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Equations of state for ideal elastomeric gels
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Abstract – Submerged in a solvent-containing environment and subject to applied forces, a
covalent polymer network absorbs the solvent and deforms, forming an elastomeric gel. The
equations of state are derived under two assumptions. First, the amount of the solvent in the gel
varies when the gel changes volume, but remains constant when the gel changes shape. Second, the
Helmholtz free energy of the gel is separable into the contribution due to stretching the network
and that due to mixing the polymer and the solvent. We demonstrate that these equations of state
fit several sets of experimental data in the literature remarkably well.

Copyright c⃝ EPLA, 2012

Long, flexible polymers can be crosslinked by cova-
lent bonds to form a three-dimensional network, an elas-
tomer. Submerged in an environment containing solvent
molecules, the network imbibes the solvent and swells,
resulting in an elastomeric gel. Depending on functional
groups along the polymers, the amount of swelling can be
regulated by stimuli such as force [1], temperature [2,3],
and pH value [4,5]. Elastomeric gels are being devel-
oped for diverse applications, including artificial muscles
for actuators [6], self-regulated valves in microfluidics [7],
and swellable packers in oil wells [8]. These applications
have motivated the recent development of nonlinear field
theories [9–12].
The field theories require the input that character-

izes how mechanical constraints affect the amount of
swelling, and how chemical processes generate forces. Elas-
tomeric gels are often characterized by Flory-Rehner’s
model [13]. To compare theoretical predictions and exper-
imental observations quantitatively, many fitting parame-
ters have been added to the original model [2,3], and
the original model has also been modified in many other
ways [14,15]. In this paper, we explore an alternative
approach. We develop a set of equations of state on
the basis of two assumptions. First, the amount of the
solvent in the gel varies when the gel changes volume,
but remains constant when the gel changes shape. Second,
the Helmholtz free energy of the gel is separable into the
contributions of stretching the network and mixing the

(a)E-mail: suo@seas.harvard.edu

polymer and the solvent. We demonstrate that these equa-
tions of state fit several sets of experimental data in the
literature remarkably well.
Figure 1 illustrates a block of a network. In the reference

state, the block is a unit cube of a dry network, containing
no solvent and subject to no applied forces. In the current
state, the network is submerged in a solvent-containing
environment, and the six faces of the block are subject
to applied forces. When the network, the solvent, and
the applied forces equilibrate, the network absorbs C
number of solvent molecules, and deforms homogeneously
into the shape of a parallelepiped. The thermodynamic
state of the block is invariant with respect to any rigid-
body translation; we fix the position of one vertex of the
block, O, to the origin of the coordinates. In the reference
state, the three vectors OA, OB and OC are the edges of
the unit cube. In the current state, the three vectors are
the edges of the parallelepiped, with Fi1 being the three
components of the vector OA, Fi2 the three components
of the vector OB, and Fi3 the three components of the
vector OC. The nine components FiK together define the
tensor of the deformation gradient.
The ratio of the volume of the swollen gel and that of

the dry network is determined as follows. The volume
of the parallelepiped is J = (OA×OB) ·OC, namely,
J =detF. The gel is a soft material. Subject to applied
forces, the gel changes shape readily, but the volumes
of individual polymer chains or solvent molecules remain
nearly unchanged. As an idealization, we assume that the
volume of the gel is a function of the concentration of the
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Fig. 1: (Colour on-line) (a) In the reference state, a network
of dry polymers is a unit cube, and contains no solvent and
subject to no applied forces. (b) In the current state, the
network is in equilibrium with applied forces and with an
environment of a fixed chemical potential of solvent, µ; the
network deforms homogeneously into a parallelepiped. The
applied forces act on the six faces of the parallelepiped, and
are indicated by the nominal stresses siK . The deformation is
characterized by mapping the three vectors OA, OB and OC
from the reference state to the current state. The components
of the three vectors in the current state define the deformation
gradient FiK .

solvent:
J = f(C). (1)

That is, the amount of the solvent in the gel varies when
the gel changes volume, but remains constant when the
gel changes shape.
A more specific relation between J and C is commonly

used in the literature. When two species of molecules mix,
the volume of the mixture may differ from the sum of
the volumes of the two pure components. This change
in volume, however, is typically small compared to the
change in volume during swelling [16–18]. It is commonly
assumed that the volume of the gel equals the sum of
the volume of the dry network and the volume of the
absorbed solvent, J = 1+ΩC, where Ω is the volume per
solvent molecule. This specific relation will not be used
in this paper; rather, the more general assumption (1) is
adopted.
The relation (1) determines the concentration of solvent,

C, once the deformation gradient is known. Consequently,
the nine components of the deformation gradient F specify
the state of the gel. Attention is focused on isothermal
processes, in which temperature is fixed and is not listed as
a variable. LetW be the Helmholtz free energy of the gel in
the current state. Under the constraint (1), the Helmholtz
free energy of the gel is taken to be a function of the nine
components of the deformation gradient, W =W(F).
The density of crosslinks is typically very low; each

polymer chain consists of a large number of monomers.
Following Flory and Rehner, we assume that the crosslinks
negligibly affect the interactions between the monomers

and the solvent molecules, so that the Helmholtz free
energy of the gel is assumed to be separable into contribu-
tions from stretching the network and mixing the polymer
and the solvent [13]:

W =Wstretch(F)+Wmix(C). (2)

The free energy due to the stretching of the network,
Wstretch(F), is a function of the tensor of the deformation
gradient, and depends on the density of crosslinks. The
free energy due to the mixing of the polymer and the
solvent, Wmix(C), is a function of the concentration of
the solvent in the gel, but is independent of the density of
crosslinks.
Of course, assumption (2) is not always correct. For

example, many biopolymers contain folded domains,
which can unfold under applying stresses [19]. The inter-
action of the solvent with folded domains can significantly
differ from that with unfolded domains. Consequently,
Wmix in general depends on all the components of FiK ,
rather than on a single variable, J . However, we will
demonstrate that the relation (2) holds remarkably well
for many gels.
The two assumptions, (1) and (2), form the basis for

the model of ideal elastomeric gels. We next examine the
consequences of the model.
As illustrated in fig. 1, siK is the force applied on

the block in the current state, in direction i, on the
face whose normal vector is in direction K when the
block is in the reference state. Because the block in
the reference state is a unit cube, by definition siK
are the components of the nominal-stress tensor. The
applied forces can be represented by hanging weights.
In the current state, associated with a small change in
the deformation gradient, dF, the potential energy of the
weights changes by −siKdFiK . We adopt the convention
that a repeating index implies the summation over 1, 2
and 3.
Let µ be the chemical potential of the solvent in the

environment —that is, the increase of the Helmholtz free
energy of the environment when the environment gains
one solvent molecule. The chemical potential of solvent
in a saturated mixture of liquid and vapor is set to be
zero. Associated with the transfer of dC number of solvent
molecules from the environment to the gel, the free energy
of the environment changes by −µdC.
The gel, the hanging weights, and the solvent-containing

environment together form a composite thermodynamic
system. The composite exchanges energy with the rest of
the world by heat, but not by work; the composite does not
exchange matter with the rest of the world. The Helmholtz
free energy of the composite is the sum of the Helmholtz
free energy of the gel, the potential energy of the weights,
and the Helmholtz free energy of the environment. In
equilibrium, the change of the Helmholtz free energy of
the composite vanishes:

dW − siKdFiK −µdC = 0. (3)
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The composite is capable of internal variations of two
types: change in the deformation gradient and change
in the number of solvent molecules inside the gel. The
condition of equilibrium (3) holds for arbitrary small
changes of F and C, subject to the constraint (1).
Inserting (1) and (2) into the condition of equilib-

rium (3), we obtain that
[
∂Wstretch(F)

∂FiK
+

(
dWmix(C)

dC
−µ
)
JHiK
df(C)/dC

−siK =
]
dFiK = 0. (4)

We have used a mathematical identity dJ = JHiKdFiK ,
where HiK is the inverse of the deformation gradient,
i.e., HiKFiL = δKL and HiKFjK = δij [20]. The network,
the solvent and the applied forces equilibrate when (4)
holds for arbitrary small changes dFiK : a total of nine
independent variables. Consequently, the term in the
bracket in front of each of the nine terms in (4) must
vanish individually, giving that

σij = FjK
∂Wstretch(F)

J∂FiK
−Π(J)δij , (5)

with

Π(J) =

(
µ−dWmix(C)

dC

)
1

df(C)/dC
. (6)

We have expressed the equations of state (5) in terms
of the true stress σij , which is defined by imagining a
small cube cut from the parallelepiped. The true stress
is the force in the current state divided by the area in
the current state, and relates to the nominal stress by
σij = siKFjK/J [20].
In the model of ideal elastomeric gels, the function Π(J)

is independent of the density of crosslinks. In particu-
lar, when the density of crosslinks is so low that the
free energy of stretching is negligible, the gel is indistin-
guishable from a solution of the polymer and the solvent,
and (5) reduces to σij =−Π(J)δij . That is, the function
Π(J) is the osmotic pressure in the solution. For a solution
in which polymers are not crosslinked, a semipermeable
membrane is needed to prevent the polymers in the solu-
tion from escaping into the environment. In the solution,
the osmosis is balanced by a state of applied hydrosta-
tic stress. By contrast, in an elastomeric gel, the polymer
chains are held together by crosslinks, so that no semi-
permeable membrane is needed to separate the gel and
the environment. The osmotic pressure as a function of
the concentration of polymer is the same for the solution
and the gel. In the gel, the osmotic pressure is balanced by
the elasticity of the network and by the applied stresses,
eq. (5). The solution and the gel have the same chemistry
because the dilute crosslinks negligibly affect the molecu-
lar interactions between the solvent and the polymer. The
solution and the gel have different mechanics because the
solution is a liquid that can sustain only hydrostatic stress
in equilibrium, while the gel is a solid that can sustain
non-hydrostatic stress in equilibrium.

Because the thermodynamic state of the parallelepiped
is invariant with respect to any rigid-body rotation, the
free energy can only depend on the lengths of, and the
angles between, the three vectors OA, OB and OC.
The six quantities are determined by a combination of the
inner-products of the vectors, FiKFiL, known as the Green
deformation tensor [20]. That is, the invariance associated
with rigid-body rotation requires that W should depend
on F through FiKFiL. Using this dependence in (5),
one obtains that siKFjK = sjKFiK or σij = σji. These
relations are also be interpreted as the balance of moments
acting on the parallelepiped.
In the original Flory-Rehner model [13], specific func-

tions are adopted for Wstretch(F) and Wmix(C). The free
energy associated with stretching the network is given by
the Gaussian-chain model [13]:

Wstretch =
1

2
NkT (FiKFiK−3−2 log J), (7)

where N is the number of polymer chains per unit volume
and kT is the temperature in the unit of energy. The free
energy associated with mixing the polymer and the solvent
is given by the Flory-Huggins model [13]:

Wmix = kT

[
C log

ΩC

1+ΩC
+
χC

1+ΩC

]
, (8)

where χ is a parameter describing the interaction between
the solvent and the polymer. These functions have been
used to interpret experimental data, and have been
critiqued and modified in many ways. For example,
many other models have been proposed to describe
the stretching of the networks [21–23]. It has also been
pointed out that the Flory-Huggins model often fails to
match experiment data without extending the interaction
parameter χ to a fitting function. For example, Hooper
et al. [24] has pointed out that the Flory-Huggins model
does not account for orientation-dependent interactions
(e.g., hydrogen bonds), which can significantly affect the
swelling behavior of a gel. Bawendi and Freed [25,26] have
made systematic corrections to the mean-field theory of
Flory and Huggins.
In this paper, we adopt the Gaussian-chain model,

which characterizes the elasticity of a network by a single
scalar, the number of polymer chains per unit volume,
N . As stated previously, chemomechanical interactions
are material-specific and can be very complex, and we
do not make any assumption of the function Wmix(C).
Within this approach, a gel is fully characterized by a
scalar, N , and a single-variable function, Π(J). We show
below that the function Π(J) can be determined by several
distinct experimental methods. Furthermore, we use exist-
ing experimental data to demonstrate that the function
Π(J) determined by one experimental method can be
used to predict data obtained from another experimental
method.
Inserting (7) into (5), we obtain that

σij =
NkT

J
(FjKFiK−δij)−Π(J) δij . (9)
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In relating the model to experiments, we often describe
the deformation of the gel in the coordinates of principal
stretches. Let λ1,λ2,λ3 be the principal stretches of the
gel, so that F=diag(λ1,λ2,λ3) and J = λ1λ2λ3. Write (9)
in terms of the principal stretches and the principal
stresses:

σ1 =
NkT

J

(
λ21− 1

)
−Π(J), (10a)

σ2 =
NkT

J

(
λ22− 1

)
−Π(J), (10b)

σ3 =
NkT

J

(
λ23− 1

)
−Π(J). (10c)

Submerged in the solvent-containing environment but
subject to no applied forces, the gel attains a state of
equilibrium, the free-swelling state, characterized by a
isotropic swelling ratio λ1 = λ2 = λ3 = λ0. Setting σ1 = 0
in (10a), we obtain that Π(λ30) =NkT (λ

−1
0 −λ

−3
0 ). This

relation determines λ0 once the scalar N and the function
Π(J) are known. When a gel in the free-swelling state is
subject to a force, in a short time the solvent in the gel has
no time to redistribute, so that the concentration of the
solvent in the gel remains fixed, and the gel behaves like
an incompressible material. The volume of the gel remains
unchanged when the gel deforms to a state (λ1,λ2,λ3),
so that J = λ1λ2λ3 = λ30. Experimental data are often
reported in terms of stretches relative to the free-swelling
state, λ1/λ0, λ2/λ0 and λ3/λ0. In terms of the relative
stretches, (10) is written as

σ3−σ1 =
NkT

λ0

[(
λ3
λ0

)2
−
(
λ1
λ0

)2]

, (11a)

σ3−σ2 =
NkT

λ0

[(
λ3
λ0

)2
−
(
λ2
λ0

)2]

. (11b)

These are the stress-stretch relations of a gel when the
concentration of the solvent is fixed. The stress-stretch
relations are the same as those of the neo-Hookean model
commonly used for incompressible elastomers. The pre-
factor in (11) defines the shear modulus, G=NkT/λ0.
We next use the model of ideal elastomeric gels to

analyze several sets of experimental data in the existing
literature. Figure 2(a) illustrates an experiment in which
a cylinder of a polyacrylamide hydrogel is subject to
a uniaxial tensile force. The applied longitudinal stress
is denoted as σ3, and the transverse stresses are zero,
σ1 = σ2 = 0. Denote the longitudinal stretch by λ3, and
the two transverse stretches are equal, λ1 = λ2. In ref. [27],
the experiments are conducted with tensile forces applied
at different rates. When the loading rate is so high that
the amount of solvent in the gel remains unchanged, the
deformation conserves the volume of the gel, λ3λ21 = λ

3
0.

Consequently, (11a) is specialized to the form

σ3 =
NkT

λ0

[(
λ3
λ0

)2
−
(
λ3
λ0

)−1]

. (12)
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Fig. 2: (Colour on-line) (a) A cylinder of a gel is submerged
in water and subject to a uniaxial tensile force. The stress-
stretch curve measured under ultrafast tension is used to
obtain the shear modulus. (b) The function Π(J) is calculated
from the measurements with ultraslow tension. The theoretical
predictions are compared with experimental data for the
σ3−λ1 curve (c) and the σ3−λ3 one (d). The experimental
data are extracted from ref. [27].

This theoretical stress-stretch relation is plotted in
fig. 2(a), along with the experimental data reported in [27].
The theoretical curve and the experimental data agree well
once we fit the shear modulus as NkT/λ0 = 8.7 kPa. The
value of the free-swelling ratio λ0 is unreported in [27].
However, the weight fraction of the polymer in the free
swollen gel is reported as 6.2 wt%. Assuming the density
of the polymer is the same as that of water, we estimate
that the free-swelling ratio is λ0 = 2.5. Consequently, we
estimate that NkT = 21.8 kPa.
When the loading rate is so low that the gel equilibrates

with the solvent and the applied stress, the tensile defor-
mation causes the gel to absorb additional solvent, and
the volume of the gel changes. Setting σ1 = 0 in (10a), we
obtain that

Π(J) =
NkT

J

(
λ21− 1

)
. (13)

Under uniaxial tension, λ1 = λ2 and J = λ3λ21. In [27],
the relative stretches, λ3/λ0 and λ1/λ0, are measured
at various values of the applied forces. These measured
stretches, along with the values λ0 = 2.5 and NkT =
21.8 kPa estimated above, enable us to use (13) to plot
the function Π(J) in fig. 3(b).
In plotting (13), we do not need the values of the

applied stress that maintain various states of stretches.
As discussed above, the equations of state of the gel is
fully characterized by the scalar N and the single-variable
function Π(J). Once determined, they predict the stress
to maintain a state of stretches and in equilibrium with
the external solvent. For a given value of J , we obtain
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Fig. 3: (Colour on-line) (a) A bar of a hydrogel is submerged in
water with a fixed length. Both the longitudinal stress and the
lateral stretch change with temperature. (b) The longitudinal
stress σ3 is linearly related to λ3/λ

2
1− 1/λ3 and the slope gives

the shear modulus of the gel: NkT = 18 kPa. (c) The Π(J)
function is calculated for the gel from the experimental data
at several temperatures. (d) The longitudinal stress-stretch
relationship for PNIPAM gel at several temperatures. Different
curves are calculated by using the shear modulus from (b) and
the Π(J) function from (c). The experiment data are extracted
from ref. [28].

λ1 from (13), obtain λ3 from λ3 = J/λ21, and obtain σ3
from (10c). We plot the results as the σ3−λ1 curve in
fig. 2(c), and as the σ3−λ3 curve in fig. 2(d). They both
agree remarkably well with the experimental data reported
in [27].
The next example concerns a poly (N -isopropylaryla-

mide) hydrogel. The hydrophobicity of this hydrogel varies
markedly with temperature, so that the Π(J) function
varies with temperature. According to the experiments
carried out by Suzuki et al. [28], a bar of the hydrogel is
first submerged in water at 30 ◦C and reaches equilibrium
with a homogenous and isotropic swelling ratio λ0 = 2.2.
Subsequently, the hydrogel is stretched in the longitudinal
direction with fixed length, as illustrated in fig. 3(a). In the
experiment, the stress in the longitudinal direction and the
stretches in the lateral direction are carefully measured in
equilibrated hydrogels at different temperatures. Write the
stretch in the longitudinal direction by λ3 and the stretch
in the lateral direction by λ1. With zero lateral stress,
a combination of (10a) and (10c) eliminates the function
Π(J), giving that

σ3 =NkT

(
λ3
λ21
− 1
λ3

)
. (14)
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Fig. 4: (Colour on-line) (a) A natural rubber is submerged in
a solvent, either heptane or benzene, and is subject to three
types of load. (b) The function Π(J) is calculated from the
data obtained under the three types of loads. The experiment
data are extracted from ref. [29].

Based on the experimental data reported in [28], in
fig. 3(b), we plot σ3 as a function of λ3/λ21− 1/λ3 for
several stretches and temperatures. Since the temperature
range in fig. 3(b) is relatively small, the variation of
the parameter NkT is negligible: all the data points in
fig. 3(b) approximately follows a single line, whose slope
gives NkT = 18 kPa. Similarly, based on the stretches
measured at different temperatures for the hydrogel and
the shear modulus obtained above, Π(J) is plotted at
different temperatures for the hydrogel in fig. 3(c) by
using eq. (13). With the shear modulus and Π(J) for the
hydrogel, we calculate the longitudinal stress-stretch as
described before. The comparison between experimental
data and theoretical prediction is plotted in fig. 3(d).
Different samples are used in the experiments for different
levels of longitudinal stretches. Given the variations of
the samples, the theoretical predictions are also very
good.
The last example is concerned with the experiments of

Treloar [29]. A natural rubber is submerged in two types
of solvent, heptane and benzene, and is subject to three
types of loads: uniaxial tensile force, uniaxial compressive
force, and equal biaxial tensile forces (fig. 4(a)). Both
longitudinal stretch and lateral stretches are measured
under very small loading rate, so that the rubber is
in equilibrium with the solvent. Based on the average
molecular weight between two crosslinks in ref. [29], we
estimate that the shear modulus of the dry rubber is
NkT = 310 kPa. For experimental data obtained under
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uniaxial tensile or compressive forces, we use the measured
stretches and (13) to plot the function Π(J). For the
rubber under equal biaxial tension, the vertical stress
vanishes, σ3 = 0, the lateral stretches are equal, λ1 = λ2,
and J = λ21λ3. Equation (10c) is specialized to the form

Π(J) =
NkT

J

(
λ23− 1

)
. (15)

Using the above procedure, we plot the Π(J) function
in fig. 4(b). The functions Π(J) determined by differ-
ent types of load collapse to two curves, one for the
rubber submerged in heptanes, and other for the rubber
submerged in benzene. The plot demonstrates that the
function Π(J) is independent of the types of load. This
observation supports the model of ideal elastomeric gels.
In summary, an ideal elastomeric gel is characterized

by the number of polymer chains per unit volume, N,
and the osmotic pressure as a function of the volumetric
ratio, Π(J). Experimental data in the literature allow
the function Π(J) to be determined in several ways.
The agreement between the experiments and theoretical
predictions is encouraging. It is hoped that the model of
ideal elastomeric gels can be tested with other polymers,
so that its scope of applicability can be defined.
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