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Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory
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Thin poly(N-isopropylacrylamide) (PNIPAM) hydrogels were allowed to swell under two conditions:

as freestanding layers and as substrate-attached layers. Through a combination of particle tracking and

defocusing methods, the positions of beads embedded within the gels were monitored over time via

fluorescence microscopy, providing a convenient method to track the kinetics of swelling for layers with

thicknesses of the order 100 mm. These data are compared with the predictions of linear poroelastic

theory, as specialized for polymer gels. This theory, along with a single set of material properties,

accurately describes the observed swelling kinetics for both the freestanding and substrate-attached

hydrogels. With the additional measurement of the substrate curvature induced by the swelling of the

substrate-attached hydrogels, these experiments provide a simple route to completely characterize the

material properties of the gel within the framework of linear poroelasticity, using only an optical

microscope.
Introduction

A network of covalently crosslinked polymers may imbibe

a larger quantity of a solvent, resulting in a polymer gel. The gel

behaves as an elastic solid due to the presence of the polymer

network, yet can transport matter due to the mobility of the

solvent. These combined solid and liquid attributes lead to

unique properties that make gels ubiquitous in nature and

engineering. Gels constitute many biological tissues and are used

in diverse applications, such as carriers for drug delivery,1,2

actuators and sensors,3,4 tissue engineering matrices,5,6 and

packers in oilfields.7,8

In a polymer gel, deformation of the network and transport of

the solvent are concurrent processes. While polymer gels are

capable of large deformations that require a non-linear theory to

analyze fully,9–13 linear theories have met with remarkable

success in describing even moderately large deformations. One

such linear theory for polymer gels is due to Tanaka and co-

workers.14,15 Owing to the assumption of negligible fluid

displacements, this theory fails to capture some of the most

salient experimental observations.16–18 It has been appreciated

that concurrent deformation and transport in gels can be

described using Biot’s theory of linear poroelasticity, which does

not suffer from the same limitations.19–25 Meanwhile the theory

of Tanaka and co-workers, despite its inadequacies, remains the

dominant theory in the literature to describe swelling kinetics of

polymer gels.26–34 This situation stems at least partially from the

fact that relatively little work has been done to compare the

predictions of linear poroelastic theory to experiments on

swelling kinetics.20
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In the current article, we seek to fulfill three objectives. First,

we reproduce the derivation of Biot’s theory explicitly in terms of

polymer gels, yielding a set of differential equations that repre-

sent a straightforward route to model swelling kinetics for gels

with arbitrary geometries and boundary conditions. Second, we

show that the theory, along with a single set of material

parameters, accurately describes the experimentally measured

swelling kinetics of a poly(N-isopropylacrylamide) (PNIPAM)

hydrogel under the two conditions shown in Fig. 1, namely,

a thin gel layer undergoing swelling either freely in 3D (subject to

no external constraints) or only in 1D due to the constraint

imposed by attachment to a rigid substrate. Both of these cases

have previously been analyzed separately in terms of Tanaka’s

theory,26–34 though we are unaware of any cases where they have

been considered side-by-side on the same material system to

provide a more stringent validation of the theory. Finally, we

show that these two experiments, combined with a measurement

of the substrate curvature induced in the case of 1D swelling,

provide a straightforward route to completely characterize the

material properties of the gel within the framework of linear

poroelasticity, yielding the modulus, Poisson’s ratio, and

permeability of the gel. Thus, in addition to establishing the
Fig. 1 A schematic illustrating the two geometries considered experi-

mentally and theoretically here: free three-dimensional swelling and

constrained one-dimensional swelling of thin gel layers (H¼ 76–504 mm).

This journal is ª The Royal Society of Chemistry 2010
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adequacy of linear poroelasticity to describe swelling kinetics of

polymer gels, we anticipate that our approach will provide

a useful tool to characterize the properties of gel films using no

equipment other than an optical microscope.

Materials and methods

Preparation of freestanding and substrate-attached hydrogels

Thin layers of poly(N-isopropylacrylamide) hydrogels were

prepared by mixing 200 mL of a degassed aqueous pre-gel solu-

tion containing 878 mM N-isopropylacrylamide and 4.4 mM

N,N0-methylenebis(acrylamide) with 0.3 mL of N,N,N0,N0-tetra-

methylethylenediamine, 1.0 mL of a 10 wt% aqueous ammonium

persulfate solution, and a small amount (0.2–2.0 mL) of a diluted

suspension of fluorescent polystyrene beads (diameter 1 or 3 mm,

Polysciences) in water. The concentration of the bead solution

and the volume added to the pre-gel mixture were chosen to yield

an average of�10 to 20 beads in an area of�1 mm2. The mixture

was loaded by capillary action between a substrate and a bare

coverslip separated by spacers (Kapton HN films, DuPont, or

glass coverslips) to define the thickness of the gel, which was

varied from 76 to 504 mm. Gelation, carried out in a sealed

chamber under positive pressure of nitrogen, was allowed to

proceed for 30 min before separating the bare coverslip from the

gel. To anchor gels to substrates and restrict their swelling to 1D,

coverslip substrates were treated with the adhesion-promoter

[3-(methacryloxy)propyl] trimethoxysilane, such that the gel

formed covalent attachments to the substrate during polymeri-

zation. To prepare freestanding gels capable of swelling in 3D,

a bare coverslip was instead used as a substrate, allowing the gel

to be readily detached from the substrate.

Measurement of swelling kinetics

Following gelation, gels were immersed in deionized water and

swelling kinetics were monitored using epi-fluorescence micros-

copy (Zeiss Axiovert 200, 10� objective). For surface-attached

gels, the apparent sizes of the fluorescent beads were measured as

a function of time. At a fixed vertical position of the microscope

stage and objective, changes in the vertical positions of beads due

to swelling of the hydrogel changed the defocusing of each bead

and thus its size in the resulting image.35,36 The vertical position

of the bead was determined from a calibration curve of defo-

cusing induced by a translation of the microscope objective by

a known distance. We verified that the same translation of beads

in an aqueous environment (at fixed objective position) yielded

equivalent changes in the sizes of the defocused images, thus no

corrections were necessary to account for refractive index

mismatches.37 For each gel, at least 5 beads within 40 mm of the

free surface were tracked to provide the time-dependent swelling

of the gel, characterized by the total thickness of the substrate-

attached gel divided by its initial thickness, with error bars

reflecting the standard deviation.

For the freestanding gels, the in-plane swelling was monitored

instead of the vertical swelling, since this provided smaller

uncertainties in the reported values. As described below, the

lateral swelling of the gel at any point in time is equal to the

vertical swelling. To measure lateral swelling, the positions of

a collection of at least 10 fluorescent beads were tracked as
This journal is ª The Royal Society of Chemistry 2010
a function of time. At each time point, the distance of each bead

from the center of mass of the collection divided by its initial

distance yielded the in-plane swelling. Values determined for

each bead were averaged, with uncertainties taken as the stan-

dard deviation.

Measurement of swelling stress

To measure the change in substrate curvature induced by

swelling stresses, 504 mm thick PNIPAM gel layers of lateral

dimensions 37 mm by 5.7 mm and 31 mm by 5.6 mm were

prepared on 76 and 126 mm thick Kapton substrates, respec-

tively. Kapton substrates, with Young’s modulus of 2.5 GPa and

Poisson’s ratio of 0.34 as reported by the manufacturer, were

degassed for 12 h prior to gelation to remove oxygen that

otherwise interferes with free radical polymerization and alters

the material properties of the gel. The Kapton substrates were

also treated with the adhesion-promoter [3-(methacryloxy)-

propyl]trimethoxysilane to improve adhesion of the gel to the

substrate. A bare Kapton substrate was also found to undergo

a small change in curvature (0.08 m�1) when immersed in water;

this amount has been included in the stated uncertainties for the

measured curvatures of the supported gel samples.

Shear rheology

Independent measurements of the shear modulus of PNIPAM

gels were performed using a rheometer (AR 2000ex, TA Instru-

ments) equipped with a 40 mm diameter aluminium parallel plate

and solvent trap to avoid evaporation. Shear moduli were esti-

mated from the values of storage modulus (G0) in the plateau

region from frequency sweeps over the range of 100 rad s�1 to

0.01 rad s�1 at a constant stress of 1 Pa. Gels were measured in

the unswelled state (just after polymerization), as well as

following unconstrained 3D swelling to equilibrium in water.

Background and analysis

An outline of Biot’s theory of poroelasticity

To set up notation, we outline Biot’s theory of poroelasticity.

The theory was originally developed to analyze migration of

liquids in soils,22 and has been adapted in recent years to analyze

migration of solvent in polymer networks.20–25 The initial state of

the gel is taken to be homogenous, subject to no mechanical load,

with C0 being the concentration of the solvent in the gel (i.e., the

number of solvent molecules per unit volume of the gel) and m0

being the chemical potential of the solvent in the gel. When the

gel deforms from the initial state, the displacement is a time-

dependent field, ui(x1,x2,x3,t), giving rise to a field of strain:

3ij ¼
1

2

�
vui

vxj

þ vuj

vxi

�
: (1)

The concentration of the solvent in the gel is also a time-

dependent field, C(x1,x2,x3,t). The number of solvent molecules

is conserved, so that

vC

vt
þ vJk

vxk

¼ 0; (2)

where Jk is the flux of the solvent.
Soft Matter, 2010, 6, 6004–6012 | 6005



Fig. 2 A hypothetical experiment involving uniaxial stretching of

a cylinder of gel immersed in solvent. Immediately following deforma-

tion, the material acts as an incompressible elastic solid with Poisson’s

ratio ½, however, over time the chemical potential of solvent in the gel

equilibrates with the surroundings, leading to expansion in the lateral

dimension and an apparent Poisson’s ratio n.
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The gel is in mechanical equilibrium, so that the field of stress

sij(x1,x2,x3,t) satisfies

vsij/vxj ¼ 0 (3)

The gel, however, is not in diffusive equilibrium, so that the

chemical potential of the solvent in the gel is a time-dependent

field, m(x1,x2,x3,t). The migration of the solvent in the gel is taken

to obey Darcy’s law:

Ji ¼ �
�

k

hU2

�
vm

vxi

(4)

where k is the permeability of the gel, h the viscosity of the

solvent, and U the volume per solvent molecule. The values of

h and U are generally well known for a given solvent, so that

eqn (4) defines the permeability of the gel k, which has the

dimensions of length squared.

Each element of the gel is assumed to be in local thermody-

namic equilibrium, so that the work done to the element equals

the change in the free energy:

dW ¼ sijd3ij + (m � m0)dC, (5)

where W is the Helmholtz free energy per unit volume of the gel,

sijd3ij the work done by the stress, and (m � m0)dC the work done

by the chemical potential. The network polymers and the solvent

molecules are commonly assumed to be incompressible.20–25

Consequently, the increase in the volume of the gel is entirely due

to the additional solvent molecules absorbed, namely,

3kk ¼ U(C � C0). (6)

The concentration of the solvent is no longer an independent

variable, and the free energy is a function W(311, 312, .), with the

six components of the strain being independent variables.

Inserting eqn (6) into eqn (5), we obtain

sij ¼
vW ð311; 312; :::Þ

v3ij

� m� m0

U
dij; (7)

where dij ¼ 1 when i ¼ j and dij ¼ 0 when i s j. In a linear theory

of an isotropic gel, the free energy is taken to be quadratic in the

strain:

W ¼ G
h
3ij3ij þ

n

1� 2n
ð3kkÞ2

i
: (8)

where G is the shear modulus and n is Poisson’s ratio.

A combination of eqn (7) and (8) gives

sij ¼ 2G
�

3ij þ
n

1� 2n
3kkdij

�
� m� m0

U
dij : (9)

The quantity (m � m0)/U is known as the pore pressure in the

theory of poroelasticity and as the water potential in plant

physiology. To appreciate the significance of the two constants G

and n, consider a hypothetical experiment with a rod of a gel

immersed in an external solvent of chemical potential m0 (Fig. 2).

Initially the rod is in equilibrium with the external solvent, with

m0 being the chemical potential of solvent in the gel, and C0 the

concentration of solvent in the gel. The rod is suddenly pulled to

a fixed strain 3zz. Right after pulling, the solvent has no time to

migrate, so that C ¼ C0 and 3kk ¼ 0, and the gel behaves like an
6006 | Soft Matter, 2010, 6, 6004–6012
incompressible elastic solid of shear modulus G, giving

3xx ¼ 3yy ¼ �3zz/2, (m � m0)/U ¼ �G3zz, sxx ¼ syy ¼ 0 and

szz ¼ 3G3zz. Pulling causes the chemical potential of solvent in

the gel, m, to drop below the chemical potential of the solvent

outside the gel, m0. Consequently, the gel imbibes more solvent

over time, the volume of the gel increases, and the pulling force

on the gel relaxes. After a long time, the solvent in the gel

equilibrates with the external solvent, m ¼ m0, so that the gel

behaves like a compressible elastic solid of shear modulus G and

Poisson’s ratio n, giving 3xx ¼ 3yy ¼ �n3zz, sxx ¼ syy ¼ 0 and

szz ¼ 2(1 + n)G3zz. In this new state of equilibrium, the volu-

metric strain is 3kk ¼ (1 � 2n)3zz. Thus, Poisson’s ratio indicates

the ability of a gel to imbibe additional solvent in response to the

pulling.

Eqn (1)–(4), (5) and (9) specify the governing equations for the

time-dependent fields ui, 3ij, C, m, Ji, and sij. This set of equations

can be reduced to equations governing the fields ui and m,

namely,

G
v2ui

vxkvxk

þ 1

1� 2n

v2uk

vxkvxi

� �
¼ vm

vxi

; (10)

vC

vt
¼ D

v2C

vxkvxk

; (11)

with the concentration of solvent related to the divergence of the

displacement, vuk/vxk ¼ U(C � C0), and the diffusivity given by

D ¼ 2ð1� nÞGk

ð1� 2nÞh : (12)

Eqn (10) expresses the condition of mechanical equilibrium,

where the gradient of the chemical potential serves the role of

a body force. Eqn (11) takes the familiar form of the diffusion

equation. In poroelasticity, however, this diffusion equation

cannot be solved by itself, because the boundary conditions

typically involve the chemical potential and the displacement.

Nonetheless, eqn (11) indicates that over time t a disturbance

diffuses over a length
ffiffiffiffiffiffi
Dt
p

.

This journal is ª The Royal Society of Chemistry 2010
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Swelling of a thin gel layer attached to a substrate

We now examine the case of constrained (1D) swelling, as illus-

trated in Fig. 1. This problem has been studied before,20 and

a similar problem was examined in Biot’s 1941 paper.19 Here we

discuss the aspects of solution that can be directly compared with

our experiments. Right after gelation, the gel is taken to be in

a homogeneous state, with C0 being the concentration of the

solvent in the gel and m0 the chemical potential. The gel is then

immersed in an external solvent of chemical potential m�. The

excess in the chemical potential, m� � m0, drives the solvent to

migrate into the gel. The in-plane dimensions of the gel are much

larger than its thickness, so that the gel absorbs solvent mostly

from its top surface, and negligibly from its edges. As such, the

flux is entirely in the thickness direction and is a function of

position and time. The displacement in the thickness direction,

uz(z,t), and the chemical potential of solvent, m(z,t), are also

functions of time and position. As the solvent migrates into the

network, the in-plane dimensions of the gel remains unchanged,

3xx ¼ 3yy ¼ 0, but in-plane stresses sxx(z,t) ¼ syy(z,t) are gener-

ated. The gel is subject to no force from the top, so sz ¼ 0.

Inserting these conditions into eqn (9), we obtain

vuz

vz
¼ ð1� 2nÞðm� m0Þ

2ð1� nÞGU
; (13)

sxx ¼
m� m0

ð1� nÞU: (14)

The resultant force per unit length is defined by

f ðtÞ ¼
ð0

�H

sxxðz; tÞdz. A combination of eqn (13) and (14) gives

DðtÞ ¼ 1� 2n

2G
f ðtÞ; (15)

where D(t) ¼ uz(0,t) is the change in the thickness of the layer.

Thus, once an expression for D(t) is obtained, eqn (15) gives

a similar expression for f(t).

Darcy’s law eqn (4) becomes

vm

vt
¼ D

v2m

vz2
: (16)

The initial condition is m(z,0) ¼ m0, while the boundary

conditions are m(0,t) ¼ m� at the top surface and vm/vz ¼ 0 as the

bottom surface (z ¼ �H). These conditions, along with eqn (16),

govern the function m(z,t). This problem takes the same form as

the diffusion problem treated in many textbooks.

The thickness of the layer, H, is much smaller than the lateral

dimensions, so that the solvent needs to migrate over the thick-

ness of the gel to equilibrate its chemical potential. After a long

time,
ffiffiffiffiffiffi
Dt
p

[H, the gel equilibrates, i.e., the chemical potential

of solvent in the gel, m, becomes homogeneous and equal to m�.

Thus, inserting m ¼ m� into eqn (13), we obtain the equilibrium

change in thickness of the gel:

DðNÞ ¼ ð1� 2nÞð�m� m0ÞH
2ð1� nÞGU

: (17)

At short times,
ffiffiffiffiffiffi
Dt
p

� H, the chemical potential evolves by

a self-similar profile:
This journal is ª The Royal Society of Chemistry 2010
mðz; tÞ � �m

m0 � �m
¼ erfc

�
� z

2
ffiffiffiffiffiffi
Dt
p

�
: (18)

Inserting eqn (18) into eqn (13) and integrating, we obtain the

change in the thickness of the gel

DðtÞ
DðNÞ ¼

2

H

ffiffiffiffiffiffi
Dt

p

r
: (19)

The complete transient solution is obtained by the separation

of variables, giving

mðz; tÞ � �m

m0 � �m
¼ � 4

p

XN
n¼0

1

2nþ 1
sin

�
ð2nþ 1Þpz

2H

�
exp

"
� ð2nþ 1Þ2t

s

#

(20)

with

s ¼ 4H2

p2D
: (21)

Inserting eqn (20) into eqn (13) and integrating, we obtain the

displacement:

uzðz; tÞ
DðNÞ ¼

1� 8

p2

XN
n¼0

1

ð2nþ 1Þ2
cos

�
ð2nþ 1Þpz

2H

�
exp

"
� ð2nþ 1Þ2t

s

#
þ z

H
:

(22)

The change of the thickness is

DðtÞ
DðNÞ ¼ 1� 8

p2

XN
n¼0

1

ð2nþ 1Þ2
exp

"
� ð2nþ 1Þ2t

s

#
: (23)

We note that an equivalent expression was derived by Doi20

and by Peters and Candau.26,27
Swelling of a thin layer subject to no external constraints

We next consider unconstrained swelling; as before, immediately

after gelation the concentration and chemical potential of solvent

in the gel are C0 and m0, respectively. Now, however, when

subsequently immersed in an external solvent of chemical

potential m�, the gel is free to expand in all three dimensions. After

a long time, the gel equilibrates with the external solvent, so that

the chemical potential of the solvent in the gel equals that in the

external solvent, m ¼ m�. Because the gel is freestanding, all

components of the stress vanish at equilibrium. Inserting m ¼ m�

and sij¼ 0 into eqn (9), we obtain the three components of strain

at equilibrium,

3xx ¼ 3yy ¼ 3zz ¼
ð1� 2nÞð�m� m0Þ

2ð1þ nÞGU
: (24)

The change of the thickness of the layer at equilibrium is

DðNÞ ¼ ð1� 2nÞð�m� m0ÞH
2ð1þ nÞGU

: (25)

We next consider the transient solution. The chemical poten-

tial of the solvent in the gel is a time-dependent field, m(z,t), with

the initial condition m(z,0) ¼ m0 and the boundary conditions
Soft Matter, 2010, 6, 6004–6012 | 6007



Fig. 3 Representative fluorescence micrographs of beads used to track

swelling of constrained and unconstrained gels. For free swelling of

unconstrained gels, the in-plane dilation of distances between a collection

fluorescent beads, for example those within the dashed square, were

tracked as a function of time. For constrained swelling of surface-

attached gels, the apparent sizes of the fluorescent beads were measured

as a function of time, revealing their distance from the focal plane of the

microscope. The dimensions of each image are 1.6 � 1.2 mm.
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m(0,t) ¼ m(�H,t) ¼ m�. Here we have assumed the condition of

local equilibrium: when the gel is immersed in the external

solvent and the chemical potential of the solvent at the surfaces

of the gel instantaneously reaches that of the external solvent.

The vertical displacement is also a time-dependent field, uz(z,t),

with the initial condition uz(z,0) ¼ 0 and the boundary condition

u(�H,t) ¼ 0. Here we have fixed the position of the bottom

surface to remove the rigid body motion. Unlike the gel attached

to the substrate, the freestanding gel can swell in all three

directions. Because the thickness of the gel is small compared to

the lateral dimensions of the gel, the in-plane strains are time-

dependent, but are independent of the depth, 3xx(t) ¼ 3yy(t).

We next list the equations that govern m(z,t), uz(z,t) and 3xx(t).

Substituting the condition of mechanical equilibrium, sz ¼ 0,

into eqn (9), we obtain

2G

�
1� n

1� 2n

�
vuz

vz
þ 4G

� n

1� 2n

�
3xx ¼

m� m0

U
; (26)

The condition of mechanical equilibrium in direction x is

specified by the vanishing resultant force:

ð0
�H

sxx dz ¼0: (27)

A combination of eqn (9), (26) and (27) gives

3xxðtÞ ¼
uzð0; tÞ

H
: (28)

This equation means that the in-plane swelling is equivalent to

the average vertical swelling at all times, and thus the shape of the

layer does not change during swelling.18 The kinetic equation for

the free-swelling layer becomes

vm

vt
þ 4GU

d3xx

dt
¼ D

v2m

vz2
: (29)

Unlike the constrained film, there is no self-similar solution for

the freestanding layer in the initial stages. Since the in-plane

strain is always equal to the average strain in thickness direction,

in-plane deformation cannot be neglected even at short times.

Eqn (26), (28) and (29) are coupled. Despite all of the modifi-

cations that have been made to Tanaka and co-workers’ theory

to treat different geometries,19–25 apparently no one has numer-

ically solved this partial differential equation to model swelling

of a freestanding polymer gel layer. We will discuss our numer-

ical solutions in conjunction with experimental data.
Fig. 4 Swelling curves for (a) constrained and (b) freestanding poly-

(N-isopropylacrylamide) hydrogel films with different initial thicknesses

(H¼ 76–504 mm) after immersion in deionized water at t¼ 0. Values were

determined by tracking the vertical displacements of fluorescent beads in

(a) and the lateral displacement of fluorescent beads in (b).
Results and discussion

To measure the swelling kinetics of thin gel layers we used

a combination of fluorescent microparticle tracking and defo-

cusing methods, as exemplified by the fluorescence images in

Fig. 3. By measuring the defocusing of beads in constrained gels,

the vertical displacement of the gel’s free surface could be

determined with a typical uncertainty of �6%, even for gels as

thin as 76 mm. In this case, we report the change in thickness of

the gel normalized by its initial thickness, D(t)/H. For 3D

swelling of unconstrained gels, we instead determined the in-

plane dilation 3xx(t) which could be measured with smaller
6008 | Soft Matter, 2010, 6, 6004–6012 This journal is ª The Royal Society of Chemistry 2010
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uncertainty (�3%), and according to eqn (28) is identical to

D(t)/H. While this equivalence has been experimentally demon-

strated by Tanaka and co-workers,16 we confirmed this point for

the PNIPAM gels considered here by comparing the lateral and

vertical swelling of a freestanding film with H ¼ 504 mm as

a function of time (data not shown), which were found to be the

same within experimental uncertainty.

Results for 1D and 3D swelling kinetics of PNIPAM gel layers

of varying thickness are presented in Fig. 4. The most striking

difference between swelling in 1D vs. 3D is the substantially

larger equilibrium change in linear dimension of the constrained

gel. Indeed, a comparison between eqn (17) and (25) reveals that

the value of D(N) for the constrained gel should be larger than

that for the unconstrained gel by a factor of (1 + n)/(1� n), which

is notable since it is determined by Poisson’s ratio alone. The

experimental data in Fig. 4 yield a value for this ratio of 2.0,

indicating the Poisson’s ratio of the gel is n ¼ 0.33. We note that

this method of determining Poisson’s ratio was described previ-

ously by Li et al.,38 who reported n in the range of 0.25–0.36 for

polyacrylamide gels containing 5 wt% monomer. Somewhat

lower values (0.13–0.20) were determined by Oyen and

co-workers24 for more concentrated acrylamide gels (20 wt%

monomer), while two studies on PNIPAM gels yielded Poisson’s

ratios of 0.25–0.4 in the swelled state.39,40 Thus, the value deter-

mined here is in reasonable agreement with prior reports for

similar hydrogel systems.

Motivated by the analytical results, specifically eqn (19), we

next re-plot the experimental data using
ffiffi
t
p
=H as the x-axis

coordinate, as shown in Fig. 5. The data can be compared to the

analytical self-similar solution, rewritten in the form

DðtÞ
H
¼ 2DðNÞ

H2

ffiffiffiffiffiffi
Dt

p

r
; (30)

for the initial stages of 1D swelling of the confined layers. By fitting

a line to the initial slope of data for constrained swelling in Fig. 5,
Fig. 5 A comparison between the theoretical predictions and experi-

mental results for swelling kinetics of both constrained and uncon-

strained gels. A value of D ¼ 1.5 � 10�11 m2 s�1 was obtained from the

initial slope of the constrained swelling curves, then used along with the

equilibrium swelling ratios to plot the analytical solution, eqn (23), and

the numerical solution to eqn (29) as solid lines. The self-similar solution

of eqn (19), plotted as a dotted line, describes the early stage behavior of

the constrained gel.

This journal is ª The Royal Society of Chemistry 2010
a value of D ¼ 1.5 � 10�11 m2 s�1 is obtained for the diffusivity.

This value is consistent with literature reports of values for

polyacrylamide14,16 and PNIPAM33,41,42 gels of similar composi-

tion, which are typically in the range of D ¼ 1–3 � 10�11 m2 s�1.

The Poisson’s ratio and diffusivity, along with the value of

D(N)/H for one of the gels, completely prescribe the full

analytical solution for constrained gels, eqn (23), and the

numerical solution to eqn (29) for freely swelling gels. Thus,

using the values of n ¼ 0.33, D ¼ 1.5 � 10�11 m2 s�1 and

D(N)/H ¼ 0.80, the average equilibrium degree of swelling for

the constrained gels, we next plot the full solutions for each case

in Fig. 5. As can be seen, the theoretical predictions match very

well with the experimental data for both geometries; any

systematic deviations are smaller in magnitude than the sample-

to-sample variations and uncertainties in the measured values.

As described by eqn (15), swelling of the surface-attached gel

generates an equibiaxial in-plane compressive stress proportional

to the increase in layer thickness. This stress will induce a slight

curvature in the underlying rigid substrate as described by the

Stoney equation,43 modified for the case of cylindrical bending

where the film is much more compliant than the substrate, but

not necessarily much thinner.44 Once the constrained gel has

reached its equilibrium degree of swelling, the force per unit

length in the gel f is given by

f ¼ Esh
2
s

6
	
1� n2

s


�1

R
� 1

R0

��
1þH þ DðNÞ

hs

��1

; (31)

where Es and ns are the Young’s modulus and Poisson’s ratio of

the substrate, respectively, hs is the thickness of the substrate, R is

the substrate radius of curvature, and R0 the radius of curvature

of the substrate in the absence of swelling stresses. Thus, by

measuring the substrate radius of curvature it is possible to

determine the value of f, and therefore the shear modulus using
Fig. 6 (a) A schematic illustration of the substrate curvature measure-

ment. (b) Measured x–y coordinates of the substrate (for a gel of thick-

ness 504 mm on a Kapton substrate of 126 mm) along with best-fit curves

to the equation of a circle; from the change in curvature, the shear

modulus of the gel G was estimated as 220 Pa.

Soft Matter, 2010, 6, 6004–6012 | 6009
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eqn (15). While the same principle has been used to fabricate

sensors based on thin surface-attached gel layers,45–47 we are not

aware of any prior reports of using it to characterize gel

mechanical properties.

To provide sufficient substrate curvature for straightforward

measurement via optical microscopy, relatively thick gels

(H ¼ 504 mm) were coated on Kapton substrates (Es ¼ 2.5 GPa

and ns ¼ 0.34) with hs ¼ 76 mm and 126 mm. As illustrated in

Fig. 6a, the radius of curvature was determined by clamping the

gel at one end and submerging it in a bath of water, positioned

with the shorter in-plane dimension of the gel parallel to the optic

axis of an optical microscope. From a series of micrographs

taken along the length of the sample, the curvatures prior to

swelling and after reaching equilibrium were determined by

fitting the equation of a circle to the measured x–y coordinates of

the substrate (Fig. 6b). For substrates of thickness of 76 and

126 mm, this yielded curvature changes of (1/R � 1/R0) ¼ 1.5 �
0.2 and 0.6 � 0.1 m�1 at equilibrium swelling, respectively.

Combined with a value of D(N)/H¼ 0.80 from the data in Fig. 4,

and eqn (15), we obtain respective values for the shear modulus

of G ¼ 130 � 30 Pa and 220 � 40 Pa.

For comparison with these results, we also performed oscil-

latory shear rheology on a larger sample of gel of identical

composition. Just after polymerization, the shear modulus was

measured to be 1.3 � 0.2 kPa from the value of G0 in the plateau

region of a strain-rate sweep, as shown in Fig. 7. After allowing

the gel to swell to equilibrium in 3D, this value was reduced to

0.5 � 0.1 kPa. While a direct comparison with literature values is

difficult given the sensitivity of modulus to gel composition and

polymerization conditions, the results from shear rheology fall in

the same range as previously reported values of G ¼ 0.5 kPa to

3.0 kPa for PNIPAM gels of similar composition.48–50

It is clear that our substrate curvature measurements under-

estimate the modulus compared to shear rheology. However, we

note that discrepancies of this magnitude are not uncommon

when comparing moduli of soft gels determined by different

techniques.24,51,52 Such measurements are often experimentally

challenging to perform; even traditional shear rheology on soft

gels is generally difficult and potentially subject to significant

systematic errors. In addition, the linear poroelastic shear
Fig. 7 Oscillatory shear rheology measurements (conducted at a stress

of 1 Pa) on unconstrained gels following polymerization and after

swelling to equilibrium. Values of the shear modulus were estimated from

the storage modulus G0 across this frequency range as 1.3 and 0.5 kPa,

respectively.

Fig. 8 Plots of the solutions to eqn (23) (free swelling) and (29) (con-

strained swelling) using the same values of gel modulus and solvent

chemical potential as in Fig. 5, but with different values of Poisson’s ratio

n. While the two curves nearly overlap at early times for the case of n ¼
1/3, this is not true in general, as seen clearly for the case of n ¼ 1/5.

6010 | Soft Matter, 2010, 6, 6004–6012
modulus does not capture changes in modulus due to swelling

and is determined here at moderate strains, which may lead to

sizable differences from the small-strain oscillatory shear

modulus. Further work is required to determine whether closer

correspondence between the values determined by substrate

curvature and other techniques will be obtained using a non-

linear model of gel behavior that explicitly accounts for these

effects.

We next return to the definition of D (eqn (12)) to determine the

third fundamental material parameter of the gel, the permeability

k. Using the measured values of D ¼ 1.5 � 10�11 m2 s�1,
This journal is ª The Royal Society of Chemistry 2010



Fig. 9 A comparison between theory and experiment for vertical

displacement of beads within a constrained gel layer. The initial gel

thickness was 244 mm, and the values in the legend indicated the initial

vertical distance from the substrate/gel interface. Good agreement

between the data and predictions from eqn (22) reveals that linear

poroelasticity also provides a reasonable description of the solvent

distribution throughout the gel.
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G¼ 1.3 kPa (the value for the unswelled gel from shear rheology),

n¼ 0.33, and a value of h¼ 1.0� 10�3 Pa s for water at 20 �C, we

obtain an estimate of k¼ 2.9� 10�18 m2. If we compare this value

to the permeability for laminar flow through a cylindrical tube of

diameter d, i.e. k ¼ d2/32, we obtain a rough estimate for the

average pore size of d¼ 9.6 nm. While measurements of pore size

vary considerably depending on the technique employed and are

complicated by the well known heterogeneity of gel structure, we

note that a recent study employing several techniques yielded

average pore diameters of 5–10 nm for polyacrylamide gels with

similar monomer content to the PNIPAM gels studied here.53

Finally, we close with two further comments on our compar-

isons between experiment and linear poroelastic theory. First, the

apparent collapse of the initial stage swelling data in Fig. 5 for

both swelling geometries into a single curve raises the question of

whether the self-similar solution, eqn (19), might be appropriate

for treating the freestanding gel case as well as the surface-

attached gel. However, the apparent equivalence between the two

geometries is simply fortuitous, as shown in Fig. 8 where we plot

the full solutions to eqn (23) and (29) using the same values of

modulus and solvent chemical potential as in Fig. 5, but now

with varying Poisson’s ratio. For the case of n ¼ 1/3 (Fig. 8a),

similar to the experimental value, the two curves are nearly

superimposed at early times. However, as n is reduced to 1/4 or

1/5 (Fig. 8b and c, respectively), it is clear that the two curves are

not the same, and that the 3D swelling geometry cannot in

general be described by a straight line on this plot. We emphasize

that this reflects the fact that there is no self-similar solution for

the swelling of the freestanding layer. Since the strain in the

directions of the film plane is equal to the average strain in

the thickness direction, even in the initial stages of swelling the

in-plane displacements cannot be neglected. Second, both the

theory and our experimental method provide access to the time-

dependent displacements at arbitrary spatial locations within the

gel layer. In Fig. 9, we plot data for uz(z,t)/z for beads at several

different positions z within a confined gel layer, along with the

corresponding predictions from eqn (22). The agreement

between theory and experiment is also quite good in this case,

indicating that linear poroelastic theory not only provides
This journal is ª The Royal Society of Chemistry 2010
a suitable description of the average swelling of the film, but even

captures the distribution of solvent through the layer thickness.
Conclusions

In conclusion, we have characterized the swelling kinetics of thin

layers of poly(N-isopropylacrylamide) hydrogels under two

simple geometries: free 3D swelling and constrained 1D swelling

due to attachment to a rigid substrate. We find that Biot’s theory

of linear poroelasticity is adequate to describe both of these cases

using only a single set of material parameters. This is a notable

result, since although the incompleteness of Tanaka and

co-workers’ theory14,15 has been pointed out by several

authors,19,21 few comparisons have been made between the

predictions of poroelasticity and experimental data for swelling

of polymer gels. The differential equations described by eqn (10)

and (11) provide a straightforward starting point to model the

swelling kinetics of gels and are amenable to numerical solution

for more complicated geometries.

In addition to providing support for the validity of poroelastic

theory to model swelling kinetics of polymer gels, the results of

these experiments allow unambiguous determination of the three

poroelastic material properties of the gel—the shear modulus,

Poisson’s ratio, and permeability—provided that the curvature

of the substrate can be measured for the case of 1D swelling. This

yields a very simple way to characterize the properties of thin gel

layers that requires only an optical microscope and avoids the

experimental complications and large sample sizes required for

conventional shear rheology. While relatively thick samples

(500 mm) were used here, by shifting to thinner substrates or

a more sensitive curvature measurement, it should be possible to

extend the technique to substantially thinner or lower modulus

gels.
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