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The following article deals with the role of compressibility in regularizing the well-known µ(I) model,
i.e., eliminating the short-wavelength (Hadamard) instability revealed by Barker et al. [“Well-posed
and ill-posed behaviour of the µ(I)-rheology for granular flow,” J. Fluid Mech. 779, 794–818 (2015)].
In particular, we discuss the compressible-flow models proposed in the recent papers by Heyman et al.
[“Compressibility regularizes the µ(I)-rheology for dense granular flows,” J. Fluid Mech. 830,
553–568 (2017)] and Barker et al. [“Well-posed continuum equations for granular flow with com-
pressibility and µ(I)-rheology,” Proc. R. Soc. A 473(2201), 20160846 (2017)]. In addition to a critique
of certain aspects of their proposed constitutive models, we show that the main effect of their regular-
izations is to add viscous effects to the shear response in a way that appears unfortunately to eliminate
quasi-static yield stress. Another goal of the present work is to show how the development and anal-
ysis of visco-plastic constitutive relations are facilitated by dissipation potentials and the dissipative
analog of elastic potentials. We illustrate their utility in Sec. IV of this article, where it is shown that
a constant non-zero yield stress leads to loss of convexity that can only be restored by substituting
viscous effects or else by adding spatial-gradient effects proposed previously by the present authors
[Goddard, J. and Lee, J., “On the stability of the µ(I) rheology for granular flow,” J. Fluid Mech. 833,
302–331 (2017)]. Published by AIP Publishing. https://doi.org/10.1063/1.5040776

I. INTRODUCTION

The present paper is largely motivated by two recent pub-
lications3,10 denoted, respectively, by Ref. 2 and Ref. 1 in the
following (reflecting the order in which they are analyzed
below). Both articles have proposed constitutive equations
with compressibility effects to regularize the incompressible
µ(I) model against the Hadamard (short-wavelength) insta-
bility. As shown below, this is tantamount to adding a more
pronounced dependence of shear stress on the rate of deforma-
tion, reflecting a material time scale and the associated viscous
effect. This to be contrasted with the length-scale or gradient
effect in models that depend on higher spatial gradients, such
as that proposed by the present authors,9 referred to as Ref. 3
in the following. In addition to a critique of the models in
Refs. 1 and 2, one goal of the present discussion is to high-
light the utility of dissipation potentials in the formulation of
visco-plastic constitutive equations. The connection between
the convexity of potentials and material stability, as reflected
by the resulting ellipticity of the quasi-static field equations, is
well established in the solid-elasticity literature. In the same
literature, one finds useful variational principles which are
illustrated by other studies on the mechanics of visco-plastic
fluids.9,11,12,14

As a brief recapitulation of certain notation employed in
previous studies, we shall, for the sake of comparison with
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Refs. 1 and 2, make implicit use of their norm ‖A‖ = |A|/
√

2
for second-rank tensors A = [Aij], instead of the Euclidean

(or Frobenius) norm |A| B
√

AT · A employed in Ref. 3.
As standard in various continuum mechanics literature, we
denote the deviator or traceless part of the second rank ten-
sors A by primes, with A′ = A − tr(A)I/3, where I = [δij]
denotes the unit tensor and tr(A) = I · A is the trace, and we
denote the transformation by a second-rank tensor A of a vector
x = [xi] by the symbol Ax = [Aijxj] suppressing a dot for the
indicial contraction which we employ in certain expressions.
Here, as below, we frequently use square brackets [ ] to indi-
cate the components of tensors on a Cartesian basis, and we
employ the Cartesian summation convention for contraction on
repeated indices. Finally, we take the three isotropic invariants
of a symmetric second-rank tensor A to be

A1 = tr(A), A2 = tr(A′2 )/2 = ‖A′‖2,

A3 = det(A′) = tr(A′3)/3,

with

∂A′Ak = (A′)k−1, k ≥ 2, (1)

which are easily related to standard invariants. We shall have
occasion then to deal with the special cases, p = −σ1/3
= −tr(σ)/3, and A = D in (1), respectively, for Cauchy stress
σ, and deformation rate D = sym(∇v), with the “shear rate”
defined as D′.

We consider here a class of visco-plastic models that
represent strongly dissipative or “hyperdissipative” materials,
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i.e., those with the rate of dissipation given by positive-definite
stress power,

D = σ · D > 0, for |D| |σ | > 0, (2)

and which are therefore endowed with a frame-indifferent,
non-negative, and convex dissipation potential ψ(D) = ψ(D1,
D2, D3) such that6,8

σ = σ′ − pI = ∂Dψ = (∂D1ψ)I + (∂D2ψ)D′ + (∂D3ψ)D′2

with

p = −(∂D1ψ +
2
3

D2∂D3ψ)

and

σ′ = −
2
3

D2∂D3ψI + (∂D2ψ)D′ + (∂D3ψ)D′2, (3)

where σ′ represents the shear stress and p represents the
pressure, and we employ the chain rule

∂D = I∂D1 + ∂D′ = I∂D1 + D′∂D2 + D′2∂D3 . (4)

The rate of dissipation is thus given by

D = σ · D = σ′ · D′ − pD1 = D′ · ∂D′ψ + D1∂D1ψ

=

3∑
k=1

kDk∂Dkψ, (5)

which is non-negative owing to the non-negativity and con-
vexity of ψ. The model (3) is a dissipative form of Reiner’s
“dilatant” fluid (later the “Reiner-Rivlin” fluid) proposed some
years ago as a model for granular media7 without regard
for dissipation potentials. This enlarges the class of non-
dimensional models beyond that declared to be unique in Ref. 1
[in the text preceding their Eq. (3.8)].

In the present paper, we consider the special case ∂D3ψ = 0
which represents the restricted form common to much of
the current modeling, which might be called “planar,” since
the D3 ≡ 0 implies that one principal shear rate vanishes
identically. This gives a restricted form of the Reiner-Rivlin
fluid that is appropriate to the study of the planar flows
that are the object of the following discussion. Included of
course is the further restricted class of incompressible visco-
plastic fluids with ∂D1ψ ≡ 0, and D′ ≡ D, such as the µ(I)
model,9

ψ = ψ0(D2) =
2p
θ

[
µ∞I + (µ0 − µ∞)I∗ ln

(
I + I∗

I∗

)]

with

σ = (∂Dψ)p = ψ
′(I)(∂D2 I)D = pµ(I)

D
√

D2

and
µ(I) = µ∞ +

µ0 − µ∞
I/I∗ + 1

,

where
I = θ

√
D2 and θ = 2d

√
ρs/p. (6)

Here, ψ ′ = (∂Iψ)p, while θ is an inertial time constant,
µ0 and µ∞, with µ0 ≤ µ∞, are the limiting (Coulomb) coeffi-
cients of rate-independent friction, and I∗ is a non-dimensional
parameter mediating the transition between the quasi-static
I = 0 limit and rapid-flow (“Bagnold”) limit I =∞.

Recent papers show that the model (6) is ill-posed, exhibit-
ing Hadamard (short-wavelength) instability.2,3,9,10 We believe

that this instability arises from the limiting regimes of con-
stant µ at I = 0 and I = ∞ where the potential ψ0 in (6) is
marginally convex, as pointed out in Ref. 3 and shown more
clearly below. As also indicated in Ref. 3, the mathemati-
cal term “ill-posed” should not be construed as “unphysical,”
since short-wavelength instability signals more often than not
the emergence of spatial discontinuities in numerous physical
settings. However, whatever one’s motivation for modifying
this instability, it seems evident to us that this can only be
achieved either by length-scale (“gradient”) effects, as pro-
posed in Ref. 3, and/or by time-scale (“viscous”) effects,
inherent to the compressible-fluid models of Refs. 1 and 2. The
partial regularization proposed in another work by certain of
the same co-authors1 appears to rely on the latter. While proper
dissipative behavior is guaranteed by the model of Ref. 3, it
is not immediately evident that this is the case for the mod-
els proposed in Refs. 1 and 2, a matter to be addressed in the
following.

To illustrate the utility of the dissipation potential, we
note that the stress derived solely from it is subject to Edelen’s
non-linear Onsager symmetry6,8 which amounts to the equal-
ity of various cross derivatives. For the planar-shearing form
ψ = ψ(D1, D2), this restriction is expressed by the Maxwell-
type relation

∂D1∂D′ψ = ∂D1σ
′ = −∂D′p = ∂D′∂D1ψ,

where
∂D′ = D′∂D2

and hence
∂D1 (σ′ · D′) = −2D2∂D2 p, (7)

whenever σ′ and p are given as functions of D′ and D1, as
is the case with Ref. 1, considered next. We note that for
compressible flow in general, the potential ψ depends on a
variable particle fraction φ, whose evolution is governed by
the mass balance for dry granular media with rigid particles,
namely,

φ̇ = ∂tφ + v · ∇φ = −φ∇ · v = −φD1. (8)

References 1 and 2 involve either a “dilatancy relation”
D1 = ν(D2, p, φ) or else an “equation of state” p = p(D1, D2,
φ) which is tantamount to the inverse. In the following, we
shall often suppress the notation for dependence on φ whose
evolution is governed by (8), recalling that dissipation poten-
tials may depend on any number of such evolutionary internal
variables.

We emphasize at the outset that we did not deem it incum-
bent on us to follow closely the numerical analyses of Refs. 1
and 2, as certain details are not immediately evident and,
more importantly, because it would constitute a distraction
from fundamental questions regarding the formulation and
interpretation of the constitutive modeling.

II. MODEL OF REF. 1

The model of Ref. 1 is given essentially by

σ′ =
peqµa(φ)
√

D2
D′ and p =

(
1 − µb(φ)

D1
√

D2

)
peq,
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where

peq =
ρD2d2

(φ − φmax)2
. (9)

Here, we denote by µa the quantity denoted by the somewhat
overworked symbol µ in Ref. 1. A functional form is proposed
for µa(φ) in Ref. 1, whereas the function µb(φ) is provisionally
left arbitrary. We note that σ′ exhibits the Bagnold scaling with
apparent viscosity proportional to

√
D2.

We also note in passing a certain puzzling relation in
Ref. 1, where the inertial number I is defined in the first para-
graph of p. 557 by the relation given above in (6) with peq

replacing p. However, according to the definition of peq in (9),
and with their norm ‖S‖ =

√
D2, one obtains a nugatory rela-

tion I ≡ (φmax − φ) so that the mass balance in terms of I in
their Eq. (13) reduces trivially to that given previously in their
Eq. (3.1). Without understanding the significance and conse-
quences for their subsequent analysis, we proceed to the main
issue of concern in the present work.

Thus, the relevant derivatives in (7) are found from (9) to
be

∂D1σ
′ = 0 and ∂D′p = D′∂D2 p =

ρd2

(φmax − φ)2

[
1 −

µbD1
√

D2

]
D′,

(10)

which clearly are unequal, indicating the absence of Onsager
symmetry. [Note that this symmetry can be restored by includ-
ing a factor, as a definite function of D1/

√
D2, in the definition

(9) of σ′]. Moreover, the nominal dissipation rate is given in
terms of a quadratic form in R = D1/

√
D2 as

D = σ′ · D′ − pD1 = peq

√
D2(2µa − R + µbR2). (11)

This has real positive roots R = R± = (1±
√

1 − 8µaµb )/(2µb)
for 8µaµb < 1 such that D is non-positive for R+ ≥ R ≥ R−.
Hence, to avoid negative dissipation, one should take 8µaµb

> 1, whereas the relation µb = (1 − 7µa/6) proposed in Ref. 1
as the demarcation line between stable and unstable equations
appears to violate this condition over a considerable range of
the µa values displayed on the abscissa of the plot in their
Fig. 2(a). Without further detailed analysis, we cannot ascer-
tain whether or how their stability analysis may have been
influenced by a possible negative dissipation.

Whenever D is non-negative, we may make use of Ede-
len’s formula8 to write the dissipation potential in terms of
dissipation rate D(D) as

ψ(D) =
∫ 1

0
D(λD)

dλ
λ
=

3
2
D(D) (12)

since D(D) is homogeneous of degree 3/2 in D. Then, accord-
ing to another formula of Edelen,8 the constitutive equations
of Ref. 1 can be written as

σ′ = ∂D′ψ + σ′0 and p = −∂D1ψ + p0,

where
σ′0 · D

′ − p0D1 ≡ 0, for ∀D. (13)

That is, σ0 = σ′0 − p0I is “powerless” or gyroscopic, and one
may make use of the preceding expressions for ψ, σ′, and p
to write down explicit expressions for σ0 and p0. That these
do not vanish identically again signals the failure of nonlinear

Onsager symmetry and the principle of minimum dissipation
potential for quasi-static flows,3 which we hasten to add does
not per se invalidate their constitutive equation.

As a more important matter, it is evident that the Bagnold
scaling of σ′ in (9) represents “Bagnold shear-thickening”
without yield stress, which is not expected to admit the
Hadamard instability. It also seems apparent that the result-
ing stabilization could have been achieved by any number of
viscosity models, without appeal to compressibility.

III. MODEL OF REF. 2

The constitutive relations of Ref. 2 are given in what
may be regarded as an implicit form in stress, about which
Rajagopal and Srinivasa17 have written extensively with a
view to pressure sensitive viscosity or plasticity, particularly
in the nearly incompressible regime. Thus, the shear stress
is allowed to depend on the pressure, no longer a work-free
reaction against the incompressibility constraint,

σ′ = p

[
α(I) −

p
C(φ)

]
D′
√

D2
and D1 = ν(D2, p)

= 4
√

D2

[
α(I) − µ(I) −

p
C(φ)

]
. (14)

The second relation represents the sort of dilatancy relation
referred to above, while µ(I) is the function defining µ(I)-
rheology, and α(I) is given in Ref. 2 by

α(I) =
4
5
µ(I) +

12
25

I−2/5
∫ I

0
s−3/5µ(s)ds. (15)

In the regimes I � 1 and I � 1 where µ becomes constant, it
follows that α→ 2µ.

At this juncture, we should express our concern that
their constitutive parameter C(φ) derives its stress units
from an assumed proportionality in Eq. (2.30) of Ref. 2 to
the acceleration of gravity, an extrinsic quantity which, by
d’Alembert’s principle, is basically equivalent to accelerations
of the material itself. Since this includes linear accelerations
and rigid-body rotations, the model cannot be considered
frame-indifferent and, however seriously one views this, it
should be clearly pointed out. By contrast, the critical-state
theory of soil mechanics, to which the authors appeal, involves
an intrinsic parameter which serves to cap off Drucker-Prager
cones, and C may serve as a similar function in the present
model (vide infra). Setting aside such concerns, we proceed
with the analysis of the authors’ constitutive theory as it
stands.

A bit of thought shows that the principal dependent vari-
ables in the above model are D2 and p, the latter depen-
dence inherited from the µ(I) model. Hence, it is expeditious
to define a new potential ϕ(D′, p) given by the Legendre
transformation

ϕ(D′, p) = ϕ(D2, p) = ψ(D2, D1) + pD1, (16)

where we suppress the notation for dependence on the par-
ticle volume fraction φ for the reasons stated above follow-
ing (8). We note that (16) represents a precise analog of the
standard thermodynamic transformation from Helmholtz free
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energy ψ to Gibbs free energy ϕ if D2 is interpreted as tem-
perature and D1 as volume. At any rate, it is easy to show
that

σ′ = ∂D′ϕ(D′, p) = ∂D′ψ(D′, D1)

or

∂D2ϕ(D2, p) = ∂D2ψ(D2, D1)

and

∂pϕ(D2, p) = D1 = ν(D2, p), (17)

from which one obtains another Maxwell-type relation

∂pσ
′ = ∂D′ν = D′∂D2ν or ∂p(σ′ · D′) = 2D2∂D2ν, (18)

where ν(D2, p) is the dilatancy function appearing in the sec-
ond equation of (14). The left-hand and right-hand sides of the
second equality are given, respectively, by (14) as

∂pσ
′ =

[
α −

1
2

Iα′ − 2
p
C

]
D′
√

D2

and

∂D′ν = 2
[
α − µ + I(α′ − µ′) −

p
C

] D′
√

D2
, (19)

where primes denote derivatives with respect to I. The require-
ment of equality between these expressions yields the ordinary
differential equation given in Ref. 2 with solution given by
(15). Hence, we conclude that the model of Ref. 2 is strongly
dissipative, that is, in principle derivable from a dissipation
potential, provided the nominal dissipation rate

D = 2p
√

D2(2µ − α +
p
C

) (20)

is non-negative, which seems to be the case for p/C > α − 2µ,
with p > 0 and C > 0, for any function α(I) ≤ 2µ(I), including
the authors’ assumed form (15).

For the sake of completeness, we note that one can deter-
mine the function ϕ(D2, p) by making use of the relation
σ′ = ∂D′ϕ = (∂D2ϕ)D′ and the first equation of (14) to give

ϕ(D2, p) = 2p
√

D2

[
1
3

(5α − 4µ) − p/C

]
. (21)

From (16) and (21), one can derive an expression for ψ as a
function of D2 and p that has no immediate analytical value
since the second member of (14) is generally not analyti-
cally invertible to give p and ψ as a function of the kinematic
quantities D1 and D2. The exceptional case of constant µ is
considered below.

For the above reasons, one cannot generally obtain an
explicit analytic expression for ψ

∗

(σ), the complementary or
dual force potential to ψ(σ), such that D = ∂σψ

∗

. In that con-
nection, we note that, contrary to the terminology of Ref. 2,
the relation ν = ∂pϕ for ν(D2, p) in (14) represents but one
component of a “flow rule,” one which is distinct from that
based on a plastic potential ψ

∗

(σ) in the standard plasticity
literature15,16 (Sec. IV C 1).

Given the likely role of Coulomb yielding in the
Hadamard instability of the µ(I) model, it is worthwhile inves-
tigating the case where there exists a regime in which µ = µc,
a constant, to terms o(1) in I, from which it is easy to show

that (14) gives the stress in that regime in terms of kinematic
quantities as

p = C

(
µc −

D1

4
√

D2

)
and σ′ = (2µc − p/C)p

D′
√

D2

= C*
,
µ2

c −
D2

1

16D2

+
-

D′
√

D2
. (22)

According to the second equality, the effective friction coeffi-
cient is µ = (2µc − p/C) which reduces to µc at the critical state
D1 ≡ 0. In the kinematic form (22), the restriction to positive
p/C requires that D1/4

√
D2 ≤ µc, while co-directionality of

σ′ and D′ requires that |D1 |/4
√

D2 ≤ µc. For non-isochoric
flow with D1 , 0, it is evident that the magnitude of the
shear stress increases monotonically with D2 from zero at
D2 = D2

1/16µ2
c , while µ = (2µc − p/C) decrease monoton-

ically from p = 0 with increasing p. Hence, Drucker-Prager
yielding at D2 = 0 is replaced by a non-linear viscous effect.
In the region 0 ≤ D2 ≤ D2

1/16µ2
c , which corresponds to

p > 2µcC, the stress σ′ is directed oppositely to the shear
rate according to (22), an unquestionably unstable situation.
The restriction p≤ 2µcC may be regarded as a flat truncation of
the Drucker-Prager cone. Beyond this truncation, a new defin-
ing equation for stress seems to be required. If shear stress
and pressure are to be continuous, one possibility is to take
σ′ ≡ 0 and p ≡ 2µcC in the interval 0 ≤ D2 ≤ D2

1/16µ2
c ,

avoiding an unstable decrease in stress with increasing strain
rate.

The above considerations raise the question as to whether
a simpler modification of the µ(I) model without compress-
ibility might eliminate the Hadamard instability and, unlike
the models of Refs. 1 and 2, preserve a non-zero yield stress at
D2 = 0. We shall show next that the answer is in the negative
for models described by a dissipation potential.

IV. DISSIPATION POTENTIAL AND HADAMARD
INSTABILITY

As pointed out in Ref. 3, the classic work of Brow-
der4 implies that the Hadamard instability can be attributed
to the loss of generalized ellipticity in the quasi-static field
equations. Hence, despite the recent heroic efforts to inves-
tigate the dynamics analytically and numerically, it suffices
to consider the stability of homogeneous and unbounded
creeping flows such that both the effects of boundary con-
ditions on finite domains and of continuum-level inertia are
negligible.

Given the compelling analogy between “hyperdissipativ-
ity” and “hyperelasticity,” both involving stress derived from
a potential, one may also appeal to classic studies of nonlinear
elasticity,5,13 where ellipticity of the quasi-static field equa-
tions turns on the convexity of the potential, as defined by
its Hessian. This fourth-rank tensor determines the so-called
acoustic tensor of elasticity which is directly related to the
second-rank tensor governing linear stability. In the case of
the dissipation potential, the Hessian is given by C = [Cijkl] =
∂2

Dψ = [∂Dij∂Dklψ], and we note that the value of this tensor
C(0) evaluated at the homogeneous base state arises from the
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linearization of ∇ · σ about this state, which happens to deter-
mine the linear stability of the dynamical equations of motion.
We recall that one obtains a similar result from a constitutive
model involving higher velocity gradients, as shown in Ref. 3.
Of course, when the stressσ is not given explicitly by a dissipa-
tion potential, linear stability is determined by a more general
fourth-rank tensor (∂Dσ)(0) that generally involves gyroscopic
stresses.

In the following, we consider a more general dissipation
potential than that given by the µ(I)-model, which presumably
includes models such as that proposed recently by Barker and
Gray.1 Moreover, it allows for a general treatment of the role
of yield stress on the Hadamard instability.

Thus, given a potential ψ(D1, D2), the components of the
Hessian are derived in the Appendix and we write it here in
the direct tensor notation as

C = (∂2
D1
ψ)I ⊗ I + (∂D2∂D1ψ)(D′ ⊗ I + I ⊗ D′)

+ (∂D2ψ)(Ĩ − 1
3

I ⊗ I) + (∂2
D2
ψ)D′ ⊗ D′, (23)

where Ĩ = [Ĩijkl] = [δikδjl + δilδjk]/2 is the standard sym-
metrized form of the fourth-rank identityI = [Iijkl] = [δikδjl].
Then, with proper scaling of time t, this leads to the differen-
tial operator A(∇) in the partial differential equation of linear
stability ∂tυ = A(∇)υ for perturbation υ(x, t) on the base-state
velocity field v(0)(x) with a homogeneous deformation rate
D′(0) = sym(∇v(0)), a constant. In particular, A(∇) is given by
its principal symbol4,18

A(ξ) = [Ajk] = ξ · C(0) · ξ B [ξiC(0)
ijklξl]. (24)

Here as below, the superscript (0) indicates that all partial
derivatives and tensors in (23) and (A1) are to be evaluated
at the base state.

Convexity of ψ requires that A(ξ) be a positive-definite
form (quadratic, here) in the real vector ξ or, equivalently, that
A(ık) be negative-definite in real vector k. In the first instance,
ξ is the symbolic representation of ∇ which is tantamount to
the Fourier space representation ∇→ ık, where k is the spatial
wave-vector. This in turn requires that υ · Aυ = [Ajkυjυk] be
positive-definite in υ, a quadratic form in both υ and ξ . Clearly
this is equivalent to the condition υ · A(ık)υ < 0 which trans-
lates to the decay of energy in Fourier mode υ(k) identified in
Ref. 3.

In the case of pressure-sensitive incompressible materi-
als, including those studied by Rajagopal17 as well as the µ(I)
model of interest here, all terms involving ∂D1 vanish in (23)
and (A1), and the above stability analysis requires modifica-
tion. In particular, we must now allow ψ to depend on both
D2 and the pressure p regarded as a reaction (Lagrange mul-
tiplier) against the compressibility constraint, as is the case in
past analyses of the µ(I) model.2,9 For simplicity, and in view
of its relevance to the present discussion, we assume that a
function ψ = 2pΨ(I)/θ captures the dependence on both D2

and p, with Ψ′(I) = µ(I), as in the special case (6).
It is easy to show that, given the relations D′ ≡ D and

σ′ = ∂Dψ, the relevant momentum balance can now be reduced
to the symbolic form with ∇ → ξ ,

∂tυ = Ã(ξ)υ, where Ã = PA, with P(ξ) = I −
a ⊗ ξ

a · ξ
and

a = (∂p∂Dψ − I)(0)ξ =

[
1
2

(Ψ′ −
1
2

IΨ′′)E − I
] (0)

ξ ,

with

E = D/
√

D2. (25)

Here, primes onΨ represent derivatives with respect to I, while
P is an oblique projection onto the space of solenoidal vectors
v such that ξ · v = 0, which serves to eliminate p from the
momentum balance (Ref. 3).

According to the above, the tensor A defined by (24) can
now be written as

A(ξ) =

(
pθ
2I

[Ψ′(
1
3
ξ ⊗ ξ + ξ2I) + (IΨ′′ −Ψ′)(Eξ) ⊗ (Eξ)]

) (0)

,

with

ξ2 = ξiξi, (26)

which, given Ψ(I), allows for the calculation of the stability
operator Ã. It is evident that P is independent of ξ = |ξ | so
that the instability depends only on the direction of ξ or k
(cf. Ref. 3). Since Ã involves the projection P, its determinant
vanishes giving one null eigenvalue and a second eigenvalue
λ̃ = Ã11 + Ã22 = tr(Ã). From the expressions for A and P given
in the Appendix, we find

λ̃ = ξ2
(

pθ
2I

) (0) (4(Ψ′ − IΨ′′) cos2 2ϑ + Ψ′(IΨ′′ − 2Ψ′) cos 2ϑ + 4IΨ′′

(IΨ′′ − 2Ψ′) cos 2ϑ + 4

) (0)

. (27)

We recall that the terms µ0 = Ψ′(0) > 0 and Ψ′′(0)I > 0 repre-
sent, respectively, a friction coefficient and a non-dimensional
viscosity, and we consider first the limiting case of a non-
vanishing friction coefficient µ0 = Ψ′(0) � IΨ′′(0), assumed
to dominate in the limit I→ 0. Ignoring the positive pre-factor
pθ/2I in (27), which can be incorporated into the time t in
the first equation of (25), or totally ignored in the quasi-static
limit, we find that the inequality λ̃ > 0 (which corresponds to

a negative eigenvalue in the usual dynamic stability analysis)
can be readily reduced to the form

(cos 2ϑ −
1
2
µ0) cos 2ϑ > 0, for 0 ≤ µ0 ≤ 1. (28)

Figure 1 shows the resulting stability diagram, with U and
S denoting the unstable and stable regions, respectively. The
unstable regions located at ϑ ≈ ±45◦ relative to the principal
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FIG. 1. Stability diagram for a purely frictional regime at I = 0 according
to (28).

axis of D are close to those found in previous studies,2,9 where
the effects of viscosity were accounted for. The importance of
viscous effects is illustrated by considering the limiting viscous
behavior µ0 = 0, Ψ′′(0) > 0, for which (27) yields λ̃ > 0
provided that

IΨ′′(0) sin2 2ϑ

1 + 1
4 IΨ′′(0) cos 2ϑ

> 0, (29)

which is satisfied for 0< |ϑ|< π/2 and IΨ′′(0)< 4. As indicated
by typical values of I in previous studies2,9 of the µ(I) model,
the latter inequality is unlikely to be violated near I = 0.

Without a more detailed investigation, it is plausible that
many of the above results will apply to the limiting state of
constant µ for large I of the type exhibited by the µ(I) model.
We note that the recently proposed modification of the µ(I) by
Barker and Gray1 stabilizes at I = 0 by taking µ(0) = 0.

We therefore conclude that any strongly dissipative
model possessing sufficiently regular viscosity without yield
stress will not exhibit the Hadamard instability arising from
purely frictional behavior, irrespective of compressibility
effects. The same may be true for any properly dissipative
model, whether or not it exhibits Onsager symmetry and,
in the absence of a proof, we believe it worthy of further
investigation.

V. CONCLUSIONS

The main conclusion of the present article is that the reg-
ularizations of the µ(I) model obtained by Ref. 10 (Ref. 1) and
Ref. 3 (Ref. 2) depend mainly on the replacement of a con-
stant (Coulomb) friction coefficient by an effective viscosity,
which appears to eliminate yield stress. The second conclu-
sion is that one can probably achieve regularization without
introducing compressibility, whatever the other merits of the
latter. As separate issues, we have raised questions as to proper
dissipation in the model of Ref. 1 and as to frame-indifference
in the model of Ref. 2.

Finally, an effort has been made to illustrate the mer-
its of models based on dissipation potentials and nonlinear
Onsager symmetry for the analysis and modeling of visco-
plasticity. In that connection, the model of Ref. 2 is found
to be Onsager-symmetric, while that of Ref. 1 is not and
thus involves physically admissible stresses that do not work
in any deformation, even in the regime where it is properly
dissipative.
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APPENDIX: TENSOR COMPONENTS

For the planar models discussed here, with ψ = ψ(D1,
D2), the components of the Hessian C = ∂2

Dψ are calculated
as follows:

Cijkl = ∂Dij∂Dklψ = ∂Dij [δkl∂D1ψ + D′kl∂D2ψ]

= ∂Dij [δkl∂D1ψ + (Dkl −
1
3

D1δkl)∂D2ψ]

= δijδkl∂
2
D1
ψ + (D′ijδkl + δijD

′
kl)∂D2∂D1ψ

+ (Ĩijkl −
1
3
δijδkl)∂D2ψ + D′ijD

′
kl∂

2
D2
ψ. (A1)

Restricting ourselves to planar flows and adopting as
orthogonal coordinates the principal axes of E, we may employ
the matrix representations

ξ =


ξ1

ξ2


, E =



1 0

0 −1


with a =



1
2 (Ψ′ − IΨ′′/2 − 2)ξ1

− 1
2 (Ψ′ − IΨ′′/2 + 2)ξ2



(0)

, (A2)

which further gives

A =
(

pθ
2I

) (0) 

(ξ2 − 2
3 ξ

2
1)Ψ′ + IΨ′′ξ2

1

(
4
3Ψ
′ − IΨ′′

)
ξ1ξ2(

4
3Ψ
′ − IΨ′′

)
ξ1ξ2 (ξ2 − 2

3 ξ
2
2)Ψ′ + IΨ′′ξ2

2



(0)

(A3)

and

P =


1 − b1ξ1 −b1ξ2

−b2ξ1 1 − b2ξ2


, where b = a/(a · ξ) and b · ξ = 1. (A4)
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