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The following note shows that the symmetry of
various resistance formulae, often based on Lorentz
reciprocity for linearly viscous fluids, applies to
a wide class of nonlinear viscoplastic fluids. This
follows from Edelen’s nonlinear generalization of
the Onsager relation for the special case of strongly
dissipative rheology, where constitutive equations are
derivable from his dissipation potential. For flow
domains with strong dissipation in the interior and
on a portion of the boundary, this implies strong
dissipation on the remaining portion of the boundary,
with strongly dissipative traction–velocity response
given by a dissipation potential. This leads to a
nonlinear generalization of Stokes resistance formulae
for a wide class of viscoplastic fluid problems. We
consider the application to nonlinear Darcy flow
and to the effective slip for viscoplastic flow over
textured surfaces.

1. Introduction
Symmetry occupies an important position in the classical
linear theories of elasticity, viscosity and viscoelasticity,
where it is synonymous with self-adjointness and
Lorentz reciprocity.

In the case of (hyper)elastic materials, the symmetry
of the linear-elastic modulus is a consequence of
the existence of a strain-energy function, whereas in
the case of linearly viscous fluids, the symmetry of the
viscosity tensor represents Rayleigh–Onsager symmetry.
As shown by Day [1], the same symmetry applies to
the linear-viscoelastic memory function for materials that
exhibit time-reversibility on certain closed strain paths. of
the linear relation connecting generalized force f(t) and
velocity v(t) in the time domain.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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For the special case of Newtonian fluids, there have been numerous applications of Lorentz
reciprocity to problems of Stokes (inertialess) flow [2–4] to obtain various symmetry restrictions
on the associated drag laws. In a similar spirit, this same principle has been applied to the
symmetries of apparent slip in the far-field above arbitrarily textured surfaces with arbitrary local
Navier-slip distribution [5]. This problem area has received attention in recent times due to the
potential applications in microfluidics; see Kamrin & Stone in [5] for a large body of related work.

While the above symmetry is bound up with variational principles based on the associated
quadratic forms, there exist more general nonlinear variants. Thus, in the case of nonlinear
hyperelasticity, there exist well-known elastostatic variational principles, with elastic stress given
by the gradient of a strain-energy function, or by an associated pseudo-linear form involving a
symmetric (tangent) modulus based on the Hessian of a complementary energy.

Less well known are the analogous forms for strictly dissipative nonlinear systems given
by the general theory of Edelen [6–8] as a generalization of Onsager symmetry. In particular,
Edelen proves that, modulo a gyroscopic or ‘powerless’ force, the dissipative force f is given
as the gradient ∂vψ(v) of a dissipation potential ψ(v) depending on a generalized velocity v or,
again, by a pseudo-linear form based on the Hessian of a complimentary potential. Whenever
the gyroscopic force is identically zero, we call the system strongly dissipative or, by analogy to the
elastic case, hyperdissipative. For later reference, we note the dual form v = ∂fϕ(f) where ϕ is the
(Legendre–Fenchel) convex conjugate of ψ .

The main goal of the current note is to identify and exploit connections between strongly
dissipative local properties of a system (i.e. constitutive relations and/or surface interactions)
and strongly dissipative global properties, which often take the form of homogenized macroscale
relations. In particular, we will demonstrate how this result restricts (i) Darcy-like laws for porous
flow and, (ii) effective slip relations over textured surfaces, when the fluid rheology and surface
interactions are nonlinear and exhibit a strongly dissipative form. Throughout, we emphasize the
ubiquity of strong dissipation among commonly used viscoplastic fluid models and, hence, the
generality of the results to be presented.

As discussed elsewhere [8], Edelen’s work has interesting implications for rate-independent
rigid plasticity, where plastic potentials are often based on rather special physical arguments.
Moreover, Edelen’s work provides a rigorous mathematical extension to the phenomenological
viscoplastic potentials introduced by others [9,10], which leads to interesting analogies between
viscoplasticity and nonlinear elasticity. In both domains, variational principles govern quasi-static
stress equilibrium, and the associated symmetry carries over to various symmetries in global
force laws. Existing applications of viscoplastic potentials involve the development of extremum
principles for particular non-Newtonian fluids [11,12], bounds for nonlinear homogenization [13]
and ice-sheet dynamics [14].

In this work, we apply related variational methods to the two viscoplastic flows mentioned
above. In both instances, a set of symmetry conditions and differential constraints arise as
necessary conditions on the global resistance formulae. We first develop the theory and then
discuss its applications in §§4 and 5.

2. Strongly dissipative rheology and mobile boundaries
In what follows σ represents Cauchy stress, v material velocity and D = sym(∇v) associated
strain-rate tensor, all fields depending on spatial position and time, x and t. The prime ′ is
employed to denote the deviator, with

S ≡ σ ′ ≡ σ − 1
3 (tr σ )1 and E = D′ = D − 1

3 (tr D)1, (2.1)

where 1 denotes the three-dimensional identity tensor.
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Table 1. Common incompressible fluid models exhibiting a strongly dissipative form.

fluid model deviatoric stress S dissipation potentialψ

Newtonian 2ηE η|E|2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

power-law 2K|E|n−1E 2K|E|(n+1)/(n + 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bingham plastic μE/|E| + 2ηE μ|E| + η|E|2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Herschel–Bulkley μE/|E| + 2K|E|n−1E μ|E| + 2K|E|1+n/(1 + n)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We begin by defining a strongly dissipative incompressible viscoplastic fluid as one which
obeys

S = S(E) = ∂Eψ(E)′, with D = E: S(E) ≥ 0

and D> 0 for |E| �= 0 & D = 0 for |E| = 0.
(2.2)

where D denotes dissipation (per volume), and the inequality represents a convexity condition on
ψ . Here as below, the colon : denotes tensorial contraction, with e.g. A:B = tr ABT representing the
(Euclidian) scalar product of real tensors. Also, we write ∂X = (∂/∂X)T and the tensorial derivative
involves the usual definition, i.e. [∂Eψ(E)]ij = ∂Eijψ(E).

The function ψ represents a dissipation potential according to the definition of Edelen. Owing
to its convexity, the roles of the dependent and independent variables can be swapped, since
there exists a dual potential or Legendre convex conjugate ϕ(S) = S: E(S) − ψ(E(S)), such that the
inverse of (2.2) is given by

E = E(S) = ∂Sϕ(S)′, with S: E(S) ≥ 0. (2.3)

We note that this duality is singular in the case of certain non-smooth rheologies, such as rate-
independent plasticity, where ψ(E) is a homogeneous function of degree one [8]. We also note
that the total stress can be written as

σ = S − p1 = ∂Dψ − p1 (2.4)

with isotropic pressure representing Edelen’s gyroscopic force for incompressible materials.
It turns out that many common non-Newtonian models have the strongly dissipative form.

As examples, table 1 lists some standard models of viscoplastic fluids, with |E| = (E:E)1/2. The
Bingham and Herschel–Bulkley models represent a class of ‘yield-stress fluids’, which have
indeterminate stress at the rest state E = 0. The long-standing problem of determining the spatial
location of yield surfaces is the subject of ongoing research cited in a recent review article [15].

The models displayed in the table are special cases of a potential ψ(E) =ψ(I2, I3), where I2 =
|E|2/2 and I3 = det E are the non-zero isotropic invariants of E. This potential yields the general,
incompressible isotropic (Reiner–Rivlin) model:

S = (∂I2ψ)E + (∂I3ψ)(E2 − 1
3 |E|21) = 2η(E):E, (2.5)

where [η(E)]ijkl is a non-negative fourth-rank viscosity tensor representing a pseudo-linear form [8]
of a type that appears frequently in the following.

We recall that the dissipation potentials in table 1 follow from the special forms considered by
Hunter [16], who may have been unaware of the general theory of Edelen. All the examples in the
table are special cases of the ‘generalized Newtonian fluid’, for which the viscosity tensor in (2.5)
reduces to an isotropic form, with

S = 2η(I2)E, with ψ =
∫ I2

0
2η(s) ds =

∫ 1

0
D(λE)λ−1 dλ, where D(E) = S:E = 2η|E|2. (2.6)

The final integral represents Edelen’s formula for the dissipation potential in terms of the
dissipation function D(E), with E representing the generalized velocity v in the general form
given below in (B 1). As emphasized elsewhere [8], one is a simple multiple of the other only
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Figure 1. Two-dimensional schematic of flow in a porousmediumΩ =ΩS ∪ΩF or in a (simply connected) fluid regionΩF

above a textured surface I (figure 2).

if the stress and dissipation function are homogeneous functions of E. It is only for this special
case that various assumptions as to extremalization of dissipation rate can be considered valid,
and a brief summary of the correct extremum principle is provided in appendix A.

All the above isotropic fluid models are special cases of a more general anisotropic fluid, with
σ = ∂Eψ(E, S) = η(E, S):E, where Edelen’s dissipation potential ψ depends on the joint isotropic
invariants of E and a set of ‘structure tensors’ S . Moreover, such tensors may depend on the
history of flow, with evolution described by a set of objective Lagrangian ODEs depending on E.
For example, in the case of a single ‘fabric’ tensor A, the evolution equation takes the form

◦
A= a(A, E), (2.7)

where superposed ‘◦’ denotes the Jaumann or co-rotational derivative. The joint isotropic
invariants of A, E are well known and are represented by a finite set of traces of the form tr(AnEm).
Models of this type also allow for change of density and include Reiner’s ‘dilatant’ isotropic
fluid [17] as well various anisotropic variants with application to dilatant granular media. That
said, we focus attention in this work on incompressible fluids.

It is worth recalling several previous works on nonlinear flow in porous media, including less
general models of non-Newtonian flow in Bear [18] and Dormieux et al. [13] as well as turbulent
flow of Newtonian fluids, where one can also define a dissipation potential. See e.g. [13,18] and
the earlier works [11,19].

(a) Boundary conditions
We turn now from bulk constitutive relations to a consideration of boundary conditions (BCs).
Thus, we imagine a region of space Ω =ΩF ∪ΩS with I ∩ F = ∅, consisting of disjoint surfaces I
and F, where I represents the interface between the fluid and solid region and F is the bounding
surface lying in the fluid. Then, the boundary of the fluid domain is ∂ΩF = I ∪ F.

For example, in the porous solid illustrated in figure 1, F represents that part of ∂Ω lying in the
fluid, with I representing the interface between ΩS and ΩF on which there is partial slip with no
permeation. It may be possible to extend our analysis so as to permit permeation through I, but
we shall specialize shortly to the case of an impermeable surface I.

Considering the traction of fluid on solid tI = −(σn) for n the interfacial outward normal
(pointing into solid), we set down the following definitions:

— A globally dissipative surface I is one for which
∫

I
tI·v dS ≥ 0, (2.8)

— a locally dissipative surface I is one for which

tI(x)·v(x) ≥ 0, ∀ x ∈ I, (2.9)
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— and a strongly dissipative surface I is locally dissipative surface described by a dissipative
surface potential ψI(vI; x), such that

tI(x) = ∂vψI(v; x), with tI(x)·v(x) ≥ 0 for all x ∈ I. (2.10)

Relation (2.8) can be expected to apply on the surface I of a porous medium with internal
viscoplastic flow in pores whose walls are locally dissipative, whereas (2.9) and (2.10) may fail
to apply because of the local power input to the fluid (‘pV’ work ) associated with outflow from I.

Restricting to impermeable solid interfaces, tI can be replaced by the vector of shear traction
τ I = −(1 − n ⊗ n)σn which provides the power associated with surface slip. Letting ϕI represent
the dual potential to ψI, we note for example that ϕI(τ I) = �|τ |2/2η gives the Navier slip relation
for the slip velocity v = ∂τ IϕI = �τ I/η in a Newtonian fluid with viscosity η and slip-length �,
for which the no-slip condition is given by �≡ 0. As an extension of Navier slip, the strongly
dissipative slip relation proposed here describes a wide range of wall-slip phenomena, including
nonlinear, anisotropic and spatially inhomogeneous slip, with inhomogeneity represented by
dependence on x ∈ I.

For example, when the anisotropy is determined by a symmetric surface tensor Λ:TI → TI,
transforming vectors in the tangent space TI of I we may take ϕI(τ ) to be a function of the joint
isotropic invariants of τ , Λ:

|τ |, tr Λ, trΛ2, τ ·Λτ , . . .

an instructive special case being

ϕI(τ ; x) = f (τ ·Λτ ), with vI = 2f ′(τ I·Λτ I)Λτ I, (2.11)

where the prime denotes a derivative, and Λ = Λ(x) is allowed depending on position x on I.
When f (s) is given by a power law in s one obtains an anisotropic power-law for vI in terms of τ I.
Were we to consider a permeable surface I, then Λ would have to be replaced by a more general
linear transformation R

3 → R
3.

3. From locally to globally strong dissipation
The local considerations above have immediate implications for the existence of systems that are
strongly dissipative in a global sense.

Suppose that a strongly dissipative fluid occupies a region ΩF discussed above. A flow field
v(x) in ΩF is said to be admissible, if ∇·v = 0· and its associated stress field satisfies ∇·σ (x) = 0
∀ x ∈ΩF. We next suppose that the fluid exhibits a strongly dissipative slip on I and shall then
prove that all admissible solutions for the flow in ΩF must satisfy strongly dissipative BCs on F.

As a general convention, we denote vector-valued functionals by arguments enclosed in
brackets [ ], e.g. f = f[w] denotes a map F → R

n from the vector field w(x) to the real vector
f, where w(x) is an element of function space F, e.g. a Banach space. We denote maps F → F of
one vector field to another by curly brackets { } = [ ]( ), i.e. f = f{w} = f[w](x) denotes a map
from the vector field w(x) to the vector field f(x). Further, for a given vector-valued functional
f[w], we make use of the Fréchet (or variational) derivative of f[w], denoted δwf{w}, which is the
mapping F → F that satisfies

〈δwf{w}, h〉 ≡
∫
R

h(x)·δwf[w](x) dR(x) = lim
ε→0

f[w + εh] − f[w]
ε

(3.1)

for all test functions h ∈ F, where R is the domain of the vector field w(x). The bilinear pairing
above defines a functional of h referred to as the Fréchet differential denoted δwf[h] = 〈δwf{w}, h〉.

Our main results pertain to the nature of the mapping from boundary velocity fields
vF(x):F → R

3 to the corresponding boundary traction field tF(x):F → R
3, i.e. the mapping

tF = tF{vF}. To be specific, tF = σn is the surface traction field on F that arises from the admissible
bulk flow that has vF as BC. Owing to incompressibility, the set of boundary velocities is further
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restricted to be solenoidal, i.e.
∫

F vF·n dS = 0, where subscript F denotes a function whose domain
is restricted to the surface F.

We shall show that ∫
F

tF{vF}·vF dS ≥ 0, (3.2)

and secondly, that there exists a functional Ψ [vF] such that

δvFΨ {vF} = tF{vF}. (3.3)

which establishes a direct analogy to (2.2). Note that tF{vF} is defined up to the addition of an
inessential uniform surface pressure.

Proof. Assuming sufficiently smooth potentials and fields, we may express the quasi-static
stress balance in terms of virtual power as

∫
F

tF{vF}·uF dS =
∫

I
tI(v)·uI dS +

∫
ΩF

S(E):∇u dV, (3.4)

for any admissible velocity field v(x), with E = sym ∇v, where u(x) is any solenoidal ‘test field’.
Now, we assume here and in the following that the choice of boundary field vF(x), x ∈

F, uniquely determines the bulk flow v(x) and strain-rate E(x). In the case of multiplicity, a
possibility we do not entertain here, one could presumably restrict the solution to a particular
solution branch.

In the case of an impermeable surface, tI can be replaced by τ I above, and, invoking locally
strong dissipation in ΩF ∪ I, we have the local relations

S = ∂Eψ(E; x), τ I = ∂vψI(v; x), (3.5)

where vn = v·n = 0 on I. We have allowed the potential ψ to depend on position x to reflect
a possible dependence on inhomogeneous and/or evolutionary structure tensors of the type
discussed above. Note that time variations in velocity do not imply instantaneous variations in
these tensors, which are presumably governed by smooth ODEs of the form (2.7).

The preceding relations yield a linear functional of the test velocity uF on F:

LvF [uF] :=
∫

F
tF{vF}·uF dS =

∫
ΩF

∂Eψ(E; x):∇u dV +
∫

I
∂vψI(v; x)·uI dS. (3.6)

It is evident that in the case where u ≡ v in ΩF that the dissipation of v(x) is given by

D[v] = LvF [vF] =
∫

F
tF{vF}·vF dS =

∫
ΩF

∂Eψ(E; x):E dV +
∫

I
∂vψI(vI; x)·vI dS ≥ 0 (3.7)

as all integrands in the last expression are necessarily positive by local strong dissipation.
By employing (3.1), it can also be easily proved that:

LvF [uF] = 〈δvFΨ , uF〉, where Ψ [vF] =
∫
ΩF

ψ(E; x) dV +
∫

I
ψI(v; x) dS (3.8)

the latter relation following from the fact that v(x) and E(x) are determined by vF. The above,
together with (3.6) implies the desired result

δvFΨ {vF} = tF{vF}. (3.9)

In appendix A, we indicate that the above results follow from a tentative extension of
Edelen’s formula for finite-dimensional vector spaces to infinite-dimensional (e.g. Banach)
function spaces. �
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Remarks 3.1.

(i) In the dual description with interfacial BC vI = ∂τ IφI(τ I) on I, we can swap variables and
show that a dual functionalΦ[t] exists, mapping traction fields t on F to a scalar, such that

δtFΦ{tF} = vF{tF}. (3.10)

(ii) Relation (3.3), or its dual (3.10), confirms the perhaps intuitively obvious fact that the
dissipation and dissipation potential are given directly by the boundary field vF on F. To
compute the corresponding boundary traction tF in full, one would need to compute the
actual fluid velocity field v(x) = v{vF} in ΩF. However, the fact that the boundary field tF
must arise as a Fréchet derivative places a restriction on tF that can be exploited without
specification of the full flow field. Based on simplified BCs, the following sections will
make use of this derivative in a form appropriate to finite-dimensional vector spaces.

(iii) In the case of unbounded regions, we should replace integrals like those in (3.7) and (3.8)
by appropriate averages over ΩF, I and F, which we do not bother to define explicitly.

(iv) There are direct analogies between the theorem proved above and the global theorems
of hyperelasticity, owing to the fact that both are based on constitutive potentials.
We note however, that the non-trivial slip BCs in this treatment would correspond
to an unconventional Robin traction-displacement condition in the elastic analogy. As
in hyperelasticity, the admissible solution minimizes the functional for appropriate
BCs. Unlike hyperelasticity, where the functional represents total potential energy, the
functional Ψ provides in fact a lower bound for total dissipation, with equality in the
case of a linear rheology/slip condition, or proportionality in the case of homogeneous
potentials. The lower-bound property is easily proved based on the guaranteed convexity
of the underlying local dissipation potentials [9].

(v) The proof above relies on C1 smoothness of the underlying potentials, such that a unique
derivative and therefore a unique stress can be assumed in equation (2.2). However, we
note that certain dissipation potentials ϕ may become ‘kinked’, with loss of convexity,
such as those representing the above-mentioned yield-stress fluids. Although the stress
may fail to be uniquely defined at zero strain rate, we shall assume that the solution to
the variational problem, including the spatial location of the associated yield surfaces,
can be rendered unique by various techniques, such as those employed to determine
‘singular minimizers’ for non-convex hyperelasticity [20]. In this respect, we note that
existing treatments [15] of yield-stress fluid appear to overlook the associated extremum
principles and the applicability of variational methods.

(vi) For the sake of definiteness, we have adopted in (3.4) a relatively strong form of virtual
power. However, certain fluids may exhibit material instability, arising from a loss of
convexity of the dissipation potential and leading to the formation of singular surfaces. At
such surfaces, the velocity field may become non-differentiable and even discontinuous,
e.g. across an infinitely thin ‘shear band’. Indeed, the assumed slip on the surface I has
this same character. To cover such singular behaviour, we may express (3.4) in the weaker
form involving jumps [[u]]J in u on a discrete set of singular surfaces J across which the
traction tF is continuous:

∫
F

tF{vF}·u dS =
∑

J

∫
J

tJ·[[u]]J dS +
∫
ΩF

S(E):∇u dV, where tJ = σ ·n|J . (3.11)

In this case, we admit discontinuous test velocity fields, and (3.4) is a special case in which
u = 0 on I, with jump [[u]] = uI, and is otherwise continuous.

We now illustrate the utility of the above results by the application to two physically interesting
problems involving flow around a geometrically complex solid surface.

 on November 5, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


8

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140434

...................................................

4. Generalized Darcy flow in porous media
For the application to viscoplastic flow in a porous medium, we apply the above to two types
of BC on the fluid surface F of a given porous body (figure 1), namely prescribed velocity and
prescribed stress.

(i) Traction boundary condition

We first consider the BC
tF = −(g·x)n + Tn, x ∈ F, (4.1)

for a constant vector g and constant tensor T. Above, g represents a pressure gradient applied to
the fluid boundary of the domain and T is a symmetric boundary stress tensor.

As in the preceding subsection, we assume now that the BC (4.1) determines the flow in ΩF.
The functionals of tF in (3.10) now reduce to functions of g and T, with dissipation and potentials
obeying

D[tF] = D(g, T) = VF(g·v̄ + T:D̄), with

v̄(g, T) = 1
VF

∫
ΩF

v dV = ∂gΦ(g, T),

D̄(g, T) = 1
VF

sym
{∫
ΩF

∇v dV +
∫

I
nI ⊗ vI dS

}
= ∂TΦ(g, T)

and Φ(g, T) =Φ[tF(x)]|tF(x)=−(g·x)n+Tn,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

where nI is the inner normal to the surface I. The second and third lines of (4.2) follow from the
vanishing of vn = v·n on I, and the relations∫

F
xvn dS =

∫
∂ΩF

xvn dS =
∫
ΩF

∇·(v ⊗ x) dV =
∫
ΩF

v dV

and
∫

F
n ⊗ v dS =

∫
∂ΩF

n ⊗ v dS −
∫

I
n ⊗ v dS =

∫
ΩF

∇v dV +
∫

I
nI ⊗ vI dS.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

These results establish the volume average velocity, v̄, and average deformation rate, D̄, as
respective conjugates of g and T. Note that we could have also obtained the result for average
deformation rate by considering a singular test field with u = 0 and [[u]] = uI on I, as subsumed
by (3.11). The fact that the drag laws for both v̄ and D̄ must emerge from a single potential function
Φ is a significant restriction on the functional forms of each.

(ii) Velocity boundary conditions and isotropic media

We now consider flow induced by an applied velocity BC

v(x) = q + Lx, x ∈ F, (4.4)

where q is a constant velocity vector and L is a constant velocity-gradient tensor. The
incompressibility constraint on v then requires that∫

F
vn dS = a·q + A:L = 0, where a =

∫
F

n dS and A =
∫

F
n ⊗ x dS. (4.5)

The vector a and the second rank tensor A represent an ostensibly new class of structure tensors
for a representative volume element (RVE), given generally by the nth rank moment tensors:

A(m) =
∫

F
n(⊗x)m−1 dS, m = 1, 2, . . . (4.6)

The lowest moment a equals the vectorial excess of out-flow over in-flow area, and A can be
regarded as a second-rank ‘fabric’ tensor, by loose analogy to a tensor employed to describe the
anisotropy of granular media. It is clear that the overall dissipation potential must eventually be
given as a function Ψ (q, L, a, A), subject to the restriction (4.5).
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We now specialize to isotropic media, defining an isotropic medium of degree M as one for
which the structure tensors of order m = 1, 2, . . . , M are invariant under the transformation n,
x → Qn, Qx, where Q is an arbitrary constant orthogonal tensor. This requires that A(m) be a
scalar multiple of the isotropic tensor of order m, for m = 1, 2, . . . , M and, hence, that a = 0 and
A ∝ I for the case M = 2 considered here.

Hence, for an isotropic medium of degree 2, (4.5) implies that q and L, with tr L = 0, can be
chosen independently. A common example from homogenization theory is a periodic porous
structure, for an RVE consisting of a single periodic cell, discussed briefly below.

Assuming that the BC (4.4) determines a unique solution to the flow in ΩF, the functionals of
vF in (3.7) reduce to ordinary functions of q and L with dissipation given by

D[vF] = D(q, L) = f·q + Σ :L, with

f(q, L) =
∫

F
tF{vF} dS = ∂qΨ (q, L),

Σ(q, L) =
∫

F
tF{vF} ⊗ x dS = ∂LΨ (q, L)

and Ψ (q, L) =Ψ [vF(x)]|vF(x)=q+Lx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

Here f is the force and Σ the moment of traction acting on F, which can be regarded as the
contribution of F to the volume average stress

1
VF

∫
ΩF

σ dV = 1
VF

∫
ΩF

div(x ⊗ σ ) dV = 1
VF

∫
∂ΩF

t ⊗ x dS. (4.8)

Relations (4.7) and (4.8) provide yet another extension of Darcy’s law which, in contrast to the
case of stress BCs, bears a rather opaque relation to the linear version. Still, it bears emphasizing
that the emergence of Σ(q, L) and f(q, L) from a single potential ψ(q, L) is a notable restriction on
the functional forms of both quantities.

In closing here, we note that higher gradient theories would involve higher order structure
tensors of the type (4.6).

(iii) Permeability relations

The prior subsections apply to global flow relations, and we can apply a key result displayed in
(4.2), namely,

v̄ = ∂gΦ, (4.9)

to describe the average or homogenized permeability of a non-Newtonian fluid within a regular
porous solid, with surface slip between fluid and solid that may be both nonlinear and
non-uniform.

As one example of a structure with a single well-defined permeability, consider an idealized
periodic RVE, composed of a repeated tiling of box-shaped porous elements. Owing to periodicity,
the permeability of a large sample of such a material can be defined by treating the flow through
one such element induced by an applied pressure on the element of the form (4.1), with T = 0.
The pressure gradient g provides an arbitrary pressure difference between parallel faces of the
cell, and (4.9) shows that mean fluid velocity v̄ and the applied pressure gradient, g are connected
through the derivative of a potential Φ =Φ(g).

Following a previous mathematical analysis [8], the preceding relationship (4.9) can also be
expressed in a pseudo-linear form in terms of a permeability tensor K = K(g) defined by

v̄ = K(g)g, (4.10)
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where K must take the form of the Hessian ∂2
ggχ of a complimentary function χ (g) derived from

Φ(g) [8]. This in turn implies the following symmetry and differential compatibility conditions on
the permeability tensor:

K(g) = K(g)T and
∂Kij

∂gk
= ∂Kjk

∂gi
(4.11)

for all i, j, k ∈ {1, 2, 3}.
Thus, by means of (4.10) we extend the standard linear (Onsager) symmetry to the flow of

rheologically nonlinear fluids through porous solids with non-uniform and nonlinear interfacial
slip. In contrast to the linear case, K depends on q, but as with linear case K is non-negative
definite, reflecting non-negativity of dissipation. The constraints imposed by (4.11) represent a
severe restriction on the form of K(q), as a substantial extension of the linear theory.

5. Nonlinear mobility in effective-slip problems
As a generalization of the corresponding Stokes-flow problem [5], we consider the far-field
condition on the top surface F of a viscoplastic shear flow bounded below by solid surface I. The
interface I represents an impermeable solid with possibly non-uniform partial slip distribution as
well as height variations. Adopting Cartesian coordinates xi with unit basis ei for i = 1, 2, 3, we
consider the case of a surface I of infinite extent having mean elevation x3 = 0. As illustrated in
figure 2, the layer is bounded above by a flat plane F situated at an arbitrary position x3 = zH, and
driven by a uniform parallel shearing traction τ , with τ ·e3 = 0. We assume the surface texture is a
repeating pattern, and hence the induced flow field is periodic in horizontal planes. That said, we
place no constraints on the period length so this could still represent an arbitrarily large surface
pattern.

In the absence of external body forces or overall pressure gradient, and given x3 � �, where � is
a characteristic length scale related to the surface texture, we assume that an admissible velocity
field will exhibit far field behaviour consisting of uniform simple shear plus an apparent slip
relative to the surface I:

v(x1, x2, x3 � �) = γ̇ x3 + vs, with γ̇ ·e3 = 0, vs·e3 = 0, E = sym(γ̇ ⊗ e3), (5.1)

where the shear rate vector, γ̇ , and the effective slip velocity, vs, are assumed to become
asymptotically independent of position x2, x3 on F.

Given the fluid rheology, the surface pattern, and the slip relation on I, the problem is to find
the relationship between vs and τ on F. This relation may be taken to represent an effective slip
BC for the large-scale description of the flow on length scales � �. In the case of a Newtonian
fluid with linear slip on I, it has been shown [5] that there exists a positive symmetric 2 × 2 surface
(Onsager) mobility tensor M = [Mij], such that:

vs = Mτ , or vs
i = Mijτj, i, j = 1, 2 (5.2)

on a Cartesian basis. Here, we extend the analysis to nonlinear viscoplastic fluids with strongly
dissipative nonlinear interfacial slip.

As a helpful albeit not essential device, we define our domainΩ as a cell [−�1, �1] × [−�2, �2] ×
[zL, zH], where zL lies within the rigid solid beneath I and �1 and �2 are the respective period
lengths in the horizontal plane. Owing to the flow periodicity, the vertical walls need not be
considered part of ∂Ω , and we have F = [−�1, �1] × [−�2, �2] × zH and S = [−�1, �1] × [−�2, �2] ×
zL. Then, the formulae in (4.7) for constant velocity q on F are applicable, and one readily finds,
upon choosing q to have a vanishing x3 component, that

D = τ ·q = τ ·γ̇ x3 + τ ·vs, τ = ∂qΨ (q), q = ∂τΦ(τ ). (5.3)

Here, the surface force f in (4.7) is τAF, and one absorbs AF = 4�2�2 into the potential. The last
relation above follows as the Legendre convex conjugate of the prior relation, and we obtain the
same potential Φ from the Legendre conjugate as the one described in (4.7). Because the fluid
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vI
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F

I

zH

t

v

Figure 2. Effective slip above a textured surface.

rheology is strongly dissipative, with D(S) = ∂Sφ for some given dissipation potential φ, the flow
at the top boundary satisfies

γ̇ (τ ) = ∂φH

∂τ
(τ ) for φH(τ ) ≡ 2 φ(τ ⊗ e3 + e3 ⊗ τ ). (5.4)

Hence, by the definition of effective slip, we may write

q = zH
∂φH

∂τ
(τ ) + vs. (5.5)

Combining (5.3) and (5.5), and defining φs(τ ) =Φ(τ ) − zHφH(τ ), we arrive at

vs = ∂φs

∂τ
. (5.6)

We thus find that the slip velocity must arise from the shear traction as the gradient of a slip
potential. As shown in a previous analysis [8], this implies the existence of a scalar function ξ such
that the pseudo-linear form

vs = M(τ )τ (5.7)

arises from a mobility obeying M(τ ) = ∂2
ττ ξ (τ ). Accordingly, the mobility must obey the following

symmetry and differential compatibility conditions:

M(τ ) = M(τ )T and
∂Mij

∂τk
= ∂Mjk

∂τi
(5.8)

for all i, j, k ∈ {1, 2}. In the linear case, the constant M tensor can be shown to be symmetric via
Lorentz reciprocity [5], whereas (5.8) establishes the symmetry of the mobility tensor for the more
general case of any strongly dissipative rheology and interfacial slip relation.

6. Conclusion
The foregoing analysis addresses a general class of problems involving viscoplastic flow
adjacent to solid boundaries with nonlinear and possibly non-uniform slip conditions. When
the bulk rheology and interfacial slip take on strongly dissipative forms, the relationship
between the velocity and traction on fluid boundaries are interrelated by global variational
derivatives. Exploiting this fact, we have established symmetries of viscoplastic drag laws for two
illustrative applications.
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In the first example, involving flow in porous media, the global conjugacy between traction
and velocity on the external fluid boundary is employed to determine permeability relations
for strongly dissipative fluids exhibiting slip along the pore walls. The permeability is shown
to be characterized by a symmetric positive-definite tensor that depends on the flow, with partial
derivatives satisfying a set of compatibility conditions.

In the second example, we have explored the implications of strong dissipation for viscoplastic
flow over textured surfaces. As an extension of the linear case, we find once again a symmetric
positive-definite mobility tensor which connects the far-field shear traction to the apparent slip
velocity and satisfies once more a set of differential compatibility conditions.

While the foregoing analysis has focused on impenetrable solid boundaries and
incompressible fluids, many of the results may remain qualitatively correct whenever these
conditions are relaxed. In particular, note that on replacing S by σ and E by D one can obtain
a theory for viscoplastic flow with variable density, such as might occur in a dilatant granular
media or particle suspension. Such variants on the current model may engender additional
complications that seem worthy of further analysis.

Although we have not explored various consequences of the associated extremum principles
for strongly dissipative fluids, these may prove a convenient tool for other applications. Important
examples are the derivation of continuum models for dispersions of rigid or viscoplastic particles
in viscoplastic fluids, or the determination of the spatial configuration of yield surfaces in
yield-stress fluids.

Acknowledgement. We are indebted to Prof. Reuven Segev for the reference [21].
Funding statement. This work was supported in part by the MIT Department of Mechanical Engineering and the
Continuum Mechanics Fund of the University of California, San Diego, CA, USA.

Appendix A. Connection to extremum principles
Hill [9], Johnson [11] and Leonov [12], who overlooks Johnson’s work, formulate extremum
principles for viscoplastic fluids. Here, we offer a less elaborate form for the quasi-static flow
of incompressible viscoplastic fluids in the absence of body forces (which are readily included).
Identifying the global dissipation velocity potential

Ψ [v] =
∫
R
ψ(E) dV, where E = sym(∇v)′, (A 1)

one finds for its variation (Fréchet differential):

δΨ =
∫
R
∂Eψ :δE dV =

∫
R

S:∇δv dV =
∫
R

[σ :∇δv + p∇·δv] dV

=
∫
∂R

t·δv dS +
∫
R

[p∇·δv − ∇·σ ·δv] dV, where t = σn (A 2)

Hence, subject to incompressiblility ∇·δv = 0 and fixed velocity δv = 0 on ∂R, the stationarity of Ψ
implies quasi-static equilibrium ∇·σ = 0, with obvious converse. We shall not attempt to establish
here that the extremum represents the minimum Ψ , a matter treated in the works of Hill, Johnson
and Leonov cited above.

With the addition of terms to account for dissipative slip, the above extremum principle is
applicable to the boundary-value problems considered above in this work, with the variation δv
replacing the test velocity u in (3.4). The main consequence for this work would seem to be the
relevance to uniqueness of solution.

We note that a related extremum principle applies to the global stress potential

Φ[S] =
∫
R
ϕ(S) dV

subject to incompressibility and fixed traction σn on ∂R [9,11,12].
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Appendix B. Functional for the dissipation potential
Edelen’s formula [8] (where D is denoted by D∗) for the dissipation potential ψ(v) in a finite-
dimensional vector space R

n is given in terms of the dissipation D(v) by

ψ(v) =
∫ 1

0
D(λv)λ−1 dλ, (B 1)

where v is a generalized velocity, with conjugate force given by f = ∂vψ in the dual space.
Without attempting a rigorous proof here, we offer as a conjecture a generalization to a

function space (e.g. Banach space) F of vector-valued velocities v(x) and (dual space) of vector-
valued forces f{v}, x ∈R. It appears that one might achieve this generalization rigorously by
extending Edelen’s differential geometric treatment to Banach spaces [21]. Thus, with dissipation
defined by the pairing

D[v] = 〈v, f〉 :=
∫
R

v(x)·f{v} dR :=
∫
R

v(x)·f[v](x) dR, (B 2)

the corresponding function-space forms for potential and associated force are as follows:

Ψ [v] =
∫ 1

0
D[λv]λ−1 dλ, with δvΨ [q] = 〈f, q〉 =

∫
R

f{v}·q dR, i.e. f{v} = δvΨ {v}. (B 3)

It is not very difficult to verify the final relation in (B 3) by making use of the properties of Fréchet
derivatives, whose existence is guaranteed by Moreau’s Theorem for convex functionals [22].

For example, with solenoidal velocity field v and associated deviatoric straining E, we have

D[v] =
∫
Ω

D(E) dV, where D(E) = E:S(E). (B 4)

Substitution of the resulting expression for D[λv] into the integrand in (B 3) gives

Ψ [v] =
∫
Ω

ψ(E) dV, since ψ(E) =
∫ 1

0
D(λE)λ−1 dλ, (B 5)

By taking the domain R=ΩF ∪ I, one obtains by similar reasoning the final relation in (3.7). It
seems plausible that one might be able further to establish a pseudo-linear form for the force
appearing in (B 3):

f{v} := f[v](x) =
∫
R

L[v](x, y)v(y) dR(y), (B 6)

involving a positive-definite matrix L[v](x, y). However, this is a matter requiring a more
thorough mathematical treatment.
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