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Force generated by a swelling elastomer subject to constraint

Shenggiang Cai," Yucun Lou,? Partha Ganguly,? Agathe Robisson,? and Zhigang Suo'?
ISchool of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138,

USA

2Schlumberger-Doll Research, One Hampshire Street, Cambridge, Massachusetts 02139, USA
(Received 26 January 2010; accepted 16 April 2010; published online 26 May 2010)

When an elastomer imbibes a solvent and swells, a force is generated if the elastomer is constrained
by a hard material. The magnitude of the force depends on the geometry of the constraint, as well
as on the chemistry of the elastomer and solvent. This paper models an elastomer crosslinked on the
exterior surface of a metallic tubing. The elastomer then imbibes a solvent and swells. After the
swollen elastomer touches the wall of the borehole, a significant amount of time is needed for the
solvent in the elastomer to redistribute, building up the sealing pressure to the state of equilibrium.
The sealing pressure and the sealing time are calculated in terms of the geometric parameters (i.e.,
the thickness of the elastomer and the radii of the tubing and borehole), the number of monomers
along each polymer chain of the elastomer, and the affinity between the elastomer and the solvent.
© 2010 American Institute of Physics. [doi:10.1063/1.3428461 ]

I. INTRODUCTION

Flexible polymeric chains can be crosslinked by cova-
lent bonds into a three-dimensional network, resulting in an
elastomer. The elastomer can imbibe a solvent, a phenom-
enon that is ubiquitous among animals and plants, and is
exploited in creating commercial products such as contact
lenses' and superabsorbent diapelrs.2 Upon imbibing the sol-
vent, the elastomer swells. Furthermore, if the elastomer is
constrained by a hard material, the swelling generates a
force. Swelling is used by plants to regulate the transport
of water,” and is being developed for engineering applica-
tions, such as self-regulating microfluidics,*’ self-healing
cements,™ and packers.g_12 Essential to these applications
are the force generated by swelling, and the time needed to
build up the force.

The magnitude of the force depends on the geometry of
the constraint, as well as on the chemistry of the elastomer
and solvent. The time needed to build up the force depends
on the diffusivity and on the distance through which the sol-
vent must migrate. To illustrate these issues, this paper mod-
els swelling packers used in oilfields.” ™" Such a packer con-
sists of an elastomer crosslinked around the exterior surface
of a metallic tubing, Fig. 1. Once the packer is deployed in a
borehole, the elastomer imbibes a solvent (either water or oil,
depending on applications), swells to the size of the bore-
hole, and builds up a sealing pressure on the wall of the
borehole.

Despite intense experimental efforts to develop the pack-
ers to enhance the production of oil, theoretical modeling of
packers is lacking. The object of this paper is to calculate the
sealing pressure and the sealing time of a swelling packer.
Section II presents the governing equations on the basis of a
nonlinear field theory of concurrent deformation and migra-
tion. Section III calculates the sealing pressure when the net-
work equilibrates with the solvent. Emphasis is placed on the
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effects of the number of monomers along each polymer
chain of the elastomer, the affinity between the elastomer and
the solvent, and various geometric parameters (i.e., the thick-
ness of the elastomer and the radii of the tubing and bore-
hole). Section IV calculates the time needed to approach the
state of equilibrium. After the elastomer swells to the size of
the borehole, substantial time is needed for the solvent mol-
ecules in the elastomer to redistribute and build up the seal-
ing pressure.

Il. GOVERNING EQUATIONS FOR CONCURRENT
DEFORMATION AND MIGRATION

Figure 1 illustrates a layer of an elastomer, length L,
crosslinked around the exterior surface of a metallic tubing
of radius A. For the packer to be readily inserted into a bore-
hole of radius B, the gap between the tubing and the bore-
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FIG. 1. (Color online) (a) A packer consists of an elastomer crosslinked
around the exterior surface of a metallic tubing. (b) When the elastomer is
dry, the radius of the packer is smaller than that of the borehole. (c) As the
solvent migrates into the elastomer, the elastomer swells to the size of the
borehole.
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FIG. 2. (a) As the elastomer imbibes the solvent, the thickness of the elas-
tomer increases from H to B—A. (b) Before swelling to the size of the
borehole, the elastomer exerts no pressure. After the elastomer touches the
wall of the borehole, the solvent molecules inside the elastomer redistribute,
and the pressure builds up, approaching a state of equilibrium.

hole, B—A, should be larger than the thickness of the dry
elastomer, H. As the solvent migrates into the elastomer, the
elastomer swells and closes the gap. Figure 2 sketches the
thickness of the swelling elastomer as a function of time.
Also sketched is the pressure exerted by the elastomer on the
wall of the borehole as a function of time. Prior to touching
the wall of the borehole, the elastomer exerts no pressure on
the borehole. Afterwards, the solvent molecules in the elas-
tomer redistribute, and the sealing pressure builds up. The
sealing pressure approaches an asymptotic value as the elas-
tomer and the solvent approach a state of equilibrium.

Swelling involves two concurrent processes such as: the
deformation of the network and the migration of the solvent.
This section presents in the cylindrical coordinates the gov-
erning equations based on a nonlinear field theory of swell-
ing elastomers.'* > The essential ingredients of the theory
originated from the thermodynamic analysis of Gibbs,”* the
kinetic analysis of Biot,25 and the statistical mechanical
analysis of Flory and Rehner.*®

We begin with the deformation of the network, Fig. 1.
The dry network is taken to be the state of reference, where
an infinitesimal element of the network is identified by its
distance R from the center of the tubing. At time ¢, the same
element of the network moves to a position at distance r
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from the center. The deformed network retains the cylindri-
cal symmetry so that the deformation of the elastomer is
fully specified by the function r(R,7). Consider a circle, of
perimeter 27R in the state of reference, and perimeter 27r at
time ¢. The circumferential stretch is

\y=riR. (1)

Two nearby elements of the network, at positions R and R
+dR in the state of reference, move to positions r(R,f) and
r(R+dR,t) at time . The distance between the two elements
is dR in the state of reference, and is r(R+dR,t)—r(R,t) at
time . The radial stretch is

\, = dr/R. (2)

The swelling of the packer in the axial direction is generally
minimal due to imposed constraints. Consequently, the
packer is assumed to deform under the plane-strain condi-
tions, with no axial deformation. The axial stretch is

A= 1. (3)

We next consider the migration of the solvent. The con-
centration of the solvent in the network is a time-dependent
field, C(R,1), defined as the number of solvent molecules in
an element of the network at time ¢ divided by the volume of
the element in the state of reference. The solvent migrates in
the network in the radial direction, and the flux of the solvent
is a time-dependent field, J(R,?), defined as the number of
solvent molecules per unit time crossing an element of the
network at time ¢ divided by the area of the element in the
state of reference. Consider a thin shell of the network, radii
R and R+dR when the network is in the state of reference.
Between time ¢ and t+dt, the number of solvent molecules in
the shell changes by [C(R,t+dt)—C(R,t)]JL(27wRdR), the
number of solvent molecules entering the shell from the in-
ner surface is 27mRLJ(R ,t)dt, and the number of solvent mol-
ecules exiting the shell from the outer surface is 27(R
+dR)LJ(R+dR,t)dt. The conservation of the number of sol-
vent molecules requires that

oc + _&(RJ) =0. (4)

dt ROR

We will use the true stress, namely, the force exerted on
a surface in the current state divided by the area of the sur-
face in the current state. Let o,(R,) be the field of the radial
stress, o4(R,t) the circumferential stress, and o(R,?) the
axial stress. The elastomer is in mechanical equilibrium at all
times. A balance of the forces exerted on an element of the
elastomer leads to the equation of equilibrium

(N Ngo, — N\
( ao-r) 4 09r o] =0
JdR R

(5)

The elastomer, however, is not in diffusive equilibrium.
The chemical potential of the solvent in the elastomer is a
time-dependent field, u(R,?). The gradient of the chemical
potential drives the solvent to migrate in the elastomer. The
flux is taken to be linear in the gradient of the chemical
potential
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where D is the diffusivity of the solvent. The stretch N, ap-
pears in Eq. (6) to account for an effect of deformation on
migration.13

Consider an element of the network, of unit volume in
the state of reference. At time ¢, the element has imbibed a
volume of vC of the solvent, and swells to volume Ag\,.
Here v is the volume per solvent molecule. The stress is
typically so small that the volume of each molecule is com-
monly taken to be constant. Consequently, the volume of the
swollen elastomer equals the sum of the volume of the dry
network and the volume of the imbibed solvent, namely,

AMg=1+0C. (7)

The thermodynamic state of an element of a swollen
elastomer is characterized by stretches of the element, A, and
N\ and the chemical potential of the solvent in the element,
. The stretches cause a reduction in the entropy of the net-
work, leading to a contractile stress. The chemical potential
of the solvent is taken to be zero in the pure solvent. When
the chemical potential of the solvent in the elastomer, u,
differs from that in the pure solvent, the difference causes a
hydrostatic pressure, w/v, which contributes to the osmosis
of the elastomer relative to the pure solvent. The other con-
tributors to the osmosis are the entropy of mixing and the
enthalpy of mixing. These effects are balanced by the me-
chanical forces acting on the surfaces of the element. Using
the free energy calculated by Flory and Rehner based on
statistical me:chanics,26 one writes the equations of state as’

KT kT 1 1
o= =1+ —|log(1- — |+ —
nv)\r)\g 1% )\r)\g )\r)\g
X “

+ -=, 8
()\r)\ﬁ)2:| v ( )
KT, kT 1 1

op=———\y-D+—|log| | - — | + —
nU)\,)\H v )\r)\e )\,)\0
X ol

+ -=, 9

()\r)\ﬁ)Z:| v ( )

kT 1 1
0'Z=—|:10g<1— >+ p— 2]—E, (10)
v )\r)\g )\r)\g ()\r)\g) v

where 7 is the number of monomers per polymer chain of the
elastomer, kT is the temperature in the unit of energy, and y
is a dimensionless measure of the enthalpy of mixing. In
using the Flory—Rehner free energy, we have assumed that
the volume per molecule of the solvent is the same as the
volume per monomer of the polymer.

Equations (1)—(5) express kinematics of deformation,
conservation of solvent, and balance of mechanical forces.
Equation (6) specifies a kinetic model, while Egs. (7)—(10)
specify a thermodynamic model. These models are not in-
tended to describe any particular given material with accu-
racy. Nonetheless the models do capture, at least approxi-
mately, some of the most salient features of swelling
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elastomers, such as the migration of the solvent, the stretch-
ing of the network, and the mixing of the network and the
solvent. Consequently, the models are expected to predict
trends of the swelling behavior. In the remainder of the pa-
per, we refrain from modifying these models but explore
their consequences for packers. The method of solution can
be readily applied when material models are modified.

lll. SWELLING PRESSURE IN THE STATE OF
EQUILIBRIUM

As sketched in Fig. 2, after the elastomer touches the
wall of the borehole, as the solvent molecules in the elas-
tomer redistribute, the pressure on the wall builds up, and the
system approaches a state of equilibrium. This section calcu-
lates the swelling pressure in the state of equilibrium. The
wall of the borehole is taken to be permeable to the solvent.
When the network equilibrates with the solvent, the chemical
potential of the solvent in the elastomer becomes homoge-
neous, and reaches that of the pure solvent, u=0. Inserting
©=0 into Egs. (8)-(10), we obtain the equations of state
when the network equilibrates with the pure solvent. The
state of equilibrium is characterized by a time-independent
field in the elastomer, r(R), with the inner surface fixed by
the tubing, r(A)=A, and the outer surface blocked by the
borehole wall, r(A+H)=B. A combination of the equations
in Sec. II gives rise to a nonlinear, second-order, ordinary
differential equation that governs the function r(R). This dif-
ferential equation, along with the boundary conditions, is
solved by using the commercial software MATLAB.

Figure 3 plots the calculated stretches and stresses in the
state of equilibrium. The parameters are set as representative
values, A/B=0.6, H/B=0.2, n=100, and xy=0.1. Due to the
elasticity of the network, even in the state of equilibrium, the
field in the elastomer is inhomogeneous. The circumferential
stretch in the elastomer, Ay=r/R, is set by the tubing at the
inner surface, Ay=1, and is set by the borehole at the outer
surface, Ny=B/(A+H). While the circumferential stretch \,
increases with the radius, the radial stretch A, decreases. The
elastomer is subject to a field of triaxial stress. In particular,
the magnitude of o, increases along the radius, and reaches
the maximum value at the borehole. We have normalized the
stress by kT/v. Note that kT/v~4 MPa for representative
values T7=~350 K and v~10"?" m?.

When the gap between the wall of the borehole and the
exterior surface of the tubing is small compared to the radius
of the borehole, or equivalently A/B— 1, the curvature of the
cylinder becomes unimportant, and the elastomer is approxi-
mated by a thin film constrained on a flat rigid substrate. In
this thin-film approximation, when the elastomer touches the
wall of the borehole, the stretches are

N=(B-A)H, Np=1, A =1 (11)
Inserting these stretches and ©=0 into Eq. (8), we obtain that
1 1 1 1
I :—()\,——)+1og<l——>+—+lz. (12)
kTlv n A, NN

I

This expression is the thin-film approximation of the radial
stress in the state of equilibrium.
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FIG. 3. (Color online) In the elastomer, even when the distribution of the
solvent reaches a state of equilibrium, the stretches (a) and the stresses (b)
are still inhomogeneous.

As shown in Fig. 3, in general, the stretches are inhomo-
geneous in the elastomer, and N\, # (B—A)/H. Nonetheless,
we can still use the ratio (B—A)/H as a dimensionless mea-
sure of the deformation needed to close the gap between the
borehole wall and the elastomer. The sealing pressure in the
state of equilibrium, p=-c,(A+H), is perhaps one of the
most important parameters for a packer. Figure 4 plots the
sealing pressure as a function of (B—A)/H. Everything else
being the same, the sealing pressure decreases when (B
—A)/H decreases. Also included in Fig. 4(a) is the thin-film
approximation (12). As expected, this approximation be-
comes accurate when A/B— 1.

In addition to these geometric factors, the nature of the
network and solvent also affects the sealing pressure. When
the number of monomers per polymer chain, n, increases, the
contractile stress of the network decreases so that the sealing
pressure increases, Fig. 4(b). This effect is appreciable when
the elastomer has to swell much to close the gap, namely,
when (B—A)/H is large. When the affinity between the poly-
mer and the solvent is low (i.e., large and positive y), the
sealing pressure is small.

IV. KINETIC PROCESS AND SWELLING TIME

As illustrated in Fig. 2, the kinetic process may be di-
vided into two stages, before and after the elastomer touch-
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FIG. 4. (Color online) The sealing pressure is plotted as a function of the
ratio (B—A)/H. (a) The effect of the ratio of the radius of the tubing over
that of the borehole, A/B. (b) The effect of the number of monomers per
polymer chain, n. (c) The effect of the affinity between the polymer and the
solvent, y.

ing the borehole wall. The basic equations in Sec. II can be
combined to evolve the two time-dependent fields, r(R,¢)
and w(R,7). At the inner surface, R=A, the position is fixed
by the tubing, r=A, and the flux vanishes, du/JdR=0. At the
outer surface, R=A+H, before the elastomer touches the
borehole wall, the redial stress vanishes, o.=0, and the sol-
vent molecules in the elastomer are in equilibrium with those
in the pure solvent outside, u=0. After the elastomer touches
the borehole wall, the boundary conditions at the outer sur-
face become that the position is set by the borehole, r=B,
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and the chemical potential remains, u=0. The latter bound-
ary condition in effect assumes that the borehole wall is per-
meable to the solvent.

In the Flory—Rehner theory, [Egs. (8)—(10)], when the
network is immersed in the solvent, the stress becomes sin-
gular if the elastomer contains no solvent, A, =\y=\_=1. To
avoid this singularity in calculation, we assume that at time
t=0 the elastomer already contains a small amount of sol-
vent, in a homogeneous state of chemical potential, w(R,0)
=uo. The elastomer is assumed to be in a state of equilib-
rium, so that the initial radial position r(R,0) can be calcu-
lated by solving the ordinary equation in Sec. III, with the
boundary conditions r(A)=A and o,(A+H)=0. The initial
chemical potential is set as uy,<<0, and the exact value does
not affect the finial sealing pressure significantly, so long as
Mo corresponds to a small concentration of solvent. These
initial conditions, along with the boundary conditions dis-
cussed above, are used to solve the partial differential equa-
tions in Sec. II by using the finite-difference method. We
normalize the time as Dt/ H>.

Consider a representative case with A/B=0.6, H/B
=0.2, n=100, and x=0.1. Figure 5(a) plots the profile of the
radial position at several times. At all times, the inner surface
is fixed by the metallic tubing, r(A,f)=A. The outer surface
move with time before the elastomer touches the borehole
wall. Upon touching the borehole, Dt/ H?=5, the outer sur-
face of the elastomer is fixed by the borehole wall, r(A
+H,t)=B. Because individual molecules are assumed to
maintain constant volumes, no more solvent molecules can
enter the elastomer after it touches the wall of the borehole.
The elastomer, however, is not in equilibrium with the sol-
vent, and the solvent molecules inside the elastomer keep
redistributing. This redistribution accounts for the continued
evolution of the profile of the radial position.

Figure 5(b) plots the distribution of the chemical poten-
tial of the solvent in the elastomer at several times. Prior to
immersion, the chemical potential of solvent in the elastomer
is homogeneous and is assumed to be at a low level u,. At
the instant of immersion, the chemical potential at the outer
surface immediately rises to the value of the pure solvent,
m(A,1)=0, and is held at this value by the external solvent
afterwards. As time progresses, the chemical potential rises
in the interior of the elastomer. When the elastomer touches
the borehole, Dt/ H*= 5, the solvent molecules in the elas-
tomer are still not equilibrated. After a long time, the chemi-
cal potential becomes homogeneous, and is at the same level
as the external solvent u=0. That is, the elastomer equili-
brates with the solvent.

Figure 5(c) plots the profile of concentration of solvent
at several times. At the instant of immersion, the concentra-
tion of solvent at the outer surface jumps to a high value. As
the time progresses, the concentration in the interior also
rises. After the elastomer touches the borehole, no more sol-
vent enters the elastomer but the solvent inside the elastomer
redistributes. After a long time, the profile of concentration
stops evolving, and the elastomer reaches the state of equi-
librium. Even in the state of the equilibrium, the concentra-
tion of the solvent in the elastomer is inhomogeneous [the
inset of Fig. 5(c)]. Recall that the condition of diffusive equi-
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FIG. 5. (Color online) Evolution of the fields of (a) the normalized radial
position, (b) the chemical potential of the solvent, and (c) the concentration
of the solvent. The inset in (c) shows that the concentration of the solvent in
the elastomer remains inhomogeneous even as the state of equilibrium is
approached.

librium is set by homogenizing the chemical potential, not by
homogenizing the concentration. In this particular case, the
inhomogeneity of the concentration in the state of equilib-
rium is not pronounced. However, pronounced inhomogene-
ity in the concentration of the solvent in the state of equilib-
rium was noted in a spherical core-shell structure.'*

Figure 6 plots the pressure exerted by the elastomer on
the wall of the borehole as a function of time. In each case,
the elastomer approaches a state of equilibrium after a long
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FIG. 6. (Color online) The sealing pressure as a function of time. (a) The
effect of the ratio of the radius of the tubing over that of the borehole, A/B.
(b) The effect of the number of monomers per polymer chain, n. (c) The
effect of the affinity between the polymer and the solvent, y.

time. The asymptotic values of the sealing pressure have
been discussed in Sec. II. We now focus on the times needed
for the pressure to attain the asymptotic values. After the
elastomer touches the wall of the borehole, no more solvent
molecules enter the elastomer. The solvent molecules inside
the elastomer, however, take substantial time to redistribute
for the stealing pressure to attain the asymptotic value. In-
deed, the time needed for redistribution is comparable to the
time needed for the elastomer to touch the wall of the bore-
hole. Various dimensionless parameters affect the sealing
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time. Our calculation shows that when a parameter increases
the asymptote of the sealing pressure, the parameter also
shortens the time needed to attain the asymptote.

V. CONCLUDING REMARKS

A swelling packer involves concurrent deformation and
migration, governed by a nonlinear field theory. The sealing
pressure is affected by the geometry of the constraint, the
chain length of the polymer, and the affinity between the
polymer and the solvent. The sealing time includes both the
time needed for the elastomer to swell to touch the wall of
the borehole, and the time for the pressure to build up to the
state of equilibrium. The calculations are based on the equa-
tions of state derived from the Flory—Rehner model, and on a
kinetic model that account for the effect of deformation on
migration. While these material models relate the behavior of
a packer to the nature of the network and solvent, the accu-
racy of these models need be tested against experimental
data.
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