in DE structures and devices, a model

which is capable of analyzing wrinkling phenomena including the critical

electromechanical conditions for the onset of wrinkles and wrinkle morphology in DE

structures is currently unavailable. In this paper, we experimentally demonstrate

controllable wrinkling in annular DE films with the central part being mechanically

constrained. By changing the ratio between the inner radius and outer radius of the

annular films, wrinkles with different wavelength can be induced in the films when

externally applied voltage exceeds a critical value. To analyze wrinkling phenomena

in DE films, we formulate a linear plate theory of DE films subjected to

electromechanical loadings. Using the model, we successfully predict the wavelength
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of the voltage-induced wrinkles in annular DE films. The model developed in this

article can be used to design voltage-induced wrinkling in DE structures for different

engineering applications.
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1. Introduction

A dielectric elastomer (DE) can deform when it is under the action of electrical

field or mechanical forces. Because of the advantages of easy fabrication, low cost,

excellent deformability and electromechanical robustness, DEs have been recently

intensively explored and developed to a variety of structures with diverse functions

(Carpi et al., 2008; O’ Halloran et al., 2008). For instance, DE films with different

shapes and sizes have been fabricated to harvest energy from different sources such

as ocean wave (Kornbluh et al., 2012b), motions of human-beings, wind and even

combustion (Kornbluh et al., 2012a). DEs have also been used as artificial muscles in

designing walking robots (Brochu and Pei, 2010), programmable grippers (Shian et

al., 2015), camouflage devices (Wang et al., 2014) and antifouling systems

(Shivapooja et al., 2013). In addition to those, transparent DE loudspeakers

(Keplinger et al., 2013), planar DE rotary motors (Anderson et al., 2010) and

nonlinear DE strain gauges (Xu et al., 2015) have also been successfully made

recently.

In most of the applications, large deformation in DEs can be ubiquitously

observed. General three dimensional models for the finite deformation of DEs under

the actions of an arbitrary field of electrical potential and forces have been

formulated by different researchers (Dorfman and Ogden, 2005; Goulbourne et al.,

2005; McMeeking and Landis, 2005; Vu et al., 2007; Suo et al., 2008; O’Brien et al.,

2009; Trimarco, 2009). Numerous phenomena associated with the

electro-mechanical coupling in DEs have been successfully analyzed using these
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developed models, such as the pull-in instability in a DE membrane sandwiched by

two compliant electrodes (Zhao and Suo, 2007; Norris, 2008; Zhou et al., 2008),

voltage-induced creasing and cratering instabilities in a constrained DE layer (Wang

et al., 2011), giant deformation and shape bifurcation in DE balloons (Li et al., 2013;

Liang and Cai, 2015), and instabilities in layered soft dielectrics (Bertoldi and Gei,

2011; Dorfmann and Ogden, 2014).

Because large deformation in a DE requires relatively large electric field, thin DE

films are frequently adopted in most applications. As a consequence, multiple

wrinkles can be often observed in the experiments in DE structures when they are

subjected to electromechanical loading. Wrinkle formation has been often regarded

as one of the failure mechanisms in DE devices (Plante and Dubowsky, 2006; De

Tommasi et al., 2011; De Tommasi et al., 2013a; De Tommasi et al., 2013b; Zurlo,

2013; De Tommasi et al., 2014). In the last few years, it has been shown that in

certain conditions, wrinkle formation in DE structures can be reversible and leads to

no damage of the material (Plante and Dubowsky, 2006; Kollosche et al. 2015; Lu et

al., 2015; Mao et al., 2015; Liu et al., 2016). Moreover, the wrinkles in DE structures

may provide additional functions which cannot be easily obtained otherwise.

To predict the critical conditions of wrinkling in a DE film under different

electromechanical loading, the film is usually assumed to be under plane stress

condition. Because DE films are thin and can bear little compression, the external

electromechanical loading which leads to the loss of tension at any point of the DE

film is commonly adopted to represent the critical condition for the wrinkle
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formation (Huang and Suo, 2012; Park et al., 2012; Zhu et al., 2012; Díaz-Calleja et

al., 2013; Díaz-Calleja et al., 2014) or failure of the structure. Reasonable agreements

between the predictions and experimental measurements of the conditions for the

onset of wrinkles in DE membranes have been obtained in several different studies

(Conn et al., 2012; Zhu et al., 2012; Kollosche et al. 2015; Xie et al., 2016).

Nevertheless, though the loss of tension can be used to estimate the critical

conditions for the wrinkle formation in a DE film, analyses based on plane stress

assumption cannot provide additional information about wrinkle morphology such as

wavelength of wrinkles. Considering the recent interests in harnessing instabilities of

soft active structures to achieve novel functions, a theoretical method which can

accurately predict the critical conditions of wrinkling and the morphology of wrinkles

in a DE film subjected electromechanical loading is highly desired.

Most current electromechanical constitutive models of DE films are based on

membrane assumption. Specifically, stress in a DE film is assumed to be uniform

along its thickness direction and its bending stiffness is completely ignored. Such

assumptions greatly simplify the way of computing stress/stretch field and electrical

field in DE structures under different loading conditions. The computational results

based on the membrane assumption often agree well with experiments. However, the

onset of wrinkles in a film is a result of competition between its bending energy and

stretching energy. Therefore, taking account of the bending energy of a DE film

becomes critical in analyzing the wrinkle formation and its morphology.
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A general formulation of plate theory for DE films subjected to

electromechanical loading is extremely challenging, which mainly stem from large

deformation of the material, coupling between mechanics and electrical field, and

complex geometries. To develop a model for predicting the critical condition of

wrinkling instability, instead of establishing a general plate theory for DE thin films,

we analyze the problem with a small three dimensional displacement field associated

with bending deformation superposed onto a finite 2D deformation state of a DE film.

Because the additional three dimensional displacement field is small and we only

focus on the bending of the DE film, we prescribe the form of additional displacement

field by following Kirchhoff assumptions of linear plate theory. In addition, because

the thickness of the DE film is unchanged with the additional superposed

displacement field, Maxwell stress in the DE film is assumed to remain the same.

Wrinkling in an annular membrane, caused by surface tension (Piñeirua et al.

2013), inhomogeneous growth (Mora and Boudaoud, 2006; Dervaux and Amar,

2008), mechanical force (Coman and Bassom, 2007; Davidovitch et al., 2011), has

been intensively studied in the past. As a demonstration of the application of our

model, in this paper, we analyze the wrinkle formation in an annular DE film with

internal constraint as shown in Fig. 1. It is easy to show that the model developed

below can be directly applied to analyzing wrinkling in DE films with different

geometries and under arbitrary electromechanical loadings.

2. Experiment
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In the experiment, we use laser cutter to cut a circular DE film (VHB 4905

purchased from 3M company), and paint carbon grease on both surfaces of the DE

film as compliant electrode. To avoid electrical arcing across free edge of the film, we

intentionally leave an annular gap near the edge of the film unpainted as shown in

Fig. 1. We next glue a circular acrylate plate with different diameters on the center of

the DE film to constrain its deformation. The adhesion between VHB film and the

acrylate plate is strong enough and no debonding and sliding has been observed in

our experiments. Finally, we apply an electrical voltage across the thickness of the

annular DE film with gradually increasing the magnitude. When the voltage is high

enough, wrinkles can be clearly observed in the film. Depending on the size of the

central rigid plate, wrinkles with different wavelength may appear as shown in Fig. 1.

If the voltage in the experiments is not too high, the formation and annihilation of

wrinkles can repeat many times with the voltage being turned on and off.

3. Model and formulation

3.1 A constrained annular DE film subjected to an electrical voltage

Fig. 2 sketches an annular DE film with clamped inner boundary. In the

undeformed state, the thickness of the film is denoted by H . The inner radius and

outer radius of the annular plate are denoted by A and B , respectively. In the

actuated state, a voltage Φ is applied between the two surfaces of the film. When the

voltage is small, the DE film deforms axisymmetrically and maintains flat

configuration (Fig. 2b). The hoop stress in the DE film is compressive while the radial
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stress is always tensile. With increasing the voltage, the compressive hoop stress

increases and finally wrinkles form in the DE film as shown in Fig. 1 and Fig. 2c. In

the following, we first analyze the deformation of DE film without wrinkles.

In the reference state, we label each material particle by its radial coordinate R

in the interval  BA, . In a deformed state, the material particle R takes the position

of coordinate  Rr . The function  Rr describes the deformed state of the DE film.

The radial stretch and the hoop stretch can be calculated as

dR
dr

r  , (1)

R
r

 . (2)

The DE is assumed to be incompressible, so that the stretch in thickness direction is

 rz /1 .

The electrical field E in the DE film is along the normal direction of the film

and relates to the voltage Φ as

h
ΦE  , (3)

where h is the thickness of the film in the deformed state, so zHh  .

The equation of force balance in the annular DE film is given by
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In the paper, we adopt ideal dielectric elastomer model, which assumes electrical
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permittivity is a constant and unaffected by the deformation and electrical field (Suo

et al., 2008). Meanwhile, neo-Hookean model is adopted here to describe the

hyperelasticity of the material. As a consequence, we have the following constitutive

equation:

  2222 Errrr     , (5)

  2222 Er     , (6)

where the first term in the above two equations originates from the elasticity of the

elastomer and the second term is known as Maxwell stress.

From the equilibrium Eq. (4), we can obtain the first derivative of  Rr :
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. (7)

First derivative of  R in Eq. (2) gives that

RdR
d r   


.

(8)

The ordinary differential equations (ODEs) of (7) and (8) can be solved

numerically with the following two boundary conditions:

  AAr  , (9)

  0Brr . (10)

3.2 Linear stability analysis of voltage-induced wrinkles in a DE film
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As discussed above, voltage-induced compressive hoop stress in the annular DE

film may result in wrinkling. To investigate the formation and morphology of

wrinkles, we first formulate a linear plate theory for a DE film under

electromechanical loading.

To derive the governing equations for the deflection of a DE film, we first need

to obtain the relationship between the stress and deflection of the film subjected

electromechanical loadings. For the purpose of clarity and simplicity, we first derive

the stress-deflection relationship of a DE film in a Cartesian coordinate, and then we

transfer the results to a polar coordinate.

We consider an element of a DE film subjected to a homogeneous electrical field

along the thickness direction. The deformation gradient of the film from initial

undeformed state denoted byBi to a flat state denoted byB0 is given by


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0F , (11)

where x , y and z are principle stretches in three orthogonal directions x , y

and z , where x and y are two perpendicular directions in the plane of the film,

and z is the direction perpendicular to the film.

Next, we assume the displacement field associated with wrinkling deformation

can be represented by u , v and w in the three orthogonal directions x , y and

z . The deformation gradient from the predeformed state B0 to wrinkled state B1 can

be given by
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Therefore, the deformation gradient from initial state Bi to wrinkled state B1 can

be calculated as
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The corresponding left Cauchy-Green strain tensor is
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Based on ideal dielectric elastomer model, Cauchy stress in a DE film can be

decomposed into elastic part and Maxwell stress, namely,

mela σσσ  , (15)

where Maxwell stress is a tensor and can be represented by
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and elastic stress elaσ is given by

I
F

Fσ pW
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


 stretch
ela , (17)

where stretchW is strain energy density of the elastomer and p is hydrostatic

pressure for the incompressibility of the elastomer. We adopt neo-Hookean model in

the current article, so Eq. (17) can be written explicitly as

IBσ p ela . (18)

Inserting Eqs. (18) and (16) into (15) leads to
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We can further rewrite Eq. (19) as
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A combination of Eqs. 20 (a-c) and Eq. (21) gives that
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Plugging (22) into 20 (a-f), we can further obtain
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A combination of Eqs. (23a-f) and force balance equations gives a complete set of

governing equations for both additional displacement field and stress field in a DE.

However, without further simplifications, these equations are very difficult to be

solved. As discussed previously, in this article, we only focus on additional bending

deformation in a DE film, so we will follow Kirchhoff’s hypotheses (Ventsel and

Krauthammer, 2001) to further simplify the problem. Kirchhoff’s hypotheses

developed for linear plate theory state that the straight lines, initially normal to the

middle plane of a plate before bending, remain straight and normal to the middle

surface during bending, and the length of such plate elements does not change.

Mathematically, we have the following equations:

0


z
w

, (24a)

0







z
u

x
w

, (24b)

0







z
v

y
w

. (24c)

The three new equations (24a-c) originating from Kirchhoff’s hypotheses make

the problem overdetermined. Therefore, it is necessary to drop three equations.

Following conventional linear plate theory (Ventsel and Krauthammer, 2001), Eqs.

(23c, e, f) are discarded. Moreover, the stress normal to the middle plane of the plate

is assumed to be negligible comparing with other stress components, i.e. 0zz .

Finally, the nonzero stress components in the DE film can be expressed as
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Integrating Eqs. (24a-c), we can obtain the displacement of a material point in

the DE film with distance z from the middle plane:
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where  yxww , is independent on z and denotes the deflection of the DE film.

Inserting Eq. (26) into (25), we can further obtain the stress components of a

material point in the DE film with distance z from the middle plane
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where  222
11 2 xyxC    ,  222

22 2 yyxC    , 22
2112 2  yxCC  ,

 22
662 yxC   .

Following the “hypothesis of straight normal”, the electrical field in Eq. (27) does

not change during bending. The bending moments: xxM , yyM and twisting moment

xyM can be integrated as:
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In a polar coordinate, the bending moment and twisting moment can be

similarly written as:
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where  2222 rrrrC     ,  2222    
rC , 222   rrr CC , and

 222   rssC . Therefore, in a polar coordinate, we have
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where   6/31553     rrrr HD ,   6/13553     rrHD ,

6/553    rrr HDD , and   24/13313     rrss HD .

In the normal direction, force balance condition requires that
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where hN rrrr  , hN   , hN rr   are the membrane forces.

On the inner circular boundary, the DE film is clamped, namely,

0w , (32)

0


r
w

. (33)

On the outer circular boundary, the bending moment is zero and vertical shear

force is zero, namely,

0rrM , (34)
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A combination of Eqs. (30a-c) and (31) with boundary conditions Eqs. (32)-(35)

sets an eigenvalue problem. We assume the deflection of the DE film follows

   krBfw cos , (36)

where Brr / ,  rf is a dimensionless single variable function, and k is

wavenumber of wrinkle.

Inserting (36) into (30) and (31), we get the following homogeneous ODE,
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The corresponding homogeneous boundary conditions are:
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In Eqs. (37) and (38), we define the following dimensionless quantities:

dimensionless thickness: BHH / ; dimensionless membrane stresses:  /rrrr 

and   / ; dimensionless bending/twisting stiffness:  ,2 3155     rrrrD

 ,2 1355     rrD 552   rrD ,   .2/1331     rrssD In the equations above,

dimensionless thickness H and the ratio between inner radius and outer radius of

the annular DE film BA / are the only two system parameters which can be varied

in experiments. The membrane stresses in the radial and hoop directions: rr and

 , and the bending/twisting stiffness both depend on the electrical field E or
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voltage Φ , which can be regarded as loading parameters for the system. For a given

set of parameters: H and BA / , we can solve the eigenvalue problem in Eq. (37)

with boundary conditions (38) numerically by using the function bvp4c in Matlab.

The characteristic equation determines the critical condition, namely voltage, for the

onset of wrinkles, and the associated eigenvectors give the mode of wrinkling.

4. Results and discussions

Using shooting method, we solve the ODEs of Eqs. (7) and (8) associated with

the boundary conditions (9) and (10) for a constrained annular DE film without

wrinkle formation. Fig. 3 plots the distributions of radial stretch and hoop stretch in

the annular DE film, for several different voltages and ratios between inner and outer

radius of the film. With increasing the voltage, both radial stretch and hoop stretch

increases.

As shown in Fig. 3, when the voltage is larger than a critical value, no

equilibrium solution can be found, which corresponds to pull-in instability of the DE

film. Pull-in instability is one of the most important electromechanical failure modes

in DE structures (Zhao and Suo, 2007; Norris, 2008; Zhou et al., 2008). The critical

voltage for the pull-in instability increases with the increase the ratio A/B as plotted

in Fig. 4. When the ratio A/B approaches zero, the annular DE film behaves like a

free-standing film. It has been shown in previous studies that the critical voltage for

the pull-in instability of a free-standing neo-Hookean DE film is

  69.0//inpull   H (Zhao and Suo, 2007). When the ratio A/B approaches one,
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the deformation state in the annular DE film is close to pure-shear. It can also be

easily shown that for a DE film with voltage-induced pure-shear deformation, the

normalized voltage for pull-in instability is:   1//inpull   H . Both two limiting

scenarios discussed above have been plotted in Fig. 4.

Fig. 5 plots the distribution of radial stress and hoop stress in the annular DE

film without wrinkle formation for several different radius ratios and applied voltages.

The results show that the radial stress in the DE film is tensile, while the hoop stress

in the film is compressive. For a given radius ratio, both radial stress and hoop stress

in the DE film increase with increasing the voltage. In addition, the radial stress in

the DE film monotonically decreases from the inner boundary to the outer boundary

as shown in Figs. 5a, c and e. The distribution of the hoop stress is little bit more

intricate. For small radius ratio, the hoop stress in the DE film monotonically

increases from the inner boundary to outer boundary. However, for big radius ratio,

the hoop stress in the DE film may monotonically decrease from the inner boundary

to the outer boundary when the voltage is large as shown in Fig. 5f.

When the voltage is high enough, compressive hoop stress can induce wrinkles in

the annular DE film as shown in our experiments (Fig. 1). By solving the eigenvalue

problem formulated in Section 3, we can calculate the critical voltage for the onset of

wrinkles with different wavelength in the DE film for different values of A/B. Our

calculation results are plotted in Fig. 6. For a given value of A/B and wavenumber k

of wrinkles, the voltage for the onset of wrinkles decreases with decreasing the

thickness of the film, namely, H/B. The results suggest that lower voltage is needed to
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trigger wrinkle formation in thinner DE films. For different values of A/B, the

wrinkling mode which needs the lowest critical voltage is also different. For instance,

in Fig. 6a, for A/B=0.1, the wrinkling mode with k=2 needs the lowest voltage; in Fig.

6b, for A/B=0.3, the critical mode is k=3. Figs. 6c and d show that the critical modes

are k=4 and k=6 or 7 for A/B=0.5 and 0.7, respectively. In Figs. 6a-d, we also plot the

voltage for inducing pull-in instability in the DE film. For a thick DE film, the critical

voltage for wrinkling may be even larger than the critical voltage for pull-in instability.

Therefore, for thick DE films, the wrinkles form after pull-in instability, which can be

consequently regarded as an indication of material failure.

In Fig. 7, we plot the dependence of critical wrinkling mode on the ratio between

the inner radius and outer radius of the DE film for two different film thicknesses:

H/B=0.02 and 0.005, respectively. The result shows that the wavenumber of the

critical wrinkling mode increases with increasing the value of A/B. The trend agrees

well with the wrinkling instability observed in a constrained annular film induced by

differential swelling or plastic deformation (Mora and Boudaoud, 2006; Coman and

Bassom, 2007). The results also show that for a given radius ratio, the DE film with

different thickness may also have different critical wrinkling mode. For the ratio:

A/B=0.75, the critical wrinkling mode of the DE film with thickness: H/B=0.02 is

k=7 while k=8 for the film withH/B=0.005.

In the experiment, it is usually challenging to precisely measure the critical

voltage for the onset of wrinkles in a DE film. However, the wavenumber of wrinkles

in the DE film can be easily measured as shown in Fig. 1. The experimental results of
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the wavenumber of wrinkles in annular DE films for three different values of A/B are

plotted together with our predictions as shown in Fig. 7. The wavenumber of wrinkles

in the experiments are consistently larger than the predictions. This difference can be

understood as follows: as described in section 2 and also shown in Fig. 1, to avoid

electrical arcing, a gap near the free edge of the annular DE film is intentionally not

coated by electrode. Due to the additional constraint from the gap which is not

considered in our model, stretching free energy penalty (compared to bending energy

penalty) in the film is actually larger than the prediction. Therefore, in the

experiments, wavenumber of wrinkles in the film is larger than predictions to reduce

stretching energy penalty.

Based on our calculation, we construct a phase diagram for a constrained DE

annular film with the thickness H/B=0.02 as shown in Fig. 8. Depending on the

radius ratio and magnitude of voltage, the DE film may stay in one of the three

phases: flat, wrinkling and pull-in instability. It can be seen from Fig. 8 that the

critical voltage for triggering wrinkling in the DE film first decreases and then

increases with increasing the ratio between inner radius and outer radius. When

A/B=0.4, the required voltage to induce wrinkles in the film is the lowest.

5. Conclusions

In this paper, we formulate a linear plate theory for a DE film under

electromechanical loading with small three deformation field superposed onto a

finite two dimensional deformation. Based on the theory, we investigate the
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formation and morphology of wrinkles in an annular DE film subjected to a voltage

and clamped on its inner radius. The theoretical predictions of wrinkling in the DE

film agree well with our experimental observations. Furthermore, we show that for

certain ranges of ratio between inner radius and outer radius of the DE film, the

critical voltage of inducing pull-instability of the system can be lower than the critical

voltage of inducing wrinkles in the film. As a result, we construct a phase diagram

with three different regions depending on the magnitude of voltage and the ratio

between inner radius and outer radius of an annular DE film: 1 the region

corresponding to stable and flat configuration of the film; 2 wrinkling region; 3 the

region for pull-in instability. The results obtained in the paper and the methodology

developed here will be useful for the future design of DE structures.
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(a) A/B=0.6 (b) A/B=0.7 (c) A/B=0.8

1cm

Fig. 1 Experimental photos of voltage-induced wrinkles in a constrained annular DE

film with different ratios between the inner radius A and outer radius B. (a) A/B=0.6,

(b) A/B=0.7, (c) A/B=0.8. The wavenumber of wrinkling mode increases with

increasing radius ratio.
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Fig. 2 Schematics of an annular DE film constrained by an inner circular rigid plate.

The inner radius and outer radius of the annular DE film without deformation are

denoted by A and B, respectively. In the experiment, an electrical voltage Φ is

applied across the thickness of the DE film. Three different states of the annular DE

film are sketched: (a) undeformed state; (b) deformed state without wrinkles; (c)

wrinkled state.
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Fig. 3 Distributions of radial stretch and hoop stretch in a constrained annular DE

film for several different voltages and ratios between its inner radius A and outer

radius B. The highest voltages in the figures correspond to the critical voltage of

inducing pull-in instability in the DE film.
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Fig. 4 Dependence of the critical voltage of inducing pull-in instability of the annular

DE film on the ratio between its inner radius and outer radius. When the ratio

between inner radius and outer radius approaches zero, the annular film becomes a

free-standing film; when the ratio approaches one, the deformation state of the film

is pure-shear.
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Fig. 5 Distributions of radial stress and hoop stress in the DE film without wrinkles,

for several voltages and radius ratios. The radial stress in the film is tensile, while the

hoop stress is compressive. The compressive hoop stress may wrinkle the DE film.
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Fig. 6 Dependence of critical voltage for inducing wrinkling instability on the

thickness of the DE film, for several radius ratios and wrinkling modes. For large film

thickness, the voltage for inducing pull-in instability is smaller than the voltage for

inducing wrinkling in the film.
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Fig.7 Dependence of the wavenumber of the critical wrinkling mode on the radius

ratio for two different film thicknesses H/B=0.02 and 0.005. The three dots are

experimental results from Fig. 1.
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Fig.8 A phase diagram of a constrained annular DE film with thickness H/B=0.02.

Depending on the ratio between the inner radius and outer radius of the film and the

magnitude of applied voltage, the film may stay in a flat and stable phase, wrinkling

phase or pull-in instability phase. The boundary between the flat phase and wrinkling

phase of the DE film is given by the dependence of critical voltage for wrinkling on its

radius ratio A/B. For the annular DE film with the radius ratio: A/B=0.4, the

required voltage to induce wrinkles in the film is the lowest.


