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When a gas is injected into a bubble in an elastomer, the bubble may first expand
gradually, and then snap suddenly to a large size. This snap-through instability is
analyzed here using a model that accounts for both the surface tension and the lim-
iting stretch of the elastomer. In a state of equilibrium, the pressure in the bubble
counteracts three contributions: the ambient pressure due to the environment out-
side the elastomer, the Laplace pressure due to the surface tension of the elastomer,
and the additional pressure due to the elasticity of the elastomer. The Laplace
pressure is large for a small bubble, but falls as the bubble expands. The
additional pressure due to elasticity increases as the bubble expands, and rises
steeply when the surface of the bubble approaches the limiting stretch of the elas-
tomer. We show that the bubble snaps only if a sufficient amount of gas can rush
into the bubble at the onset of instability.
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1. INTRODUCTION

Gas bubbles are ubiquitous in technological and natural processes,
ranging from foaming polymers [1] to raising dough. The significance
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of gas bubbles expanding in soft materials may be illustrated by recal-
ling several examples. Gas bubbles in adhesives often act as sites to
initiate cavitation and fracture [2–4]. When a polymer is heated, the
absorbed water is expelled, forming bubbles and leading to ‘‘popcorn
failure’’ [5,6]. Gas bubbles can form in tissues when a diver rapidly
ascends from deep water, and cause decompression sickness [7,8].
Water in the xylem of a tree is under large tensile stress, which may
suck air bubbles into the xylem, leading to embolism [9].

Recently, a technique called cavitation rheology has been developed
to use air bubbles to probe mechanical properties in the interior of soft
materials [10,11]. In this technique, a needle is inserted into a soft
material, and is connected through a tube to a syringe. One then
pushes the plunger of the syringe, injects an air bubble into the
material, and monitors the pressure of the air in the tube. The pres-
sure first ramps up and then drops suddenly. The rate at which the
pressure ramps up can be made low by slowly pushing the plunger.
The sudden drop of the pressure corresponds to a sudden and large
expansion of the bubble. The peak of the pressure is used to identify
the elastic modulus and the surface tension of the material.

Expansion of bubbles and cavities in soft materials has been studied
by many authors. The earliest studies represented an elastomer by the
neo-Hookean model, and ignored the surface tension of the elastomer
[12,13]. It was found that, as the bubble expands, the pressure in the
bubble increases monotonically, approaching a finite asymptotic
value. When the surface tension was included in the model, the pres-
sure was found to rise as the bubble expands, reaches a peak, and then
falls to the asymptote [14,15]. In an elastomer, each individual poly-
mer chain has a finite contour length, so that the elastomer exhibits
a limiting stretch. On approaching the limiting stretch, the elastomer
stiffens steeply. This effect is absent in the neo-Hookean model, but is
represented by material models such as those of Arruda and Boyce
[16] and of Gent [17]. In particular, Lin and Hui [18] adopted the Gent
model to analyze the inflation of a crack-like defect. Further literature
on the expansion of bubbles and cavities in elastomers and other mate-
rials can be found in an online journal club [19]. An expanding bubble
sometimes causes the surrounding elastomer to fracture [11]. This
phenomenon deserves a careful analysis, but will not be pursued here.

The object of this paper is to analyze conditions under which a gas
bubble snaps to a large size, assuming that the elastomer does not
fracture. Our analysis parallels that in [15], which considered a cavity
in a soft material subject to external load. Our model will include both
the surface tension and the limiting stretch. As the bubble expands,
the pressure first rises, reaches a peak, falls, and then rises again.
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The shape of the curve is reminiscent of the load-displacement curve of
a structure undergoing snap-through instability [20]. Our calculation
shows that the gas bubble will only snap to a large size if a sufficient
amount of gas can rush into the bubble.

2. A GAS BUBBLE IN AN ELASTOMER

Figure 1a illustrates a spherical gas bubble in an elastomer. The
environment outside the elastomer is under an ambient pressure p0,
while the gas in the bubble is under pressure p. The surface tension
of the elastomer is c, taken to be constant when the elastomer is
stretched. Let A be the radius of the bubble when the elastomer is
undeformed, and a be the radius of the bubble when the elastomer
is deformed subject to the pressures and the surface tension. The ratio
a=A is called the stretch of the bubble. This section recalls the basic
results that relate the stretch of the bubble to the pressures and the
surface tension. The presentation will be brief; see references cited
above for additional details.

Figure 1b shows an element of the deformed elastomer, undergoing
two equal hoop stretches kh¼ k/ and a radial stretch kr. The elastomer
is taken to be incompressible, so that khk/kr¼ 1. Write the hoop
stretches as kh¼ k/¼ k and the radial stretch as kr¼ k"2. The element
is under triaxial stresses: two equal hoop stresses rh¼ r/ and a radial
stress rr. Due to incompressibility, the state of deformation is unaffec-
ted when the element is superimposed with a hydrostatic stress. In
particular, superimposing a hydrostatic stress ("rr, "rr, "rr) to the
state of triaxial stresses (rh, rh, rr) results in a state of equal-biaxial
stresses (rh" rr, rh" rr, 0). Consequently, the state of deformation of
the element subject to the triaxial stresses is the same as the state
of deformation of the element subject to equal-biaxial stresses. Denote
the biaxial stresses by r¼ rh" rr.

Figure 1c sketches the stress-stretch curve, r(k), for the element
subject to equal-biaxial stresses. For an isotropic and incompressible
elastomer, the small-stress modulus under equal-biaxial stresses is
6l, where l is the small-stress shear modulus of the elastomer. Also
indicated in the figure is the limiting stretch klim.

As indicated in Fig. 1a, an element of the elastomer is at distance R
from the center of the bubble when the elastomer is undeformed, and
moves to a place at distance r from the center of the bubble when the
elastomer is deformed. The stretches and the stresses in the elastomer
are functions of the radial position: k(r), rr(r) and rh(r). At the surface
of the bubble, the hoop stretch of the elastomer equals the stretch of
the bubble, k(a)¼a=A, while the radial stress in the elastomer is

468 J. Zhu et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
u
o
,
 
Z
h
i
g
a
n
g
]
 
A
t
:
 
0
0
:
3
5
 
2
6
 
M
a
y
 
2
0
1
1



balanced by the pressure in the gas and the Laplace pressure due
to the surface tension, rr(a)¼" pþ 2c=a. The size of the elastomer is
taken to be much larger than the size of the bubble. Far from the
bubble, the elastomer is undeformed, k(1)¼ 1, and is under the
ambient pressure, rr(1)¼"p0.

FIGURE 1 (a) A spherical gas bubble in an elastomer. The radius of the bub-
ble is A in the undeformed elastomer, and is a in the deformed elastomer. (b)
Due to incompressibility, the state of deformation of an element subject to
triaxial stresses is the same as that of the element subject to equal-biaxial
stresses. (c) The stress-stretch curve under equal-biaxial
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stresses (color
figure available online).
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Recall that k¼ r=R, and that the elastomer is taken to be incom-
pressible, r3"a3¼R3"A3. Consequently, r is a function of k, namely,
r¼ (a3"A3)1=3k(k3" 1)"1=3. Differentiating this function, we obtain
that dr¼" (a3"A3)1=3(k3" 1)"4=3dk. Integration of the equilibrium
equation drr=dr¼ 2(rh" rr)=r gives that

p ¼ p0 þ
2c
a

þ
Z a=A

1

2r kð Þdk
k k3 " 1
! ": ð1Þ

In a state of equilibrium, the pressure p in the bubble counteracts
three contributions: the ambient pressure due to the environment out-
side the elastomer, the Laplace pressure due to the surface tension of
the elastomer, and the additional pressure due to the elasticity of the
elastomer. When p¼p0þ 2c=A, the bubble is unstretched, a=A¼ 1.
When p<p0þ 2c=A, the bubble shrinks, a=A< 1. When p>p0þ 2c=A,
the bubble expands, a=A> 1.

Equation (1) is valid for the stress-stretch curve r(k) of arbitrary
form. A specific form of r(k) can be derived once the elastomer is
characterized by a free-energy function. Let W be the free energy
per unit volume of the elastomer. Under equal-biaxial stresses, the
free energy is a function of the stretch, W(k). The stress-stretch
relation is given by

r kð Þ ¼ k
2

dW kð Þ
dk

: ð2Þ

We adopt the Gent free-energy function [17]

W ¼ " lJlim

2
log 1" J

Jlim

# $
; ð3Þ

where J ¼ k2h þ k2/ þ k2r " 3, Jlim is a constant related to the limiting
stretch, and l is the small-stress shear modulus. The value of J=Jlim

is restricted in the interval 0&J=Jlim< 1. When J=Jlim! 0, the Taylor
expansion of (3) gives W¼ lJ=2. That is, the Gent model recovers the
neo-Hookean model when deformation is small compared with the lim-
iting stretch. When J=Jlim! 1, the elastomer approaches the limiting
stretch. Under equal-biaxial stresses, J¼ 2k2þ k"4" 3, and the limit-
ing stretch klim relates to Jlim through the equation

Jlim ¼ 2k2lim þ k"4
lim " 3: ð4Þ
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Inserting (3) into (2), we obtain the stress-stretch curve under the
equal-biaxial stresses:

r kð Þ ¼
l k2 " k"4
! "

1" 2k2 þ k"4 " 3
! "

=Jlim

: ð5Þ

A combination of (1) and (5) gives that

p ¼ p0 þ
2c
a

þ 2l
Z a=A

1

k"2 þ k"5! "
dk

1" 2k2 þ k"4 " 3
! "

=Jlim

: ð6Þ

For the neo-Hookean material, Jlim!1, the integral in (6) is readily
calculated, giving [14]

p ¼ p0 þ
2c
a

þ l
2

5" 4
a

A

% &"1
" a

A

% &"4
' (

: ð7Þ

For the Gent model of a finite value of Jlim, the integral in (6) is
evaluated numerically. The results can be represented in terms of
the normalized pressure in the bubble, p=l, as a function of the stretch
of the bubble, a=A. The function is affected by two dimensionless para-
meters: Jlim and c=(lA). For a representative value Jlim¼ 80, the limit-
ing stretch is klim¼ 6.44. The ratio c=l defines a length. Representative
values for an elastomer are c¼ 0.025 J=m2 and l¼ 106 J=m3, giving
c=l¼ 25nm. Representative values for a soft hydrogel are
c¼ 0.070 J=m2 and l¼ 103 J=m3, giving c=l¼ 70 mm. The length c=l
need be much larger than the radius of a bubble for the surface tension
to play a significant part in resisting the growth of the bubble. In
experiments described in Ref. [11], the reported shear modulus ranged
from 0.5' 103 J=m3 to 20' 103 J=m3, and the reported radius of syr-
inge needles used ranged from 30mm to 200 mm.

Figure 2 displays (6) by plotting the normalized pressure in the bub-
ble, p=l, as a function of the stretch of the bubble, a=A. It should be
noted that when p¼p0, the surface energy may make the bubble
shrink, and thus a<A. For a small value of c=(lA), the expansion of
the bubble is mainly resisted by the elasticity of the elastomer, and
the pressure monotonically increases with the stretch. For a suffi-
ciently large value of c=(lA), the pressure-stretch curve exhibits a
peak [14]. The surface tension causes the Laplace pressure, which is
large for a small bubble, and falls when the bubble expands. The pres-
sure due to the elasticity of the elastomer increases monotonically
with the radius of the bubble, and the pressure rises steeply when
the stretch of the bubble approaches the limiting stretch, a=A! klim.
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For the neo-Hookean material, the peak pressure can be deter-
mined by maximizing the pressure in (7). When the stretch of the bub-
ble is a=A¼ (c=(lA)" 1)"1=3, the pressure in the gas reaches the peak,
given by

ppeak ¼ p0 þ
5l
2

þ 3l
2

c
lA

" 1

# $4=3

: ð8Þ

FIGURE 3 The normalized peak pressure relative to the ambient pressure as a

FIGURE 2 The normalized pressure in the bubble relative to the ambient
pressure as a function of the stretch of the bubble. When the pressure in the
bubble is programmed to ramp up with time, upon reaching the peak of
the curve, the bubble expands suddenly, without appreciable change in the
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pressure (color figure available online).

function of the normalized surface tension (color figure available online).
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For the Gent material with a finite value of Jlim, the peak pressure can
be determined numerically from (6). Figure 3 plots the normalized
peak pressure as a function of the normalized surface tension. The peak
pressure depends weakly on Jlim, because the pressure peaks when
the stretch of the bubble is much smaller than the limiting stretch.

3. SNAP-THROUGH INSTABILITY

The shape of the curve in Fig. 2—rising, falling, and then rising
again—is reminiscent of the load-displacement curve for a structure
undergoing snap-through instability [20]. Consider a hypothetical
experiment in which the experimentalist programs the pressure in
the gas to ramp up with time. When the pressure reaches the peak
of the pressure-stretch curve, the bubble enlarges suddenly without
appreciable change in the pressure, and the bubble attains another
state of equilibrium near the limiting stretch. This snap-through
instability is indicated in Fig. 2 by a horizontal arrow. By ‘‘suddenly’’,
we mean that the rate of the expansion of the bubble, which may be
limited by inertia, is much faster than the rate at which the pressure
ramps up, which is set by the experimentalist. In such a hypothetical
experiment, the pressure is programmed to ramp up at all times, and
cannot drop.

In practice, however, the pressure in the bubble is rarely pro-
grammed. Consider the process of decompression. An elastomer is
initially placed in an environment with a gas of a high pressure, and
the elastomer is saturated with molecules of the gas. When the press-
ure of the gas in the environment is reduced to a lower level, the gas
molecules will diffuse out of the elastomer, release to the environment,
and fill the bubbles inside the elastomer. In this case, the number of
gas molecules in a bubble ramps up, at a rate limited by the diffusion
through the elastomer. We may assume that the number of gas mole-
cules inside the bubble is fixed when the bubble snaps. The gas in the
bubble is taken to obey the ideal-gas law:

pVbubble ¼ NkT; ð9Þ

where Vbubble¼ 4pa3=3¼ 4pA3k3=3 is the volume of the bubble, N is the
number of molecules of the gas in the bubble, and kT is the tempera-
ture in the unit of energy. Both the pressure and the temperature are
taken to be homogeneous inside the bubble.

The state of equilibrium is determined on the pressure-radius plane
by the intersection of the two curves, (6) and (9). Figure 4 plots (6) for
Jlim¼ 80, c=(lA)¼ 10, and p0=l¼ 0. Also plotted is (9) for several
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values of the normalized number of gas molecules in the bubble, NkT=
(4pA3l=3). For a fixed number of gas molecules, (9) requires the pres-
sure to drop as the bubble expands. When the number of gas molecules
ramps up, the pressure in the bubble first rises, reaches a peak, falls,
and finally rises again. Meanwhile, the bubble expands gradually, but
does not snap.

In the experiments described in [10,11], however, the air bubble did
undergo a snap-through instability: the pressure dropped, while the
bubble enlarged suddenly. These observations are inconsistent with
either ramping pressure or ramping number of gas molecules in the
bubble. In the experiments, the initial shape of the bubble was not
spherical, but was a zone created by inserting a needle into a hydrogel.
The response of this zone to the pressure has not been analyzed, and
will alter the detailed shape of the pressure-stretch curve. This effect
will not be considered here. Instead, we will focus on how air molecules
enter the bubble. In the experiment, the needle was connected to a
tube, which in turn was connected to a syringe. The plunger of the
syringe was pushed at a constant rate, while the total number of air
molecules in the combined space of the bubble and the tube was fixed.
The volume of the bubble was much smaller than that of the tube. The
plunger was pushed at such a slow rate that, prior to the sudden
expansion of the bubble, the pressure was homogeneous everywhere
in the bubble and the tube, and the pressure ramped up at a rate
controlled by the rate at which the plunger was pushed. However,

FIGURE 4 The ideal gas law is plotted on the pressure-stretch plane at
several values of the normalized number of gas molecules in the bubble. The
parameters used are Jlim¼ 80, c=(lA)¼ 10, and 0
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p =l¼ 0 figure(color
available online).
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when the bubble snapped, some additional air molecules may rush
into the bubble, but the time was insufficient for the pressure to homo-
genize throughout the bubble and the tube.

To understand fully this dynamic process will require an analysis of
the flow of the air in the needle and tube. This analysis will not be

FIGURE 5 A schematic of an idealized experiment consisting of a chamber
and a bubble. When the bubble snaps to a large size, the total number of
gas molecules in the chamber and bubble is fixed, and the pressure in the
chamber and bubble is homogeneous.

FIGURE 6 When the number of gas molecules reaches a critical value, the
bubble snaps to a large size, and the pressure suddenly drops. The parameters
used are Jlim¼ 80, c=(lA)¼ 10, Vchamber=(4pA

3=3)¼ 10, and 0
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p =l¼ 0 (color
figure available online).
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performed here. Instead, we focus on aspects of the process by consider-
ing an idealized experiment, in which the bubble is connected to a
chamber (Fig. 5). Air molecules come into the chamber from an inlet.
When the bubble snaps, the time is taken to be long enough so that
the pressure in the bubble and the chamber can homogenize (thus
any pressure change due to flow of the gas is negligible), but is short
enough so that the inlet is effectively shut. In this idealized experiment,
the total number of air molecules, N, in the bubble and the chamber is
constant when the bubble snaps. A similar idealization has been used to
analyze the inflation of a balloon [21]. We apply the ideal-gas law to the
combined volume of the bubble and the chamber:

p Vbubble þ Vchamberð Þ ¼ NkT; ð10Þ

where Vchamber is the volume of the chamber, and is taken to be fixed.

FIGURE 7 The number of gas molecules in the chamber and bubble as a func-
tion of the stretch of the bubble. (a) Jlim¼ 80. (b) Jlim
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¼ 200 (color figure
available online).
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Figure 6 once again plots (6) on the pressure-radius plane. Also
plotted is (10) for several values of the normalized number of gas
molecules. The volume of the chamber is fixed at Vchamber=(4pA

3=
3)¼ 10. As the total number of gas molecules in the chamber and
the bubble ramps up, the bubble may equilibrate at different states.
When NkT=(4lpA3=3)¼ 100, there is only one state of equilibrium,
P1. When NkT=(4lpA3=3)¼ 200, there are three states of equilibrium,
P2, P3 and P4. When NkT=(4lpA3=3) reaches a critical value 302, the
bubble snaps from P5 to P6, meanwhile the pressure drops from 30
to 8. As the number of air molecules ramps up further, the bubble
expands gradually.

As an alternative visualization of the above discussion, Fig. 7 plots
the total number of air molecules as a function of the stretch of the
bubble. The total number of air molecules is taken to be fixed when
the bubble snaps. As the number of air molecules ramps up, the bubble
first expands gradually. On reaching the peak value of N, the bubble
snaps with the fixed number N, and then reaches another state of
equilibrium of a larger size. When the volume of the chamber is small,
say, Vchamber=(4pA

3=3)¼ 2, 5, 10, the expansion of the bubble associa-
ted with the snap increases with the volume of the chamber (Fig. 7a).
When the volume of the chamber is large, say, Vchamber=(4pA

3=
3)¼ 200, 500, 1000, the expansion of bubble associated with the snap
is insensitive to the size of chamber, but depends on the limiting
stretch (Fig. 7b). When Vchamber=(4pA

3=3)!1, ramping up the num-
ber of air molecules recovers ramping up the pressure, which can
achieve the largest snap-through expansion.

FIGURE 8 The bubble may snap when the normalized volume of the chamber
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and the normalized surface tension are above the curve (color figure available
online).
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A bubble may snap when the volume of the chamber and the surface
tension is sufficiently large, as illustrated by the curve in Fig. 8. For
example, the bubble cannot snap when c=(lA)<1.19, even if Vchamber

is infinite, corresponding to a ramping pressure in the bubble. As a
second example, when c=(lA)¼ 10, the bubble can snap when Vchamber

is larger than 1.15 times the volume of the bubble in the undeformed
elastomer.

4. STABILITY OF THE STATES OF EQUILIBRIUM

As mentioned before, in Fig. 6 each intersection of the two curves
represents a state of equilibrium. To ascertain the stability of the state
of equilibrium, we follow a familiar approach [15] and invoke a
free-energy function. We regard all parts—the elastomer, the surface,
the gas inside the chamber and the bubble, and the external environ-
ment—together as a thermodynamic system. Write the free energy of
the system as

F ¼ Felastomer þ Fsurface þ Fgas þ Fenvironment: ð11Þ

The first contribution to the free energy comes from the elasticity
of the elastomer, Felastomer¼

R
WdV, where the integral extends

over the volume of the elastomer and dV¼ (4p=3)d(r3)¼"4p(a3"
A3)k2=(k3" 1)2dk. Consequently, the elastic energy stored in the
elastomer is

Felastomer ¼ 4p a3 " A3
! " Z a=A

1

k2W kð Þ

k3 " 1
! "2 dk: ð12Þ

The second contribution to the free energy comes from the surface
tension:

Fsurface ¼ 4pa2c: ð13Þ

The third contribution to the free energy comes from the gas molecules
inside the bubble and the chamber. When the volume occupied by N
molecules increases from V0 to V, the entropy of the gas increases by
DS¼ kNlog(V=V0), and the free energy of the gas decreases by
Fgas¼"TDS¼"NkTlog(V=V0). Thus,

Fgas ¼ "NkT log
4pa3=3þ Vchamber

4pA3=3þ Vchamber

# $
: ð14Þ
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The fourth contribution to the free energy comes from the environ-
ment outside the elastomer. Because the elastomer is taken to be
incompressible, an increase in the volume of the bubble causes a
decrease by the same amount in the volume of the environment, so
that

Fenvironment ¼ p04pa3=3: ð15Þ

FIGURE 9 The free energy of the system as a function of the stretch of the
bubble. (a) Vchamber¼ 0. (b) Vchamber

3 figure available
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(color=4pA =3¼ 10
online).
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The thermodynamic system has a single degree of freedom: the radius
of the bubble, a. Consequently, the free energy of the system is a
function of a single variable, F(a). By setting dF(a)=da¼ 0, we recover
the condition of equilibrium (1).

Figure 9 plots the free energy of the system as a function of the
radius of the bubble, F(a). In the absence of the chamber, Vchamber¼ 0,
0, for a given number of air molecules, the bubble can attain only one
stable state of equilibrium, corresponding to the minimal free energy
(Fig. 9a). In other words, the bubble cannot snap if no additional air
molecules rush into it, which is consistent with the results shown in
Fig. 4. In this case, the states of equilibrium are stable even when
the pressure drops.

When the volume of the chamber is sufficiently large, however, the
bubble can snap. As shown in Fig. 9b, when NkT=(4lpA3=3)¼ 100 or
400, the bubble can attain only one stable state corresponding to a glo-
bal minimum of the free energy. When NkT=(4lpA3=3)¼ 200 or 250,
the states of equilibrium with the smallest and largest stretches are
stable, while the state of equilibrium with the middle stretch is
unstable and corresponds to a local maximum. Note that at NkT=
(4lpA3=3)¼ 200, the two points of minimum free energy are at about
the same height. These two states correspond to P2 and P4 on Fig. 6.
To jump from state P2 to state P4, the bubble needs to overcome an
energy barrier. This energy barrier decreases as the number of gas
molecules increases, and disappears at NkT=(4lpA3=3)¼ 302, when
the local minimum and the local maximum merge to form a point with
vanishing second derivative. The bubble snaps to the stable state of
equilibrium corresponding to the global minimum. This result is
consistent with that shown in Fig. 6.

5. CONCLUDING REMARKS

When air is injected into a bubble in a soft material, the bubble may
first expand gradually, and then snap suddenly to a large size. We
study the snap-through instability by analyzing a model that accounts
for both the surface tension and the limiting stretch of the elastomer.
The surface tension causes the Laplace pressure, which is large for a
small bubble, and falls when the bubble expands. The pressure due
to the elasticity of the elastomer increases monotonically with the
radius of the bubble, and rises steeply when the stretch of the bubble
approaches the limiting stretch. We show that the bubble snaps to a
large size only if a sufficient number of gas molecules can rush into
the bubble at the onset of instability.
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