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Gravity-induced wrinkling of thin films on soft substrates
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Abstract – In this letter, we investigate the wrinkling instability of a stiff thin film bonded on a
soft substrate, induced by the gravity of densely packed pillars adhered on the surface of the film.
By using linear perturbation analysis, we show that the gravity of the pillars can induce wrinkling
instability of the system when the gravitational force of the pillars is large enough. Our calculation
results give the instability criterion and illustrate how the wavelength of the wrinkles varies with
several parameters of the system. The results of this article may be useful in the applications of
similar pillar structures.
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When a stiff thin film bonded on a soft substrate
is under compression, different wrinkling patterns have
been observed in various experiments [1,2]. Wrinkling
instability in such a system can be understood by energetic
considerations. When the compressive strain is large,
compared with a flat surface, a wrinkled surface has lower
elastic energy [3]. The wavelength of the wrinkles can
be calculated by minimizing the total elastic energy of
the thin film and soft substrate underneath. Recently,
controllable wrinkles have been explored to change the
adhesion and friction properties of surfaces [4–6].
Inspired by some recent experimental observations,

in this letter, we propose a different way of inducing
wrinkling instability in the system of a stiff thin film
bonded on a soft substrate. In the experiments [7–10], it
has been observed that periodically packed pillars adhered
on a compliant substrate tend to tilt and bundle together.
Corresponding analysis shows that the gravity of the
pillars is very crucial in determining the patterns of the
structure [11,12]. In this letter, we study the wrinkling
instability of a thin film on a soft substrate driven by
the gravity of pillars clamped on the surface, as shown
in fig. 1. When the gravity of the pillars is large enough,
the increase of the elastic energy of the system due to
wrinkling can be totally compensated by the decrease of
the gravitational potential energy of the pillars. By using
linear perturbation analysis, we show how the critical
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gravitational force depends on the elastic properties and
the geometry of the system.
As sketched in fig. 1, identical pillars are homogenously

clamped on the surface of a thin elastic film, which is
then bonded on a soft substrate. The total free energy
of the system, W , is the summation of the elastic energy
of the soft elastic substrate, the bending energy of the thin
film and the gravitational potential energy of the periodic
pillars. Denoting volume elements and surface elements by
dV and dS respectively, we have

W =

∫

V

UsdV +

∫

S

UfdS+

∫

S

UgdS, (1)

where Us is the elastic energy density of the soft substrate,
Uf is the bending energy of the thin film per area and Ug
is the gravitational potential energy of the pillars per area.
We assume the displacement ui and the strain εij in the

soft substrate is infinitesimal. The strain energy density of
the substrate is

Us =
1

2
σijεij , (2)

where σij is Cauchy stress tensor and the infinitesimal
strain tensor is defined as εij = (∂ui/∂xj + ∂uj/∂xi) /2.
For simplicity, the soft substrate is assumed to be incom-
pressible and the stress tensor σij can be written as

σij =−pδij +µ
(
∂ui
∂xj
+
∂uj
∂xi

)
, (3)

where p is the hydrostatic pressure in the soft substrate,
δij is the Kronecker delta and µ is the shear modulus.
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Fig. 1: (Color online) Schematic of periodic pillars adhered on
a stiff thin film bonded to a soft substrate with thickness h.

The bending energy density Uf of the thin film can be
written as [13]

Uf =
1

2
D
(
∇2uf3

)2
− (1− ν)

⎡

⎣∂
2uf3
∂x21

∂2uf3
∂x22
−
(
∂2uf3
∂x1∂x2

)2⎤

⎦ ,

(4)
where ∇2 = ∂2/∂x21+ ∂2/∂x22 is a 2D Laplace operator, D
is the bending stiffness of the film, ν is the Poisson ratio
and uf3 is the deflection of the film.
The pillars are densely packed on the top of the thin

film, so we adopt a continuous description in the following
formulations. The change of the gravitational potential
energy of the pillars, due to the deformation of the system,
can be approximated as

Ug = nρgV0H, (5)

where n is number of pillars per surface area, ρ is the mass
density of the pillars, g is the gravitational acceleration,
V0 is the volume of a single pillar, and H is the position
change of the gravity center of pillars in the vertical
direction.
We further assume that the pillars are always perpen-

dicular to the surface of the thin film. Through simple
geometrical analysis, H can be linked to the deflection of
the thin film by

H = uf3 + l

⎧
⎪⎨

⎪⎩

⎡

⎣1+

(
∂uf3
∂x1

)2
+

(
∂uf3
∂x2

)2⎤

⎦
−1/2

− 1

⎫
⎪⎬

⎪⎭
, (6)

where l is the half-length of the pillar.
Since the displacement is small, eq. (6) can be approxi-

mated by Taylor’s expansion to the second order as

H = uf3 −
l

2

⎡

⎣
(
∂uf3
∂x1

)2
+

(
∂uf3
∂x2

)2⎤

⎦ . (7)

Plugging (7) into (5), we obtain

Ug =G

⎡

⎣u
f
3

l
− 1
2

(
∂uf3
∂x1

)2
− 1
2

(
∂uf3
∂x2

)2⎤

⎦ , (8)

where G= nρgV0l is a loading parameter.
The vertical displacement is continuous on the interface

between the soft substrate and the thin film. Therefore,
in this problem, ui are the only independent variables.
Minimizing the free energy in eq. (1) with respect to ui
gives the equilibrium conditions

µ

(
∂2ui
∂x21

+
∂2ui
∂x22

+
∂2ui
∂x23

)
− ∂p
∂xi
= 0, (i= 1, 2, 3) , in V ,

(9)
and the boundary conditions

σ3i =−
(
G

l
+G∇2u3+D∇2∇2u3

)
δ3i, at x3 = 0. (10)

The bottom of the soft substrate is fixed, so

ui = 0, at x3 =−h. (11)

The above boundary value problem has a simple homoge-

nous solution: u(0)i = 0 and p
(0) =G/l. To study the stabil-

ity of the problem, we search for another solution: ui =

u
(0)
i +u

(1)
i and p= p(0)+ p(1), in which u(1)i and p(1)

are small perturbations of u(0)i and p(0), respectively.

Due to the incompressibility, u(1)i can be represented by

u
(1)
1 =−∂φ2/∂x3, u

(1)
2 = ∂φ1/∂x3 and u

(1)
3 = ∂φ2/∂x1−

∂φ1/∂x2, with φ1 and φ2 being stream functions. We
assume that the solutions are of the periodic forms as

φ1 = Φ1 (x3) e
i(k1x1+k2x2),

φ2 = Φ2 (x3) e
i(k1x1+k2x2), (12)

p(1) = P (x3) e
i(k1x1+k2x2),

where i=
√
−1, k1 and k2 are wave numbers per unit

length in the x1 and x2 directions, respectively.
A combination of eqs. (12) and eqs. (9) gives,

µ

(
d3Φ1
dx33

− k2 dΦ1
dx3

)
− ik2P = 0,

µ

(
d3Φ2
dx33

− k2 dΦ2
dx3

)
+ ik1P = 0,

µ

(
d2Φ

dx23
− k2Φ

)
+ i
dP

dx3
= 0,

(13)

where Φ= k1Φ2− k2Φ1 and k=
√
k21 + k

2
2.

The general solutions of the above ordinary differential
equations are

Φ1 = −c1e−kx3 + c2ekx3 + ik2
(
c5e
−kx3 − c6ekx3

)
,

Φ2 = −c3e−kx3 + c4ekx3 − ik1
(
c5e
−kx3 − c6ekx3

)
, (14)

P = 0,
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Fig. 2: (Color online) Variations of the dimensionless loading
parameter G/µh with the wave number kh of the wrinkles, for
several different bending stiffnesses of the thin film.

where c1, c2, . . . , and c6 need to be determined through
boundary conditions.
Inserting the general solution (14) into boundary condi-

tions (10) and (11), we obtain six homogenous linear alge-
braic equations with the six constants c1, c2,. . . , and c6
to be determined. To ensure the existence of nontrivial
solutions, the determinant of the coefficient matrix must
vanish, yielding

G

µh
=
D

µh3
(kh)2+

2
[
1+2 (kh)2+cosh(2kh)

]

kh [2kh− sinh (2kh)] , (15)

where D/µh3 is a normalized bending stiffness of the thin
film.
Equation (15) gives the criterion for the stability of the

system: the system wrinkles if positive root of k1 and k2
exists for a fixed value of G. In general, G attains the
minimal Gc at k1 = k1c and k2 = k2c, where the critical
wave numbers k1c and k2c are determined by ∂G/∂k1 = 0
and ∂G/∂k2 = 0. The magnitude of Gc gives the critical
loading condition for wrinkling, while the wave vector k=
k1e1+ k2e2 characterizes the wrinkling mode. Obviously,
the above relation is symmetric about k1 and k2, and
so is the corresponding instability mode (k1, k2). As a
consequence, the wrinkling pattern of the film will be
statistically isotropic or disordered, which is similar to the
simulation results obtained in [14].
With eq. (15), in fig. 2, we plot the dimensionless

loading parameter G/µh as a function of the normalized
wave number kh, for several different normalized bending
stiffnesses of the thin film D/µh3. If the relevant material
parameters are taken as D= 2.5× 10−4N ·m, µ= 1MPa
and h= 1mm, we obtain the normalized bending stiffness
of the thin film, D/µh3 = 0.25. In fig. 2, we find that,
when D/µh3 = 0.25, G/µh has the minimal Gc/µh= 2.50
at the critical wave number kch= 2.22. The plotting
results indicate that the pillars can wrinkle the surface
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Fig. 3: (Color online) Variations of (a) the critical load Gc/µh
for wrinkling the system and (b) the critical wave number of
the wrinkles kch with the normalized bending stiffness of the
thin film D/µh3.

of the system when the loading parameter G is beyond a
threshold Gc.
In fig. 3(a), we plot how the critical loading parameter

Gc/µh varies with the bending stiffness of the thin film
D/µh3. The value of Gc/µh increases with increasing
D/µh3. The result implies that a stiff thin film tends to
prevent the wrinkling of the system, which is consistent
with our intuition. In fig. 3(b), we plot the critical wave
number of the wrinkles kch as a function of D/µh3. The
critical wave number can be tuned in a wide range by
changing the bending stiffness of the thin film. From
figs. 3(a) and (b), we find that when D/µh3 approaches
zero, Gc/µh also approaches zero and kch approaches
infinity. In this limit, our continuous description of pillars
may not be valid. This is because when kch is large, namely
the wavelength of the wrinkles is small, the distance
between each two pillars can be comparable or even bigger
than the wavelength of the wrinkles. Therefore, the results
in figs. 3(a) and (b) for small D/µh3 may not be accurate
or even correct.
In conclusion, we have studied the wrinkling instability

of the system with a thin film bonded on a soft substrate,
induced by the gravity of pillars adhered on the surface.
The calculation results show that the pillars can wrinkle
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the surface of the system when the gravitational force is
larger than a critical value, and the wrinkling patterns
can be regulated by changing the properties of the thin
film. According to our knowledge, there has not been any
experimental observation on the gravity-induced wrinkling
instabilities. We hope our predictions can be verified by
future experiments, and the results obtained in this article
may find applications in generating wrinkling patterns in
pillar structures.
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