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shown that the standard formula for Cauchy stress in granular media may break
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the simple-continuum model.
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1 INTRODUCTION

Arguments against new ideas generally pass through distinct stages from:

”It’s not true” to
”Well it’s true but not important” to
”It’s true and it’s important, but it’s not new - we knew it all along”

From The Artful Universe

by John D. Barron

(Chapt. 1 of [16])

This article, an amended and enlarged version of a recent conference pa-
per [21], has its beginnings in a much older work [18] concerned with the
largely theoretical question as to the definition of stress in a granular as-
sembly. By no means novel at the time, the question has taken on a more
practical importance in the intervening years, in part motivated by ”shear
bands” associated with the unstable plasticity of granular media. According
to simple continuum models, shear bands represent infinitely thin surfaces
of discontinuity, in distinct contrast to the zones of finite thickness revealed
by numerous experiments and particle-level computer simulations. Moreover,
certain of these studies indicate that the grain rotation in shear bands may
be quite different from the global rotation (vorticity) outside the band, which
is generally interpreted as a manifestation of ”Cosserat” effects.

As anticipated in the general field of plasticity and soil mechanics, some
type of ”enriched” or ”structured” continuum model endowed with intrinsic
length scale is required to regularize the underlying field equations in the
presence of material instability. Furthermore, the additional forces implicated
in such models may actually influence the onset and evolution of material
instability, as recognized early on by Vardoulakis and coworkers [36,46].

Given the overall progress of granular mechanics in the last two decades,
a renewed effort to elucidate the above theoretical questions seems timely
and appropriate. With this motivation, the present paper provides a syntheis
and critique of various principles and techniques for the homogenization of
granular media, with emphasis on the quasi-static mechanical behavior.

A brief review is presented of multipolar continua, regarded as general
models for granular media, and a survey is given of the graph-theoretic and
energy principles underlying granular micromechanics, based on the interpre-
tation of the associated matrices as differential operators. A novel energy-
based method is proposed for homogenization, as a modification of the ab-
stract ”best fits” proposed elsewhere. This method employs polynomial rep-
resentations for particle displacements and forces which provide the relevant
gradients and moment stresses for micropolar continua. Based on the works
of Eringen [16], a general formula is postulated to include contributions from
the motion of particle centroids, from particle deformation, and from singular
surfaces exhibiting slip or interfacial tension.
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As new results, it is shown that

1. in the absence of intergranular contact moments or external body couples,
grain rotations do not contribute directly to the quasi-static stress work,
in particular to frictional dissipation, and, therefore,

2. the resultant Cauchy stress derives solely from the motion of particle
centroids.

A major goal of the present work is to establish the micropolar contin-
uum as a plausible model for granular and cellular media, by showing in a
general and systematic way how micropolar effects emerge from discrete mi-
cromechanical models. A second goal is to present a concise formulation of
the underlying mathematical techniques, and to connect to basic ideas from
topology, graph theory and to other fields of network analysis.

1.1 Mathematical preliminaries

The notation is similar to that employed in a previous work [19], where
bold symbols are employed for space tensors, lowercase symbols for vectors
ϕ = ϕαgα, uppercase for higher-order tensors L = Lαβ...gα ⊗ gβ ⊗ . . ., etc.
where ⊗ denotes a tensor product, and Greek superscripts and subscripts re-
fer to a basis gα, α = 1, 2, 3, derived from appropriate spatial coordinates.
For the present purposes, the latter may be taken as orthogonal cartesian.
A colon is employed denote the exhaustive, ordered contractions of tensors
of rank two and higher, such that, for n ≥ m, (Lα1...αn) : (Mβ1...βm) :=
Lα1...β1,...βmMβ1...βm

, and we employ superscript T to denote transposi-
tion of the right-most tensor component with all the preceding, so that
(Lα1α2...αn . . .)T := (Lαnα1α2... . . .). The standard notation Lx(= Lαβx

βgα)
is employed for linear transformations of vectors via second-rank tensors. Ro-
man superscripts are used throughout (in contrast to [21]) to label particles
(i.e. grains), branch vectors and the associated graph-theoretical matrices in
granular assemblies. Brackets [ , ] are employed to denote closed intervals of
both reals and integers, and the standard symbol \ denotes set exclusion.

With an denoting the n-fold symmetric tensor product ⊗na, the Taylor
series expansion for the velocity (or infinitesimal displacement) v,

v(x) = vo + L1r + L2: r2 + . . . , (1)
with

r = x− xo, Ln = 1
n! (∇

n ⊗ v)To , (2)

provides the well-known expansion for global stress-power density in a simple
continuum:

ẇ = 1
V

∫
V

T :LdV =
∑
n ẇn, (3)

with
ẇn := Tn:Ln, Tn :=

∫
V

T⊗ rndV, (4)
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where T is Cauchy stress and L = (∇⊗v)T (first) velocity gradient. With
stress moments Tn representing generalized forces conjugate to the kinemat-
ical quantities Ln [19,25]. Eq. (4), serves to establish an equivalence between
a non-homogeneous simple continuum and a homogeneous multipolar contin-
uum i.e. a continuum endowed with intrinsic moment stresses. We distinguish
two important special cases:

1. The Ln are identical with higher gradients of the local velocity field, as
defined in (2), or

2. they are intrinsic ”particulate” fields, say Lpn(x, t), given by more general
constitutive equations.

The first represents a graded (or ”Toupin-Mindlin”) continuum [23, 25, 35],
while the second represents a micromorphic (or ”Cosserat–Eringen” ) contin-
uum [14, 24, 35, 41]2. Both are endowed with intrinsic length scales, and the
graded continuum can be regarded as a manifestation of weak non-locality, a
precursor to a fully non-local continuum [17].

By means of the mathematical ”fragmentation” of a simple continuum into
discontinuous subdomains, Eringen and coworkers have derived micromorphic
field theories resembling those obtained by certain statistical mechanical stud-
ies of systems of deformable particles [16]. A similar technique has been pre-
sented recently for the special case of Cosserat media [13]. The micromorphic
continuum is a special case of a multipolar continuum endowed with a polyad
of deformable vectors or ”directors” attached to each material particle [24],
with Lpn representing 3n such vectors3 The simplest (”grade one”) micromor-
phic continuum is characterized by deformable triad of vectors and, hence,
a single second-rank (velocity gradient) tensor Lp attached to each material
point that serves to represent an homogeneous microstructural (”particle”)
deformation and rotation. In the special case of a micropolar (Cosserat) con-
tinuum, Lp = Wp = −(Wp)T and ωp =vec(Wp) represent a (particle) spin
generally distinct from the global spin W = (L − LT )/2. (Recall that [16]
distinguishes micropolar as the rigid subclass of microstretch, the isotropic or
spherical subclass of micromorphic.)

The various moment stresses may be interpreted, as above, in terms of
volumetric working, or alternatively, in terms of their infinitesimal surface ac-
tions Tn ·ds. Thus, for n = 1, one has a force (”push” or ”pull”), inducing
displacement, and for n = 2, symmetric and skew-symmetric moments (gen-

2 Both were designated as ”micromorphic” in [21], based on the idea that response
to higher gradients involves some finite microstructure. Abandoning that uncon-
ventional usage, we adopt another, with ”graded” designating what is sometime
called ”gradient” or ”higher-gradient” continuum.

3 The basic idea is attributed to Duhem in [44]. Since directors are attached to
material points, we exclude from (3)et seq. a term ẇ0 = f0 ·v0 involving a body
force f0 and a relative velocity v0, appropriate to two-phase media and anticipated
by the theory of mixtures [44].
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eralized ”pinch”)4, inducing stretch and rotation, respectively, etc. For later
reference, we define a micropolar continuum of grade m as one having wn ≡ 0
for n > m for all deformation histories, the simple continuum [43] being grade
one.

1.2 Balances

According to a microscopic treatment [19], the stress moments Tn in a mul-
tipolar continuum should satisfy a hierarchy of balances of the form:

∇·TT
n+1 + Tn = Gn+1, for n = 0, 1, . . . , (5)

where T0 := 0,T1 := T, and the G’s represent extrinsic body moments plus
accumulation of intrinsic multipolar momenta. The latter are not made ex-
plicit here, since they are negligible in the quasi-static limit. It is easy to verify
that (5) leads to the following integral balance:∫
∂V

[Tn + x⊗Tn−1 + . . .+ xn−1 ⊗T]·ds =
∫
V

GndV, for n = 2, 3, . . . , (6)

in which all stresses up to order n contribute to the nth surface moment.
The uncertain status of (5) should be acknowledged immediately, since

it has not been established by any of the standard methods of continuum
mechanics, neither by derivation from the energy balance, by means of in-
variance principles (objectivity) [15,16,22], nor from variational principles for
elastic systems, dating back to the Cosserats [11,44] (and treated in a recent
review [30] that includes both micromorphic and graded continua). At any
rate, the balance for n = 1 has the form found elsewhere, up to an arbitrary
additive symmetric, second-rank stress [16]). In this author’s opinion, the lat-
ter might be profitably be regarded as the divergence of a third rank tensor
and absorbed into the term ∇·TT

2 in (5).
No attention is paid here to compatibility, discontinuity and boundary

conditions for the various kinematic tensors Ln, some of which are discussed
in [16]. Also, we do not deal with discontinuity and boundary conditions for
the associated moment stresses Tn, since the main focus of this article is on
the issues surrounding the passage from discrete microstructure to continuum
model.

2 MICROMECHANICS

The kinematics of granular media involves both extrinsic modes or degrees of
freedom, associated with motion of particle centroids, and intrinsic or inter-
nal modes associated with particle deformation. Although the two are coupled
4 a term suggested by Professor I. Vardoulakis [45].
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mechanically through particle contacts, we first focus attention on the extrin-
sic modes. For the sake of completeness, the following subsection provides
some essential background material on granular media [1, 19] and elucidates
the role of grain rotation.

2.1 Granular microstructure and rotation

Fig. 1 illustrates the standard idealization of a granular medium [19,37], with
i, j ∈ [1, N ] enumerating particles or grains. With x denoting the position

i

j

l
ij

r ij

r ji

Fig. 1. Idealized granular medium

vector, dotted lines represent moment arms rij = xi − xij connecting grain
centroid xi to nominal point of contact xij , neighbors j being defined by
triangulation on centroids (vide infra). Solid and dashed lines then represent
branch vectors lij = rij−rji = −lji, with solid lines indicating active contacts
and dashed lines representing virtual contacts (i.e. nearest neighbors without
contact).

The interparticle contact force f ij is the resultant defined by the surface
integrals on the left-hand side of (6) with n = 1, taken over a nominal contact
area ij. As shown in numerous preceding works, e.g. [1], the assumption of
contact forces f ij = −f ji localized at points xij leads to a particle contribution
to the volume-average stress (a ”dipole”) given by:

Ti =
1
V i

∑
j

f ij ⊗ rij , (7)

for each particle i in the interior of the granular assembly.
The vector couple about xi exerted by particle j on i is given

cij = f ij × rij + mij , (8)

where mij = −mji is the vector of the skew part of an integral of the type
(6), with n = 2, with x replaced by x − xi, and with xij representing the
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centroid of the contact stress. Thus, for grains composed of a simple (grade
one) material, the contribution from T2 vanishes, so that the contact couple
m arises solely from the moment (x−xi)×T·ds as a kind of rolling resistance.

In the absence of external body couples and contact moments mij , the
quasi-static moment balance requires the symmetry of Ti. Furthermore, it is
easy to show that ∑

i

V iTi =
∑
i>j

f ij ⊗ lij , (9)

mapping particle dipoles into contact dipoles.
On the other hand, the power of internal contact forces is given by the

sum over distinct contacts:

Ẇ =
∑
i>j

f ij ·vij (10)

with
vij = uij +W irij −W jrji, with uij = ẋi − ẋj , (11)

where W is the skew-symmetric tensor representing particle rotation. Hence,
it follows readily that

Ẇ =
∑
i>j

f ij ·uij +
∑
i

V iTi : W i (12)

Since the second term vanishes whenever Ti is symmetric, we have for arbi-
trary particle shapes the

Theorem In the absence of external body couples and intergranular contact
moments (mij) the rotation of internal grains makes no direct contribution to
quasi-static stress power.

Here, ”internal” refers to those grains in mechanical contact with other grains
but not with any boundary from which couples may be transmitted. Of course,
the resultant of the latter must be zero.

The preceding theorem has implications for quasi-static Cosserat effects,
since most existing micromechanical predictions of such effects, as typified
by [31,33,42], depend explicitly on contact moments. However, since the linear
dimension of typical (Hertzian) intergranular contact zones, proportional to
some O(1) power of the ratio of confining pressure to elastic modulus, is
expected to be small, especially for rigid noncohesive geomaterials such as
sand, it follows that the term f × r will dominate the term m in (8).

The same conclusion results for rigid noncohesive particles with multiple
contact zones, since the the contact forces on such zones can be replaced by
a finite, statically equivalent set of forces, whose moments are once again
captured by the terms of the form f × r in (8). Hence, for nearly rigid grains,
any homogenization scheme based on energy principles should yield negligible
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quasi-static Cosserat effects, although particle rotations will generally have
other influences on the micromechanics.

It should be noted that certain types of cohesive contacts may give rise to
important contact moments, since they allow for a locally large tensile force
balanced by a locally large compressive force, producing a large couple m
without a correspondingly large resultant f .

The absence of intergranular contact moments not only justifies various
simple-continuum models of granular media but also implies that the break-
down of such models must be due to effects other than those associated with
Cosserat rotation. In this connection, we note that the symmetry of (7) and
hence of (9), implies that TT = T (Cauchy’s second law [43]), at least accord-
ing to the standard formula for T. However, the latter is subject to criticisms
presented below.

2.2 Graph theory for extrinsic modes

Graph theory provides a particularly appealing tool for the description of
various physicochemical networks. In contrast to the mechanical networks as-
sociated with structural mechanics [40] or statistical physics [5], the graphs
for granular media or other mobile cellular assemblies are often transitory,
reflecting abrupt topological rearrangement engendered by finite deformation
and requiring a sequence of graphs to describe evolving microstructures. Im-
mediately following is a concise treatment of the graph-theoretical description
of granular mechanics, with connections to other fields of application and to
the basic mathematical literature.

In a schema dating back to the early works of Satake [31, 37, 38]5, we let
particle centroids define the the nodes or vertices j ∈ [1, N ] defined by an
appropriate Delaunay triangulation [1,19,20,37]. Note that this triangulation
should be generally based on (minimal) separation between particle surfaces
rather than particle centroids. Whenever unique, this defines an abstract (con-
nected simple) graph G, the granular contact network or Satake graph, with
edges or branches i ∈ [1, E] representing nominal nearest-neighbors and defin-
ing contacts or virtual contacts.

In the associated matrix formulation, underlined lowercase quantities de-
note columns (vertical arrays) associated with edges and nodes, while su-
perscript ∗ denotes transposition (vector-space dual). e.g. ϕ = [ϕi]∗ =
[ϕ1, . . . , ϕN ]∗ denotes a 1 × N row of scalars, ϕ = [ϕi]∗ = [ϕ1, . . . ,ϕE ]∗,
a 1 × E row (horizontal array) of space vectors, etc. Then, underlined up-
percase denotes the associated linear transformations or matrices, e.g. A =
[Aij ],A = [Aij ], etc., with dual or adjoint defined by the standard scalar
products (u, v) = (v, u) := u∗v and (u,v) := u∗ ·v =

∑
k uk ·vkF .

5 The present treatment does not rely explicitly on the geometric properties of
voids nor on the composite (Schaefer) operators employed in [38] to express mi-
cromorphic compatibility, discussed more generally in [16].
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Assignment of directions to the edges of the above graph yields a directed
graph [4, 6], with E ×N incidence matrix D = [Dij ]:

Dij =

+1, if edge i enters node j,
−1, if edge i leaves node j,

0, otherwise
(13)

The matrix D (the transpose of the matrix D in [5, 6, 38]) and its transpose
D∗ represent difference-operators, which we designate, respectively, as the
differential and the codifferential (denoted respectively as ”coboundary” and
”boundary” operators in the standard literature on graph, e.g. p. 5 of [5]).
Thus, Dϕ yields differences along edges of nodal ”potentials” represented by
ϕ, while D∗f yields nodal accumulations from flows along edges ( [6] and
p. 5 of [5]). Since it can be shown that the column rank of D is N − 1, we
henceforth delete the final column6, corresponding to ”ground” node N , and
denote the resulting E × (N − 1) matrix by the same symbol D. Accordingly,
we dispense with the N th component of column operands, reducing them to
(N − 1)× 1 arrays.

Another important operator D× is given by

D∗D× = 0. and D∗×D = 0, i.e. D× = ker(D∗), (14)

ker denoting the kernel or null space of a linear transformation. The matrix
D× can be taken as any E ×M matrix whose M columns form a basis for
the null space of D∗, where M = dim{ker (D∗)}, but we shall express it
in terms of a normalized cycle basis [4] defined below and denote it as the
cross differential of the graph. The operators D,D∗, D× then bear an obvious
resemblance to grad, div and rot (or curl) of vector calculus, a resemblance
made more compelling below.

With power given by Ẇ = (f, u), we can formulate a virtual work principle
in terms of the above operators as follows (cf. [32]). Designating column χ
as compatible if it can be written as a nodal difference χ = Dϕ and as a
conserved flow if it satisfies D∗χ = 0, we obtain the associated conservation-
compatibility duality [6, 32]:

Ẇ = (f,D ϕ) = (D∗f, ϕ) = 0 ∀ϕ, iff D∗f = 0 (15)
and

Ẇ = (D×ψ, u) = (ψ,D∗×u) = 0 ∀ψ, iff D∗×u = 0 (16)

i.e., compatibility implies conservation and vice versa.
Similar relations apply to arrays of space vector and tensors x = [xi]∗ and

A = [Aij ], with scalar product and adjoint:

(A y, z) := (A y)∗ · z = (y,A∗z), with A∗ij = ATji (17)

6 not usually done in the prevalent literature and not made explicit in [21].
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Fig. 2. Meshes for a a 3d simplicial complex

Thus, for the Satake graph G, the substitutions f → f , and u→ u in (15-16)
yields the quasi-static equilibrium of forces and the compatibility of relative
velocities (or displacements) [31,38]:

D∗f = 0, and D∗×u = 0 (18)

The second relation of course is satisfied identically by the substitution ϕ→ v
in (15-16), where v = ẋ denotes (nodal) velocities (or infinitesimal displace-
ments) of grain centroids x = [xi]∗, connected by branch or edge vectors
l = [li]∗ = Dx. The first is satisfied by the substitution in (15-16) of a vector
array for a scalar array ψ → ψ, providing a discrete analog of the Helmholtz
representation of solenoidal vector fields.

The rank of D∗ equals N − 1 the number of independent scalar balances
in the last member of (15) or vector balances in the first member of (18), and
the rank of D∗× equals M = E − N + 1, which follows from the celebrated
Descartes-Euler polyhedral formula and also from the later analysis of Kirch-
hoff [7, 29] for electrical networks. The latter contains the notion of a cycle
basis for conserved flows, which provides a particularly attractive null-space
basis for D∗, namely the normalized irreducible cycle basis or mesh for the
associated graph G. This consists of the maximal linearly independent set of
cyclic currents f = [f1, . . . , fM ]∗ having as their only non-zero components
fk, such that |fk| = 1 on branches k forming irreducible (or ”elementary” [4])
cycles or ”meshes”, i.e. cycles that contain no other cycles, on G, as illus-
trated in Fig. 2 for the polyhedral graph defined by a 3d simplicial complex
(i.e. face-connected cluster).

We then take D× to be the E ×M matrix (transpose of that denoted by
L in [38]):

Dij
× =

+1, if edge i is coincident and confluent with cycle j,
−1, if edge i is coincident and not confluent with cycle j,

0, otherwise
(19)

This imparts the status of difference operator and allows for a symmetric
duality in the case of planar graphs, as discussed next.
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A note on duality

The notion of duality is ubiquitous and varied in the literature on graphs
and geometry [4, 12], and the following paragraphs represent an attempt to
distinguish some special cases particularly relevant to the subject at hand.

In the case of the planar graph G, e.g. associated with planar electrical
networks or idealized 2d granular media [31], one can identify a dual graph G′
with node-mesh (vertex-face) duality defined by;

M ′ = N − 1, N ′ = M + 1, E′ = E (20)

and illustrated by enumerated edges (e), nodes (n) and meshes (m) for the
portion of a graph shown in Fig. 3. (The graph on the right is obtained from
that on the left by letting the nodes n expand, the meshes m shrink, and the
edges e rotate, and vice versa.)

m
n

e

m

m 

m

m

n

n

n

e

e

e

  1

1
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2
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3
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   5
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n1

m
  1 e2

m2

n
2

m
  3

m 4

e
3

n
3

n4

e4m
   5

Fig. 3. Node-mesh duality for a planar graph

Fig. 4 illustrates the further grad-rot, force-flow and potential-stream func-
tion duality for compatible forces u and conserved flows f :

D′ = D×, D
′
× = D, u′ = f, f ′ = u, ϕ′ = ψ, ψ′ = ϕ, (21)

with
u = D ϕ, and f = D× ψ (22)

This highly symmetric duality does not carry over to non-planar graphs such
as those associated with 3d polyhedra and simplicial complexes, because edges
generally are contiguous with more than two faces (or cycles). A duality that
preserves edges corresponds to a hypergraph structure [4], with ”hyper-edges”
connecting more than two nodes. However, another form of duality is possible.

According to a (Schäfli-Poincaré) formula for d-dimensional polytopes
(generalized polyhedra) [12,48], we have

d−1∑
m=0

(−1)mNm = Id (23)



12 J.D. Goddard

where Nk denotes the number of constituent elements of dimension k (k = 0
for vertices or nodes, k = 1 for ”edges” connecting vertices, k ∈ [2, d] for
hyperfaces), and Id is a topological invariant depending on the connectivity
of the underlying manifold7. For simply connected manifolds Id = 1− (−1)d,
giving

N0 −N1 +N2 = 2, N0 −N1 +N2 −N3 = 0, (24)

for d = 3, 4, respectively. The first relation in (24) is the Descartes-Euler poly-
hedral formula (with N0 = N,N1 = E,N2 = M), the planar graph represent-
ing a 3d polyhedral surface, with dual given by (20). With our 3d simplicial
complex and its graph being regarded as the an appropriate projection of
the 4d polytope, the second relation in (24) yields a simplex-vertex/edge-face
duality:

N ′0 = N3, N
′
1 = N2, N

′
2 = N1, N

′
3 = N0, (25)

In the case of granular media composed of convex grains, this is tantamount
to the oft-invoked duality [1] between the Voronoi polyhedron centered on
a grain and the polyhedral complex of Delaunay simplices having the same
center as common vertex. The Voronoi construct can be employed [1] to assign
the vectorial area a discussed below to each branch l, which corresponds to
the subtended area in [2].

2.3 Extrinsic power

As shown above, grain rotation makes no direct contribution to quasi-static
work in the absence of body couples and intergranular contact couples. Under
these circumstances, the quasi-static power (or incremental work) of contact
forces for a granular assembly is given by:
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Fig. 4. Potential-function duality

7 The actual value of Id is less important for the present purposes than the fact
that ∆Id = 0 for any addition or deletion of nodes, edges, etc., that preserves
connectivity in an existing simplicial complex.
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Ẇ = (f ,u) := f∗ ·u =
E∑
k=1

fk ·uk (26)

The condition Ẇ = 0, analogous to Tellegen’s theorem [40] for electrical
circuits, requires external forcing of some subset of particles8. Otherwise, it
represents the virtual-work principle of (15-16).

To pass from contact network (weighted graph) to continuous manifold, we
provisionally associate branches l = D x with the tangent space, and vectors
d = [dk]∗, dk = ak/V k, with the cotangent space. As explained below in the
Appendix, ak denotes a vectorial area and V k = lk ·ak a volume associated
with simplicial edge complex (cluster of contiguous Delaunay simplices with
common edge lk). Thus,

x⇒ x, l = D x⇒ dx, (27)
hence

D ϕ = (D x,D ϕ)⇒ dϕ(x) = dx·∇ϕ, (28)
where

D := [diDij ]⇒∇ (29)

The latter is a special case of a higher-order gradient

D(n) := [dinDij ]⇒∇n, with din := (di)n, n = 1, 2, · · · , (30)

subject to improvement through the replacement of Dij by a more general
(finite-difference) approximation D(n)ij , say, based on a connected set of
branches. As it stands, (30) is adequate for a continuum interpretation of the
results to follow.

3 ENERGY-BASED HOMOGENIZATION

In the following, we let 〈χ〉c, 〈χ〉φ denote, respectively, the number averages
of the components χk of array χ = [χk]∗ over branches or edges k ∈ [1, E] and
volume averages over the associated edge complexes, such that

〈χ〉c :=
1
E

∑
k

χk, 〈χ〉φ :=
1
V

∑
k

V kχk, and 〈χ〉φ = nc〈V χ〉c (31)

where nc = E/V denotes branch (or total contact) density and V χ = [V kχk]∗.

8 The substitution Ẇ ,v,u, f → V,x, l,a in (26), a denoting a vectorial area dis-
cussed below, yields a geometric formula relevant to granular compaction and
dilatancy. By choosing l,a as primary variables in the maximum-entropy esti-
mates discussed in [20], one obtains formulae similar to those proposed in [8,28].
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Then, Ẇ in (26) may be assumed to arise from boundary forces that
provide the stress power:

ẇ =
Ẇ

V
= 〈T :L〉φ =

1
V

E∑
k=1

V kTk :Lk, (32)

the analog of (3, where the tensor products [1, 20]

Tk =
1
V k

fk ⊗ lk, Lk =
1
V k

uk ⊗ ak, with V k = lk ·ak, (33)

represent contributions of branches to the global averages 〈Tc〉, 〈L〉c and,
hence, to 〈Tφ〉, 〈L〉φ As is the case with other heterogeneous media. ẇ in
(32) generally is not given by 〈T〉φ :〈L〉φ, owing to macroscopic gradients and
random microscopic fluctuations.

In keeping with the continuum form (1), and following previous works, we
assume that fk,uk are known, e.g. given by a micromechanical theory or a
numerical simulation, and we fit the known data for uk with

uk= ũk+uk′, with ũk= L̃lk+L̃2: lk2+. . .+L̃m: lkm, (34)

where lkj = (lk)j . The polynomial in lk is attributed to macroscopic gradients
and uk′ to random fluctuations.

To specify the parameters L̃n in (34) for some subset of m branch vectors
lk, several authors advocate strict polynomial fits, with a maximal value of
m, or else some other ”best” fit of (34) to continuum kinematics [27, 33, 42].
Given the well-known pathology (”overfitting”) of polynomial fits of random
data, and in view of the paramount importance of energy, we take the position
that a ”best” fit should rather be based on minimization of an appropriate
norm of stress-power fluctuations plus some norm of the variation implied by
(34), in the spirit of the so-called ”generalized additive models” (GAM) [49].

As a prototypical linear method, consider

σ2 = (u′,Gu′) +Q, ∂σ2/∂L̃n = 0, n = 1, 2, . . . ,m (35)

where the Q denotes a quadratic form in the L̃n. This leads to a set of linear
equations for L̃n, with corresponding estimate for stress power:

˜̇w = T̃ : L̃ + T̃2:L̃2 + . . .+ T̃m:L̃m (36)

where, as the analog of (4) and in a form proposed elsewhere [19], the moment
stresses are given by the average moments (multipoles):

T̃n = nc〈f ⊗ ln〉c =
1
V

m∑
k=1

fk ⊗ lkn, n ∈ [1,m], (37)

irrespective of the resulting solution for L̃n.
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Although not explored in detail here, one plausible form for G in (35) is

G = diag[1− f̂k ⊗ f̂k], where f̂ = f/|f | (38)

This penalizes fluctuations u′ that do no work, representing a loose analogy
to thermal fluctuations in molecular systems. One obtains a dual for (34)-(37)
by taking Q to be a quadratic form in T̃n, followed by the interchanges:

uk ↔ fk/V k, n!L̃n ↔ T̃n, lk ↔ dk := ak/V k (39)

where dkn: lkn = 1, so that

f̃k= V k(T̃dk+T̃2: dk2+. . .+T̃m: dkm) (40)

which corresponds to the so-called ”static hypothesis” for contact forces of
[10]. The resulting (dual) estimate for L̃n is:

L̃n = 〈Ln〉 =
1
n!

m∑
k=1

uk ⊗ dkn, n ∈ [1,m] (41)

with

Ln =
1
n!

[uk ⊗ dkn] =
1
n!

D(n) ⊗ v, (42)

where D(n) is the matrix defined in (30). The first term in (41) is equiva-
lent to the volume averages couched elsewhere [1, 2] in terms of infinitesimal
displacement gradients.

Note that, depending on the form of Q, the estimates obtained for the
moment stresses T̃n in (40) would not necessarily agree with those of (37).
Similarly, the velocity gradients in (35) are not necessarily the same as those
given in (41).

More generally, on replacing Q in (35) by by a quadratic form in both
L̃k, T̃k, and employing similar polynomial representations of ũk, f̃k in terms
of lk,dk, respectively, we obtain a more general, simultaneous (GAM) esti-
mate of stresses and gradients. Bilinearity of Q in L̃k, T̃k might allow for an
interpretation in terms of energy9.

Again, the results for T̃n, L̃n would not necessarily agree with those ob-
tained above, and it should be amply clear that the definitions of moment
stresses and kinematic gradients depend both on the nature of the objective
function Q and the inhomogeneity in contact forces and branch vectors.

3.1 Intrinsic moments and continuum fields

The preceding discussion deals with extrinsic quantities defined by the motion
of grain centroids under the action of intergranular contact forces. The treat-
ment of localized contact mechanics (as in the Hertzian elastic contact), as
9 The preceding paragraph corrects several errors in the corresponding paragraph

of [21].



16 J.D. Goddard

well as the treatment of intrinsic quantities such as global particle deformation
would require a consideration of the internal mechanics of individual grains,
which one usually assumes to consist of a simple continuum endowed with
appropriate constitutive equations, elastic, viscoelastic, elastoplastic, etc.

The detailed treatment of micromechanics is beyond the scope of the
present article, which is rather concerned with general aspects and conse-
quences. We merely note that the effective particle stress Tp for a particle p is
given by (7), Higher moment stresses are given by a reinterpretation of (37) in
which branch vectors l are replaced by moment arms r. In a similar way, (35)
gives a similar but less exact estimate of velocity gradients, by interpreting
u as relative velocity between contact point k and particle centroid, and by
basing dk on an effective contact area. The latter description of particle kine-
matics represents a type of finite-element approximation, whereas an exact
treatment of the micromechanics would generally involve solving field equa-
tions for the particle interior, subject to localized tractions on the particle
surface, followed by appropriate averaging of solutions over particle volume.

At any rate, it is clear that the localized surface stresses provide a coupling
of the intrinsic modes to the extrinsic modes represented by motion of particle
centroids. This paramount aspect of granular mechanics may be obscured by
the usual micromechanical analysis, where particle rotation, a property of
finite grains, is placed ab initio on the same footing as the motion of particle
centroids.

With an appropriate replacement of (34) and (35)-(41), one obtains higher-
order micromorphic effects, represented by Tp

n,L
p
n, n > 1. The ever-increasing

dependence on particle length scales is thereby manifest. In a similar vein, we
expect that higher-order contact moments will exhibit a similar dependence
on the dimension of contact zones.

Given the above estimates of continuum-level moments, the following for-
mula is suggested by, but not rigorously derived from the above-cited works
of Eringen and coworkers:

X = νcXc + νpXp + Xs, (43)

where X = 〈Tn〉 or 〈Ln〉, n = 1, 2 . . . , represent volume (or surface) averages,
with 〈Xn〉i = O(1) for for νi → 0. The superscript c refers to a continuum-
level contribution arising from the relative motion of particle centroids; p to
a contribution arising from the internal structure of particles, regarded as
pieces of a continuous medium; and s to a contribution arising from singular
surfaces. νp denotes particle volume fraction and νc void fraction, given by
1− νp in the usual granular medium.

Typical singular surfaces involve interfacial slip, such as cracks, or other
kinematic discontinuities, or interfacial tension and other (multipolar) stress
jumps [16]. The relation (43) appears to cover various limiting case, e.g.
νp → 0, 1, and Mindlin’s special case Xc → Xp [35], often used for multi-
polar elasticity.
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Although the moment stress power is generally not given by 〈Ti
n〉i :〈Ln〉i,

one may readily obtain the following generalization of a well-known result for
m = 1 from (5): For a graded material of grade m, with Lik = (∇kw)T /k! for
k ∈ [1,m], the stress power ẇm is given by

1. 〈Tm〉 : Lm for velocity fields w which have boundary values given by a
polynomial of maximal degree m, with L

i

m=(∇mw)T /m!, a constant over
∂V , and by

2. Tm :〈Lm〉 for moment-stress fields whose surface (moment) tractions sat-
isfy Tkn = δkmTkn, with Tm constant over ∂V .

Since this result applies to any finite cluster of particles, subject to in-
homogeneous conditions of displacement or effective stress on the periphery,
one concludes that volume averages do do not provide a proper definition
of continuum fields in highly inhomogeneous assemblies. This casts consid-
erable doubt on the use of (7) and, hence, of (9) to define Cauchy stress,
the latter of which goes back, in the field of granular mechanics at least to
Weber [3, 47] and, in theoretical elasticity, to Cauchy, [9] (cf. Note B in the
appendix of [34], discussed in [18] and also in [26].). The breakdown of (7) is
suggested by the mean-field theory of Jenkins [26] for elastic-sphere assem-
blies, the theory of Bardet and Vardoulakis [3] for small granular assemblies,
and also by more recent calculations [13]. It is worth noting that the theory
of [26] involves gradients in contact force reminiscent of (40) above, whereas
the other results [3, 13] depend on boundary effects in small samples.

4 CONCLUSIONS

A synthesis has been presented of graph-theoretic methods and energy-based
homogenization to derive continuum models of discrete granular media. As
anticipated by several previous workers, it is concluded that the multipolar
continuum, either graded or micromorphic, represents a plausible model for
the typical granular medium.

It has been shown that the special case of a graded continuum, including
the simple (grade one) continuum, is defined solely by the extrinsic modes
associated with the motion of grain centroids, in contrast to the micrormor-
phic continuum, which arises from intrinsic modes represented by the internal
mechanics of grains.

Within the subclass of micromorphic continua, the micropolar (Cosserat)
limit is appropriate for nearly rigid grains. However, In the absence of in-
tergranular contact moments, it has been demonstrated above that grain ro-
tation makes no direct contribution to quasi-static contact work, and that
the widely accepted formula based on volume averaging yields a symmetric
Cauchy stress. One therefore concludes that the emergence of Cosserat effects
implies the breakdown of this formula. Otherwise, the existence of moment
stress must be attribute to kinematic gradients, suggesting that the graded
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continuum may prove to be more appropriate than the micropolar continuum
for the quasi-static mechanics of rigid granular media .

There remain open questions as to the validity of the multipolar balances
based on [19], the interpretation of Eringen’s micromorphic theory in terms of
volume averages, and the extension to granular dynamics. Incidentally, given
the previous works [16] on micromorphic continua, the latter appears quite
feasible.

As pointed out previously [21], further investigations of shear bands and
of short-wavelength shear waves should provide a plausible testing ground for
multipolar theories.
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Appendix: Simplex and edge-complex gradients

The following, an elaboration on the method employed in [19], serves to de-
fine gradients and various geometrical properties associated with simplicial
complexes. In a (Euclidean) space of dimension d, we define the simplicial
gradient of a function ϕ = [ϕk]∗, specified on the d + 1 vertices xk of a sim-
plex s, by means a linear interpolation ϕ(x) based on barycentric coordinates
ξk(x) [12,32] (affine functions of x defined below10), with:

ϕ(x) =
d+1∑
k=1

ξkϕk,
d+1∑
k=1

ξk = 1, ξk ∈ [0, 1], ξk(xk) = 1, (44)

∇ϕ =
d+1∑
k=1

gkϕk, gk :=∇ξk (const.),
d+1∑
k=1

gk = 0, (45)

so that

∇ϕ =
d+1∑
k=1

gk(ϕk − ϕo), o ∈ [1, d+ 1] (46)

The last member of (45) is merely Green’s theorem for simplex s, since

0 =
∫
V s

∇(1)dV =
∫
∂V s

(1)ds ≡
d+1∑
k=1

sk, with sk = 2V sgk (47)

The vector sk is normal to facet (i.e. a bounding hyperplane of dimension d−1)
k , having magnitude |sk| equal to its (d− 1)-volume, and V s is the d-volume
of the simplex. (The formulae presented here follow from a consideration of
the linear map that carries a standard d-simplex, i.e. one-half the unit d-
hypercube, into an arbitrary d-simplex.)

Given a basis composed of d edge vectors gk = lk [19], an appropriate set
d of the d+ 1 vectors gk provide a reciprocal basis, with gi · gj = δij . This is
illustrated by the special case ϕ ≡ x in (44), yielding by (46) a well-known
expression for the unit tensor:

1 =
d+1∑
k=1

gk ⊗ gk, with gk = xk − xo, for o, k ∈ [1, d+ 1] (48)

In this representation, xo serves as origin for gk, k ∈ [1, d+1]\o, with gj , j 6=k,
lying in the facet normal to gk. This is illustrated for d = 3, o = 4 in Fig. 5.

The further special case ϕ ≡ ξk in (44) yields an explicit formula for
barycentric coordinates:

ξk(x) = gk ·(x− xk) + 1, for k ∈ [1, d+ 1], (49)
10 ξk = cos2 θk, θk ∈ [0, π/2], provide part of a branched covering [39] of the (d+1)-

sphere surface by a d-simplex.
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Fig. 5. Elements of an edge basis and its reciprocal facet basis for a 3d simplex

with ξk(xj) = gk ·(xj − xk) + 1 = gk ·(gj − gk) + 1 = δkj .
With index s enumerating simplices, (46) becomes

∇ϕs =
∑
k

gsk(ϕsk − ϕso) ≡ 1
V s

∑
k

ssk(ϕsk − ϕso),

yielding for the volume-average gradient over an assembly

〈∇ϕ〉 =
1
V

∑
s

V s∇ϕs =
1
V

∑
s

∑
k

ssk(ϕsk − ϕso) (50)

where ranges on summations are understood.
For clarity we restrict the discussion to d ≤ 3 and define a simplicial edge

complex (or edge cluster) σ(e) to be the set of simplices having common edge
e, with e = {ko} in (50). Then, on rearranging summations and recalling the
definition of the matrix differential D = [Den], we may express (50) as

〈∇ϕ〉 =
1
V

E∑
e=1

V e〈∇ϕ〉e, where 〈∇ϕ〉e =
N∑
n=1

deDenϕn, (51)

with
de = ae/V e, ae =

∑
s∈σ(e)

ss ≡ 2
∑
s∈σ(e)

V sge (52)

The second relation in (51) obviously can be written as [〈∇ϕ〉e]∗ = Dϕ, which
establishes the relation (29).

The volume V e introduced here is arbitrary and could e.g. be chosen as the
sum of simplex volumes V s, s ∈ σ(e). However, for purposes of defining volume
averages, it seems more appropriate to employ disjoint volumes, either by
reference to particle-based Voronoi cells [1,2] or related particle-free geometric
constructs.


