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a b s t r a c t

This paper analyzes a membrane of a dielectric elastomer, prestretched and mounted on a rigid circular
ring, and then inflated by a combination of pressure and voltage. Equations of motion are derived from a
nonlinear field theory, and used to analyze several experimental conditions. When the pressure and volt-
age are static, the membrane may attain a state of equilibrium, around which the membrane can oscillate.
The natural frequencies can be tuned by varying the prestretch, pressure, or voltage. A sinusoidal pres-
sure or voltage may excite superharmonic, harmonic, and subharmonic resonance. Several modes of
oscillation predicted by the model have not been reported experimentally, possibly because these modes
have small deflections, despite large stretches.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Dielectric elastomers are being developed intensely as electro-
mechanical transducers (e.g., Pelrine et al., 2000; Carpi et al.,
2008). Most studies have focused on the quasi-static behavior of
large deformation for applications such as soft robots, adaptive op-
tics, energy harvesting, and programmable haptic surfaces (Carpi
et al., 2008). It has been appreciated, however, that dielectric elasto-
mers can deform over a wide range of frequencies. Applications
exploiting the dynamic behavior of dielectric elastomers include
loudspeakers (Heydt et al., 2006; Chiba et al., 2007), active noise
control (Heydt et al., 2000), and frequency tuning (Dubois et al.,
2008). Furthermore, inertia can play a significant role whenever
devices operate at high frequencies. For example, when an elasto-
meric pump is driven rapidly, the membrane can resonate with
the excitation (Goulbourne et al., 2007).

This paper focuses on the dynamic behavior of dielectric elasto-
mers. While dynamics of membranes is a classical topic (e.g., Farlow,
1993; Goncalves et al., 2009), few theoretical analyses have been de-
voted to dielectric elastomers. Mockensturm and Goulbourne
(2006) investigated a time response of a spherical membrane for a
specified applied voltage. Dubois et al. (2008) demonstrated that
the frequency of a flat membrane can be tuned by a voltage. Zhu
et al. (2010) studied nonlinear oscillation of a spherical membrane,
and showed that the membrane exhibits subharmonic and super-
harmonic resonance, as well as harmonic resonance.

This paper goes beyond spherical and flat membranes, and ana-
lyzes a prestretched membrane mounted on a rigid ring, inflated
by a pressure and a voltage into an axisymmetric shape, Fig. 1. This
ll rights reserved.

+1 617 4960601.
configuration has been used in experiments by several groups (Ha
et al., 2006; Heydt et al., 2006; Goulbourne et al., 2007; Fox and
Goulbourne, 2008, 2009). When a membrane undergoes deforma-
tion of the spherical symmetry, the field is homogeneous, governed
by an ordinary differential equation. By contrast, when a membrane
undergoes deformation of the axisymmetric symmetry as shown in
Fig. 1, the field is inhomogeneous (in the longitudinal direction),
governed by partial differential equations. The inhomogeneous
deformation enables the membrane to resonate at multiple frequen-
cies of excitation, as observed in recent experiments (Fox, 2007; Fox
and Goulbourne, 2008, 2009). Furthermore, it is interesting to ex-
plore subharmonic and superharmonic resonance besides harmonic
resonance when the deformation is inhomogeneous.

This paper is planned as follows. Section 2 derives the equations
of motion for an axisymmetric membrane, subject to a pressure
and a voltage, undergoing dynamic and finite deformation. Sec-
tion 3 analyzes stability of states of equilibrium when the pressure
and voltage are static. For a given prestretch, a membrane can at-
tain a stable state of equilibrium when the pressure and voltage
stay below certain critical conditions. Section 4 studies a mem-
brane oscillating around a state of equilibrium, and shows that
the natural frequencies can be tuned by changing the prestretch,
pressure, or voltage. Section 5 shows that sinusoidal pressure or
voltage can excite superharmonic, harmonic, and subharmonic re-
sponses. Section 6 compares the theoretical results with available
experimental observations.
2. Equations of motion

This section derives the equations of motion for an axisymmet-
ric membrane of a dielectric elastomer subject to a pressure and a
voltage. Similar equations of motion have been derived on the
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Fig. 1. Cross section of a membrane of a dielectric elastomer, sandwiched between
two compliant electrodes. (a) In the stress-free state, the elastomer is a circular flat
membrane. (b) The membrane is prestretched and held by a rigid ring. (c) Subject to
a pressure and a voltage, the membrane inflates out of the plane, and takes an
axisymmetric shape.
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basis of the Maxwell stress (e.g., Fox and Goulbourne, 2009). Here
we derive the equations of motion in an approach such that the
equations can be readily modified even if the Maxwell stress is
not valid (Suo et al., 2008).

Fig. 1 illustrates the cross section of a membrane of a dielectric
elastomer, sandwiched between two compliant electrodes. In the
absence of any applied load, the membrane is of a circular shape,
thickness H and radius A. This state is taken to be the state of ref-
erence, in which we mark a material particle by its distance R from
the center O. When the membrane is prestretched and attached to
a rigid circular ring of radius a, the particle R moves to the place a
distance r from the center. The membrane is then inflated by a
time-dependent pressure p(t) and a voltage U(t). At time t, the
membrane is assumed to deform into an axisymmetric shape,
and the particle R moves to a place with coordinates r and z. The
two fields, r(R, t) and z(R, t), specify the time-dependent deforma-
tion of the membrane.

Consider a differential element between two particles R and
R + dR. At time t, one particle occupies the place of coordinates
r(R, t) and z(R, t), and the other particle occupies the place of coordi-
nates r(R + dR, t) and z(R + dR, t). Let l(R, t) be the arclength between
the element and the center of the membrane, and h(R, t) be the slope
of the element. Consequently, r(R + dR, t) � r(R, t) = coshdl and
z(R + dR, t) � z(R, t) = �sinhdl. The longitudinal stretch is defined by
the length of the element at time t divided by the length of the ele-
ment in the state of reference, k1 = @l/@R, namely,

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@r
@R

� �2

þ @z
@R

� �2
s

: ð1Þ

Next consider the circle of material particles, of perimeter 2pR in
the state of reference. At time t, the circle is of perimeter 2pr. The
latitudinal stretch is

k2 ¼
r
R
: ð2Þ

The volume enclosed by the membrane is given by
v ¼ �
Z

pr2 @z
@R

dR: ð3Þ

All integrals in this paper are taken with respect to R over the inter-
val (0,A).

Define the nominal electric displacement eDðR; tÞ by the electric
charge on an element of an electrode at time t divided by the area
of the element in the state of reference. Consequently, the total
charge on the electrode is

Q ¼ 2p
Z eDRdR: ð4Þ

The actuator is a thermodynamic system, taken to be held at a
constant temperature. Let W be the Helmholtz free energy of an
element of the dielectric at time t divided by the volume of the ele-
ment in the state of reference. The elastomer is taken to be incom-
pressible, so that the thermodynamic state of an element of the
membrane is described by two stretches, k1 and k2, as well as the
nominal electric displacement eD. A material model of the mem-
brane is specified by a free-energy function

W ¼W k1; k2; eD� �
: ð5Þ

For small variations in the kinematic variables, the free-energy den-
sity varies by

dW ¼ s1dk1 þ s2dk2 þ eEdeD; ð6Þ

where s1 and s2 are the nominal stresses, and eE is the nominal elec-
tric field. Eq. (6) relates these nominal quantities to partial differen-
tial coefficients of the free-energy function:

s1 ¼
@W k1; k2; eD� �

@k1
; ð7Þ

s2 ¼
@W k1; k2; eD� �

@k2
; ð8Þ

eE ¼ @W k1; k2; eD� �
@ eD : ð9Þ

Once a free-energy function W k1; k2; eD� �
is prescribed for a mate-

rial, (7)–(9) constitute the equations of state.
For an arbitrary variation of the system, the change in the Helm-

holtz free energy of the membrane equals the work done by the
pressure, voltage, and inertial forces, namely,

2pH
Z

dWRdR ¼ pdv þUdQ � 2pHq
Z

@2r
@t2 dr þ @

2z
@t2 dz

 !
RdR;

ð10Þ

where q is the mass density of the elastomer. Regarding dr, dz and
deD as independent variations, we obtain from the standard calculus
of variation that

� @

R@R
Rs1 sin hð Þ þ k1k2

p
H

cos h ¼ q
@2z
@t2 ; ð11Þ

@

R@R
Rs1 cos hð Þ � s2

R
þ k1k2

p
H

sin h ¼ q
@2r
@t2 ; ð12Þ

HeE ¼ U: ð13Þ

The equations of motion, (11) and (12), can also be obtained by con-
sidering the membrane between R and R + dR, and balancing forces
at time t in the directions of z and r, respectively. Eq. (13) recovers
the definition of the nominal electric field.

The above equations are valid for an arbitrary material model
specified by the free-energy function, W k1; k2; eD� �

. In what fol-
lows, we adopt a material model known as the ideal dielectric elas-
tomer (Zhao et al., 2007), where the dielectric behavior of the



Fig. 2. Deformed shapes of the membrane subject to (a) a fixed pressure and several
values of voltage, and (b) a fixed voltage and several values of pressure.
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elastomer is taken to be liquid-like, unaffected by deformation.
Specifically, the true electric displacement is linear in the true elec-
tric field, and the permittivity is independent of deformation. This
material model seems to describe some experimental data (Kofod
et al., 2003), but is inconsistent with other experimental data
(Wissler and Mazza, 2007). Nevertheless, this model has been used
almost exclusively in previous analyses of dielectric elastomers.
See Zhao and Suo (2008a) for a model of nonideal dielectric elasto-
mers, and Bustamante et al. (2009) for a more general description
of electromechanical interaction.

The elastomer is assumed to be incompressible, so that the
stretch in the thickness direction of the membrane, k3, relates to
the stretches in the surface of the membrane as k3 = 1/(k1k2). The
thickness of the membrane is H in the undeformed state, and is
k3H = H/(k1k2) in the deformed state. By definition, the true electric
field E is the voltage divided by the thickness of the membrane in
the deformed state, so that E ¼ k1k2U=H ¼ k1k2

eE. The true electric
displacement D is defined as the charge in the deformed state di-
vided by the area of the membrane in the deformed state, so that
D ¼ eD= k1k2ð Þ.

For the ideal dielectric elastomer, following Zhao et al. (2007),
we assume that the Helmholtz free energy takes the form

W k1; k2; eD� �
¼ l

2
k2

1 þ k2
2 þ k�2

1 k�2
2 � 3

� �
þ
eD2

2e
k�2

1 k�2
2 : ð14Þ

The first term is the elastic energy, where l is the small strain shear
modulus. The second term is the dielectric energy, where e is the
permittivity. The elastomer is taken to be a network of long poly-
mers obeying the Gaussian statistics, so that the elastic behavior
of the elastomer is neo-Hookean. For an ideal dielectric elastomer,
the dielectric energy per unit volume is D2/2e, and the permittivity
e is a constant independent of deformation. In (14) the dielectric en-
ergy has been expressed in terms of the nominal electric displace-
ment eD, a variable required by the function W k1; k2; eD� �

.
Inserting (14) into (7)–(9), we obtain the equations of state:

s1 ¼ l k1 � k�3
1 k�2

2

� �
�
eD2

e
k�3

1 k�2
2 ; ð15Þ

s2 ¼ l k2 � k�3
2 k�2

1

� �
�
eD2

e
k�3

2 k�2
1 ; ð16Þ

eE ¼ eD
e

k�2
1 k�2

2 : ð17Þ

Recall that the true stresses r1 and r2 relate to the nominal stresses
as r1 = k1s1 and r2 = k2s2. We rewrite (15)–(17) in terms of the true
quantities:

r1 ¼ l k2
1 � k�2

1 k�2
2

� �
� eE2; ð18Þ

r2 ¼ l k2
2 � k�2

2 k�2
1

� �
� eE2; ð19Þ

D ¼ eE: ð20Þ

These equations are readily interpreted. For example, the first term
in (18) is the contribution to the stress due to the change of entropy
associated with the stretch of the polymer network, and the second
term is due to the applied voltage. Eqs. (18)–(20) in various forms
has been used in previous analyses (e.g., Pelrine et al., 2000; Wissler
and Mazza, 2005; Goulbourne et al., 2005).

3. State of equilibrium and critical condition

When the pressure p and voltage U are static, the membrane
may reach a state of equilibrium. The state of equilibrium is de-
scribed by time-independent functions r0(R) and z0(R), governed
by the equations in Section 2, setting @2z/@t2 = 0 and @2r/@t2 = 0.
We solve these equations by using MATLAB. We normalize the
coordinates by A, the pressure by (Hl/A), and the voltage by
H
ffiffiffiffiffiffiffiffi
l=e

p� �
. Unless otherwise stated, we fix the prestretch k0 = a/

A = 3.
Fig. 2 plots the deformed shapes of the membrane subject to

various pressures and voltages. As expected, the displacement of
the membrane increases with the pressure and voltage. Our simu-
lation shows (e.g., Fig. 2a) that the shape of the membrane differs
from a spherical cap, especially when the voltage is large.

Fig. 3 plots the distribution of the stretches k1 and k2 when the
membrane is subject to a fixed pressure and several values of volt-
age. The deformation of the membrane is inhomogeneous. At a
fixed pressure and voltage, both k1 and k2 are largest at the center
of the membrane, and monotonically reduces to the smallest value
at the outer end. As a result, the center point of the membrane is
the weakest point for mechanical failure. At the ring, the latitudinal
stretch remains fixed by the pre-stretch, k2(A) = k0.

Fig. 4 plots the pressure as a function of the volume, when the
membrane is subject to a constant voltage. As the membrane in-
flates, the pressure first increases, reaches a peak, and then de-
creases. The peak pressure corresponds to a critical state. When
the applied pressure is above the peak, the membrane cannot reach
a state of equilibrium. When the applied pressure is below the
peak, corresponding to each value of pressure are two values of
volume. The value of volume on the rising part of the pressure-vol-
ume curve corresponds to a stable state, while the value of volume
on the descending part corresponds to an unstable state. Also plot-
ted in Fig. 4 is the fundamental natural frequency as a function of
the volume. When the pressure reaches the peak, the fundamental
natural frequency vanishes. The method to calculate natural fre-
quencies is described in the next section.

When the pressure and voltage are small, the system will oscil-
late around a stable state of equilibrium. When the pressure or
voltage reaches a critical value at the peak, the natural frequency
vanishes, and it takes an infinite time for the system to return to
the state of equilibrium. In other words, the state of equilibrium
becomes unstable. Indeed, for many mechanical systems a vanish-
ing natural frequency indicates instability or buckling (Zhu et al.,
2008; Hwang and Perkins, 1994).

Fig. 5 plots the critical values of p and U at several levels of pre-
stretch k0. At a fixed prestretch k0, when the pressure and voltage



Fig. 3. The distributions of the longitudinal stretch and the latitudinal stretch in the
membrane subject to a fixed pressure and several values of voltage.
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Fig. 5. Plotted on the plane of (p,U) are curves of the critical values at several levels
of prestretch k0. At a fixed k0, each point on the corresponding curve represents a
critical state of the membrane. When the pressure and voltage fall above this curve,
the membrane cannot reach a state of equilibrium. When the pressure and voltage
fall below the curve, the membrane can reach a stable state of equilibrium.
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fall above the corresponding curve, the membrane cannot reach a
state of equilibrium. However, when the pressure and voltage fall
below the curve, the membrane can reach a state of equilibrium.
For the membranes with the same original radius and thickness
A and H, as indicated in Fig. 5, the critical values of p and U for
instability decrease with the prestretch. When the prestretch is
fixed, the critical value of p (or U) decreases with U (or p).

For a neo-Hookean material, when the pressure or voltage
reaches the peak, we assume that the deformation of the mem-
brane may go to infinity, which leads to electrical breakdown.
However, elastomers used in practice may exhibit strain-stiffening
due to the finite contour length of polymer chains. This phenome-
non cannot be described by a neo-Hookean model, but can be de-
scribed by other stress-strain models (e.g., Arruda and Boyce,
1993). For an Arruda–Boyce material, when the pressure or voltage
reaches a critical value, the membrane may undergo snap-through
instability and jump to a state of equilibrium at a larger stretch. In
this paper, we focus on electromechanical instability of a mem-
brane of a dielectric elastomer. For example, Fig. 5 shows the effect
of the prestretch on the critical state for electromechanical insta-
bility. However, for dielectric elastomers, how to survive snap-
through instability and achieve a larger deformation of actuation
is an interesting and important issue and deserves further studies
(Suo and Zhu, 2009; Zhao and Suo, 2010).

4. Oscillation around a state of equilibrium

As discussed in the previous section, a membrane subject to a
constant pressure and voltage may reach a state of equilibrium.
Around the state of equilibrium, the membrane can oscillate. We
now analyze oscillation of small amplitude. When the membrane
oscillates around the state of equilibrium, r0(R) and z0(R), we write
a mode of oscillation as:

rðR; tÞ ¼ r0ðRÞ þ r̂ðRÞ sinxt; ð21Þ
zðR; tÞ ¼ z0ðRÞ þ ẑðRÞ sin xt: ð22Þ

Thus, the mode of oscillation has the natural frequency x, and has
the field of amplitude r̂ðRÞ and ẑðRÞ. Using the finite difference
method, we divide the domain [0,A] into N elements (say,
N = 1000). Substituting (21) and (22) into (11) and (12), we obtain
the equations for each element and then expand them into the
power series of r̂ and ẑ. The resulting equations are lengthy and
are not listed here. For oscillation of small amplitude, we retain
terms linear in r̂ and ẑ, and assemble the equations of the entire
system as:

Kx ¼ x2x ð23Þ

where x ¼ ½r̂ð0Þẑð0Þr̂ðA=NÞẑðA=NÞ . . . r̂ðA� A=NÞẑðA� A=NÞr̂ðAÞð
ẑðAÞ�TÞ is the amplitude vector, and K is a stiffness matrix with each
element Kij dependent on the state of equilibrium r0(R) and z0(R).
The procedure leads to an eigenvalue problem, with x2 being the
eigenvalue, and x being the eigenfunction. The lengths of the eigen-
functions are normalized by A, such that jx/Aj = 1), and the frequen-
cies are normalized by A�1 ffiffiffiffiffiffiffiffiffi

l=q
p

.
When pA

lH ¼ 0:1 and eU2

lH2 ¼ 0:01, the normalized natural frequen-
cies of the first seven modes are x1 = 2.3, x2 = 3.7, x3 = 5.2,
x4 = 6.7, x5 = 8.2, x6 = 9.7, and x7 = 11.2. Fig. 6 plots the shape
and the longitudinal and latitudinal stretches of the 1st, 3rd, 5th,
and 7th modes, while Fig. 7 plots those of the 2nd, 4th, and 6th
modes. For the even modes, the shapes of different modes are
nearly indistinguishable (Fig. 7a), but the stretches of different
modes are quite different (Fig. 7b, c). The significance of these
modes will be discussed in Section 6 in connection to parametric
excitation.

5. Tuning natural frequencies

Many devices require that natural frequencies be tuned. Exam-
ples include MEMS-based oscillators used in sensing (Ekinci et al.,
2004), timing, and frequency reference (Nguyen, 2007). As another



Fig. 6. The 1st, 3rd, 5th, and 7th modes of oscillation around a state of equilibrium
(indicated by dashed lines), (a) Shape of the membrane, (b) Longitudinal stretch,
(c) Latitudinal stretch.

Fig. 7. The 2nd, 4th and 6th modes of oscillation around a state of equilibrium
(indicated by dashed lines), (a) Shape of the membrane, (b) Longitudinal stretch,
(c) Latitudinal stretch.
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example, the natural frequency of an energy harvester is often
tuned into the spectrum where most of the energy is available
(Anton and Sodano, 2007). For many systems, however, natural
frequencies are set by materials and geometries, and are often
difficult to tune (Cottone et al., 2009). By contrast, the natural fre-
quency of a dielectric elastomer is easily varied by varying the pre-
stretch during fabrication, and by varying the pressure or voltage
during operation (Dubois et al., 2008).

Fig. 8 plots the fundamental frequency as a function of the pre-
stretch, while the pressure and voltage are held at several constant
levels. It is well known that, in the absence of pressure and voltage,
the frequency of a membrane increases with the prestretch (Den
Hartog, 1985). By contrast, when the membrane is subject to a con-
stant pressure and voltage, as the prestretch increases, the fre-
quency first increases, reaches a peak, and then decreases. This
trend is understood as follows. When the prestretch is small, the
stress in the membrane increases with prestretch, and the fre-
quency increases. For a given prestretch, the membrane reaches
the critical state at certain levels of pressure and voltage (Fig. 5),
and the frequency becomes zero.

Fig. 9 plots the fundamental frequency as a function of the pres-
sure at several levels of voltage. When the prestretch is small
(k0 = 1.1), as the pressure increases, the fundamental frequency
first increases, reaches a peak, and then decreases. When the pre-
stretch is large (k0 = 3), the fundamental frequency decreases as
the pressure increases.

6. Parametric excitation

When the pressure or the voltage varies with time, the behavior
of the membrane can be very complex. To illustrate the complex-
ity, we prescribe a static pressure p and a sinusoidal voltage:

UðtÞ ¼ Udc þUac sin Xt; ð24Þ

where Udc is the dc voltage, Uac the amplitude of ac voltage, and X
the frequency of excitation. As shown in Section 2, the AC voltage
appears as a time-varying coefficient in the partial differential equa-
tions. Phenomena of this type are known as parametric excitation
(Jordan and Smith, 1987; Nayfeh and Mook, 1979).
Fig. 8. The fundamental frequency is plotted as a function of the prestretch,
(a) when the membrane is subject to a fixed pressure and several values of voltage,
or (b) when the membrane is subject to a fixed voltage and several values of
pressure.



Fig. 9. The fundamental frequency is plotted as a function of the pressure at several
values of voltage, (a) k0 = 1.1, (b) k0 = 3.
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Fig. 10. Under a static pressure and a sinusoidal voltage, a membrane resonates at
several frequencies of excitation, which are closely related to natural frequencies of
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J. Zhu et al. / International Journal of Solids and Structures 47 (2010) 3254–3262 3259
The nonlinear theory described in Section 2 has been embedded
in the finite element software ABAQUS with a user-supplied sub-
routine (Zhao and Suo, 2008b). We use this code to simulate the
following process. First, the membrane is uniformly prestretched
in the radial direction, and then fixed along the edge. Second, the
membrane is subject to a static pressure. Finally, a sinusoidal volt-
age is applied, which causes the membrane to oscillate. Fig. 10
plots the amplitudes of displacement and stretch, at the center of
the membrane, as functions of the frequency of excitation. Here
the amplitude is defined as the difference between the highest
and lowest values of displacement or stretch. As we know, the
actuation for a dielectric elastomer is related to U2. When the volt-
age is sinusoidal (24), note that

U2 ¼ U2
dc þ 2UdcUac sin Xt þU2

ac sin2 Xt: ð25Þ
The ac voltage with the frequency X leads to the excitations with two
different frequencies, namely, 2UdcUacsin(Xt) and 0:5U2

ac cosð2XtÞ.
In this numerical example, we have set Uac/Udc = 0.1, so that the exci-
tation of the frequency of 2X may be neglected in the discussion.

When the frequency of excitation is close to one of the natural
frequencies, the corresponding natural vibration mode is induced.
The even modes have small amplitude of displacement, but large
amplitude of stretch. Thus, we may think the even modes are re-
lated to in-plane vibration, while the odd modes are related to
out-of-plane vibration. The existing literature on dynamic behavior
of membrane focused on out-of-plane oscillation, but did not re-
port in-plane oscillation (e.g., Goncalves et al., 2009; Fox, 2007;
Fox and Goulbourne, 2008, 2009). The shapes of the out-of-plane
modes reported in the literature are similar to our results shown
in Fig. 6.

Besides the harmonic resonance, our analysis shows that the
membrane also resonates when X � 2x1, which is known as sub-
harmonic resonance (Nayfeh and Mook, 1979). In addition, the
membrane resonates when X �x1/2, which is known as superhar-
monic resonance. Fig. 11 plots the displacement at the center of the
membrane as a function of time. The membrane is driven at several
frequencies of excitation. When X �x1, the membrane oscillates
at a frequency close to the frequency of excitation, indicative of
the harmonic resonance of the fundamental mode. When X �x3,
the membrane oscillates at a frequency close to the frequency of
excitation, indicative of the harmonic response of the third mode.
When X �x1/2, the membrane oscillates at the frequency x1,
which doubles the frequency of excitation, indicative of superhar-
monic resonance. When X � 2x1, the membrane oscillates at the
frequency x1, which is half of the frequency of excitation, indica-
tive of subharmonic resonance. Subharmonic and superharmonic
responses are common phenomena in nonlinear oscillations due
to parametric excitation (Turner et al., 1998; De and Aluru, 2005).

When designing a loudspeaker of a dielectric elastomer (Heydt
et al., 2006; Chiba et al., 2007), one wishes that the frequency of
output vibration is the same as that of input signal. Fig. 11 shows
that in some ranges of frequency, for example, when X is close
to x1/2 or 2x1, the membrane oscillates at a frequency different
from the frequency of excitation. This phenomenon will distort
sound. To avoid this distortion, one should tune the natural fre-
quency of a dielectric elastomer far away from half and double
the frequency of excitation.
7. Comparison with experimental observations

Recently, Fox and Goulbourne studied dynamics of dielectric
elastomer membranes experimentally (Fox, 2007; Fox and
Goulbourne, 2008, 2009). The membrane VHB 4905 or VHB 4910
with a diameter of 3.500 is prestretched mechanically first (with
k0 = 3), and then fixed by a rigid frame (Fox and Goulbourne,
2008). Carbon grease, spread on both sides of the membrane,
serves as the electrodes. The membrane deforms under a pressure
and a voltage. Fox measured the dynamic responses of the mem-
brane due to i) a time-varying pressure and a fixed DC voltage,
and ii) a time-varying AC voltage and a fixed pressure. For the
time-varying pressure input, they tested several small values of
the frequency (say, 1–5.5 Hz), and found that the amplitude of
the oscillation increases with the frequency of the pressure. For
the time-varying AC voltage input, they observed the phenomena
of multiple resonance peaks and different vibration modes. These
dynamic phenomena of dielectric elastomers have not been ex-
plained theoretically. We will compare our theoretical results with
their experimental data.

Fig. 12a plots the pressure as a function of the volume for a VHB
4910 membrane in the absence of voltage. The experimental data



Fig. 11. Harmonic (a,c), superharmonic (b), and subharmonic (d) responses of the membrane when pA
lH ¼ 0:1, eU2

dc

lH2 ¼ 0:01, and Uac
Udc
¼ 0:1.

Fig. 12. The pressure is plotted as functions of the volume enclosed by the VHB
4910 membrane at several values of voltage. Our theoretical results are indicated by
solid lines, while the experimental data (Fox, 2007) are indicated by circle points.
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in Fig. 18 of Fox (2007) match well with our theoretical curve once
the shear modulus is set to be 25.1 kPa. The average error is 4%. The
difference between the experimental data and theoretical predic-
tion becomes large when the stretch is large, possibly because
the neo-Hookean model becomes inaccurate at larger stretches.

When the membrane is subject to two levels of dc voltage, as
shown in Fig. 12b and c, the experimental data of Fox (2007) match
well with our theoretical curve once the dielectric constant is set to
be 4.55, a value reported by Kofod et al. (2003). The difference be-
tween the experimental data and theoretical curves becomes large
at large stretches. In addition to the possible inaccuracy of the neo-
Hookean model, a recent experiment indicates that the dielectric
constant may decrease when the elastomer undergoes large defor-
mation (Wissler and Mazza, 2007). In the remainder of this section
we will use the shear modulus of 25.1 kPa and dielectric constant
4.55 to calculate theoretical results.

Fox (2007) and Fox and Goulbourne (2008, 2009) analyzed nat-
ural frequencies and vibration modes of the VHB 4905 membrane.
They tuned the frequency of the AC voltage and recorded the
amplitude of the oscillation. For example, when the pressure is
80 Pa, Udc = 0, and Uac = 1.5 kV, the natural frequencies of
out-of-plane oscillation are 70 Hz, 130 Hz and 205 Hz, respectively
(Fox, 2007; Fox and Goulbourne, 2009). Based on the method de-
scribed in Section 4, our theoretical results of natural frequencies
are 58.7 Hz, 135.1 Hz, 211.9 Hz for the 1st, 3th, and 5th out-of-
plane oscillation, and the average error is about 8%. In analyzing
the natural frequencies, we consider the effect of the electrodes,
and add the mass of the electrodes to that of the membrane. With
a large prestretch (say, k0 = 3), the membrane is very thin and light
(even thinner and lighter than the electrodes). For example, in the
Fox’s experiment, 0.5 ml carbon grease is used, and the mass of the
electrodes is about four times that of the membrane itself. The
electrodes may significantly decrease natural frequencies of an
actuator, especially when the dielectric elastomer is subject to a
large prestretch.

Fig. 13 plots superharmonic, harmonic, and subharmonic re-
sponses of the VHB 4905 membrane when p = 80 pa, Udc = 0 kV,
Uac = 1.5 kV. As stated before, the actual excitation is U2. When
Udc = 0, the frequency of actual excitation is double that of ac volt-
age. When the frequency of ac voltage is 29 Hz, as shown in
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Fig. 13. Harmonic (a,c), superharmonic (b), and subharmonic (d) responses of the VHB 4905 membrane when p = 80 pa, Udc = 0 kV, Uac = 1.5 kV.

Fig. 14. Tuning the natural frequencies of the Sylgard 184 and 186 membranes.
Without pressure, the membrane is flat and in a homogeneous state. Changes in the
voltage can tune the natural frequencies of the membranes.
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Fig. 13a, the frequency of actual excitation is 58 Hz which is close
to the first natural frequency (58.7 Hz) as described above. It is
seen from Fig. 13a that the frequency of oscillation is about double
that of ac voltage (and close to that of actual excitation). This is a
harmonic response, similar to the subfigure in Fig. 70 of Fox
(2007) where the frequency of ac voltage is 35 Hz, the frequency
of actual excitation is 70 Hz, and that of oscillation is about
70 Hz. Fig. 13c is another harmonic response, where the frequency
of ac voltage is 66 Hz, the frequency of actual excitation is 132 Hz
(which is close to the third natural frequency 135.1 Hz), and the
frequency of oscillation is about 132 Hz. This response is similar
to another subfigure in Fig. 70 of Fox (2007) where the frequency
of ac voltage is 65 Hz. The predicted amplitudes are about ten
times those reported in Fox (2007). These large discrepancies are
possibly due to that the damping effect is ignored in the current
analysis. How dissipation due to viscosity and leakage affects dy-
namic responses of dielectric elastomer deserves further studies.
In addition, our present analysis shows superharmonic and sub-
harmonic responses, but these responses are not reported in the
experimental data. When the frequency of ac voltage is 14 Hz, as
shown in Fig. 13b, the frequency of actual excitation is 28 Hz
(which is close to half of the first natural frequency), the frequency
of oscillation is about double that of excitation and four times that
of ac voltage. This is a superharmonic response. Fig. 13d shows a
subharmonic response. When the frequency of ac voltage is
56 Hz, the frequency of actual excitation is 112 Hz (which is close
to double the first natural frequency), the frequency of oscillation
is about half of that of excitation, and this is a subharmonic
response.

Dubois et al. reported on the active tuning of the fundamental
natural frequencies of dielectric elastomer membranes made of
PDMS Sylgard 184 and 186 (Dubois et al., 2008). The membranes
were prestretched by the fabricated process, and were fixed to a ri-
gid frame. Subject to no pressure, the membranes remained flat,
and deformed homogenously. Their natural frequencies were
tuned by applying dc voltages through the thickness of the mem-
branes to reduce their internal stress. With the method described
in Section 2 and the material, geometry, and loading parameters
used in Dubois et al. (2008), we can analyze the natural frequencies
of these dielectric elastomer membranes. Fig. 14 compares our the-
oretical results with Dubois’s experimental data. For the 2 mm-
diameter Sylgard 186 membrane, the average error of our theoret-
ical results is 7.5%. For the 4 mm-diameter Sylgard 184 membrane,
the average error of our results is 2.3%. Because this experiment in-
duces homogeneous deformation in the membrane, the theory and
model employed in Dubois et al. (2008) is relative simple. Our the-
ory, however, is also applicable when the membrane undergoes
inhomogeneous deformations. In many potential commercial
applications (say, Universal Muscle Actuators in AMI), the dielec-
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tric elastomers have inhomogeneous deformations (Bonwit et al.,
2006; Carpi et al., 2008; He et al., 2009).

8. Concluding remarks

This paper studies nonlinear dynamics of a membrane of a
dielectric elastomer. When subject to a static pressure and voltage,
the membrane reaches a state of equilibrium. We analyze instabil-
ity of states of equilibrium, natural frequencies, and vibration
modes. When the fundamental natural frequency vanishes, the
state of equilibrium becomes unstable. We show that the natural
frequencies of dielectric elastomers are tunable by varying the pre-
stretch, pressure, or voltage. When driven by a sinusoidal voltage,
the membrane resonates at multiple values of the frequency of
excitation, showing different vibration modes. Meanwhile, super-
harmonic, harmonic and subharmonic responses are found in the
present analysis. Our results, e.g. multiple resonance peaks and
out-of-plane vibration modes, are consistent with experimental
data. We hope that our theoretical predictions, e.g. in-plane vibra-
tion modes, superharmonic and subharmonic parametric re-
sponses, can be ascertained by future experimental observations.

Acknowledgements

This work is supported by the National Science Foundation
through a grant (CMMI-0800161) and by the Kavli Institute at
Harvard University. J.Z. acknowledges the support of NSERC post-
doctoral fellowship of Canada.

References

Anton, S.R., Sodano, H.A., 2007. A review of power harvesting using piezoelectric
materials (2003–2006). Smart Mater. Struct. 16, R1–R21.

Arruda, E.M., Boyce, M., 1993. A three-dimensional constitutive model for the large
stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412.

Bonwit, N., Heim, J., Rosenthal, M., Duncheon, C., Beavers, A., 2006. Design of
commercial applications of EPAM technology. Proceedings of the SPIE 6168,
39–48.

Bustamante, R., Dorfmann, A., Ogden, R., 2009. Nonlinear electroelastostatics: a
variational framework. Z. Angew. Math. Phys. 60, 154–177.

Carpi, F., Rossi, D.D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., 2008. Dielectric
Elastomers as Electromechanical Transducers: Fundamentals, Materials,
Devices, Models and Applications of an Emerging Electroactive Polymer
Technology. Elsevier, UK.

Chiba, S., Waki, M., Kornbluh, R., Pelrine, R., 2007. Extending applications of
dielectric elastomer artificial muscle. In: Proceedings of the SPIE 6524, 652424.

Cottone, F., Vocca, H., Gammaitoni, L., 2009. Nonlinear energy harvesting. Phys. Rev.
Lett. 102, 080601.

Den Hartog, J.P., 1985. Mechanical Vibrations. Dover Publications Inc., New York.
De, S.K., Aluru, N.R., 2005. Complex oscillations and chaos in electrostatic

microelectromechanical systems under superharmonic excitations. Phys. Rev.
Lett. 94, 204101.

Dubois, P., Rosset, S., Niklaus, M., Dadras, M., Shea, H., 2008. Voltage control of the
resonance frequency of dielectric electroactive polymer (DEAP) membranes. J.
Microelectromech. S. 17, 1072–1081.

Ekinci, K.L., Huang, X.M.H., Roukes, M.L., 2004. Ultrasensitive nanoelectro-
mechanical mass detection. Appl. Phys. Lett. 84, 4469–4471.
Farlow, S.J., 1993. Partial Differential Equations for Scientists and Engineers. Dover
Publications, New York.

Fox, J.W., 2007. Electromechanical Characterization of the Static and Dynamic
Response of Dielectric Elastomer Membranes, Master thesis, Virginia
Polytechnic Institute and State University.

Fox, J.W., Goulbourne, N.C., 2008. On the dynamic electromechanical loading of
dielectric elastomer membranes. J. Mech. Phys. Solids 56, 2669–2686.

Fox, J.W., Goulbourne, N.C., 2009. Electric field induced surface transformations and
experimental dynamic characteristics of dielectric elastomer membranes. J.
Mech. Phys. Solids 57, 1417–1435.

Goncalves, P.B., Soares, R.M., Pamplona, D., 2009. Nonlinear vibrations of a radially
stretched circular hyperelastic membrane. J. Sound. Vib. 327, 231–248.

Goulbourne, N.C., Mockensturm, E.M., Frecker, M., 2005. A nonlinear model for
dielectric elastomer membranes. ASME J. Appl. Mech. 72, 899–906.

Goulbourne, N.C., Mockensturm, E.M., Frecker, M.I., 2007. Electro-elastomers: large
deformation analysis of silicone membranes, Int. J. Solids Struct. 44, 2609–2626.

Ha, S.M., Yuan, W., Pein, Q.B., Pelrine, R., 2006. Interpenetrating polymer networks
for high-performance electroelastomer artificial muscles. Adv. Mater. 18, 887–
891.

He, T.H., Zhao, X.H., Suo, Z.G., 2009. Dielectric elastomer membranes undergoing
inhomogeneous deformation. J. Appl. Phys. 106, 083522.

Heydt, R., Kornbluh, R., Eckerle, J., Pelrine, R., 2006. Sound radiation properties of
dielectric elastomer electroactive polymer loudspeakers. In: Proceedings of SPIE
6168, 61681M.

Heydt, R., Pelrine, R., Joseph, J., Eckerle, J., Kornbluh, R., 2000. Acoustical
performance of an electrostrictive polymer film loudspeakers. J. Acoust. Soc.
Am. 107, 833–839.

Hwang, S.J., Perkins, N.C., 1994. High speed stability of coupled band/wheel
systems: theory and experiment. J. Sound. Vib. 169, 459–483.

Jordan, D.W., Smith, P., 1987. Nonlinear Ordinary Differential Equations. Clarendon
Press, Oxford.

Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R., 2003. Actuation response of
polyacrylate dielectric elastomers. J. Intel. Mat. Syst. Str. 14, 787–793.

Mockensturm, E.M., Goulbourne, N.C., 2006. Dynamic response of dielectric
elastomers. Int. J. Nonlinear Mech. 41, 388–395.

Nayfeh, A.H., Mook, D.T., 1979. Nonlinear Oscillation. Wiley, New York.
Nguyen, C., 2007. MEMS technology for timing and frequency control. IEEE Trans.

Ultrason. Ferr. 54, 251–270.
Pelrine, R., Kornbluh, R., Pei, Q.B., Joseph, J., 2000. High-speed electrically actuated

elastomers with strain greater than 100%. Science 287, 836–839.
Suo, Z.G., Zhao, X.H., Greene, W.H., 2008. A nonlinear field theory of deformable

dielectrics. J. Mech. Phys. Solids 56, 467–486.
Suo, Z.G., Zhu, J., 2009. Dielectric elastomers of interpenetrating networks. Appl.

Phys. Lett. 95, 232909.
Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.,

1998. Five parametric resonances in a microelectromechanical system. Nature
396, 149–152.

Wissler, M., Mazza, E., 2005. Modeling and simulation of dielectric elastomer
actuators. Smart Mater. Struct. 14, 1396–1402.

Wissler, M., Mazza, E., 2007. Electromechanical coupling in dielectric elastomer
actuators. Sensor. Actuat. A-Phys. 138, 384–393.

Zhao, X.H., Hong, W., Suo, Z.G., 2007. Electromechanical coexistent states and
hysteresis in dielectric elastomers. Phys. Rev. B 76, 134113.

Zhao, X.H., Suo, Z.G., 2008a. Electrostriction in elastic dielectrics undergoing large
deformation. J. Appl. Phys. 104, 123530.

Zhao, X.H., Suo, Z.G., 2008b. Method to analyze programmable deformation of
dielectric elastomer layers. Appl. Phys. Lett. 93, 251902.

Zhao, X.H., Suo, Z.G., 2010. Theory of dielectric elastomers capable of giant
deformation of actuation. Phys. Rev. Lett. 104, 178302.

Zhu, J., Cai, S.Q., Suo, Z., 2010. Nonlinear oscillation of a dielectric elastomer balloon.
Polym. Int. 59, 378–383.

Zhu, J., Ru, C.Q., Mioduchowski, A., 2008. High-order subharmonic parametric
resonance of nonlinearly coupled micromechanical oscillators. Eur. Phys. J. B 58,
411–421.


	Resonant behavior of a membrane of a dielectric elastomer
	Introduction
	Equations of motion
	State of equilibrium and critical condition
	Oscillation around a state of equilibrium
	Tuning natural frequencies
	Parametric excitation
	Comparison with experimental observations
	Concluding remarks
	Acknowledgements
	References


