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a b s t r a c t

A continuum model is proposed for the dynamics of shallow non-cohesive granular layers
driven by vertical vibration of a horizontal rigid plate in vacuo. The granular mass is
assumed to behave as a Newtonian liquid while in flight and to exhibit a solid-like rebound
from the vibrating plate. The simple version explored here involves two constant parame-
ters, a kinematic viscosity and a coefficient of restitution.

According to the present model, the sensitive dependence of the contact dynamics on
layer shape represents the primary source of instability and pattern formation, since the
lack of cohesive stress rules out the Rayleigh–Taylor instability driving Faraday patterns
on liquid layers. This is borne out by a linear stability analysis which indicates that flat
granular layers are linearly stable against free-surface perturbations and, hence, that the
instability of vibrated granular layers is nonlinear in origin.

An effort is made to capture certain aspects of the high Reynolds number nonlinear
dynamics, namely spatially localized ‘‘kinks” and ‘‘oscillons”, based on purely rectilinear
(‘‘antiplane”) motion with constant layer thickness. Three different numerical methods
were employed (1) computation of spatial amplitudes in a time-periodic solutions, (2) dis-
cretization of the underlying PDEs, with the resulting ODEs in time treated by an event-
detecting integrator, and (3) a variant of the latter based on discretization of a well-known
Green’s function. Inaccuracies in contact detection appear to give disagreements between
the different methods, such that Method (2) produced stable f=2 kinks and oscillons only if
the variant (3) was employed, while Method (1) gave rise to stable oscillons but apparently
unstable kinks. Also, while qualitatively similar, the numerically simulated oscillons exhi-
bit differences from those observed experimentally.

The present findings call for further work on the numerical methods, investigation of
more complex solutions with lateral motion and varicose layers, and improvements in
the constitutive model for the granular layer, such as the incorporation of a velocity-depen-
dent restitution.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Granular media exhibit theoretically intriguing
mechanical behavior, ranging from fluid-like to solid-like
in various experimental and technological settings (Jaeger
and Nagel, 1992). One remarkable example is provided
by the wavy patterns on shallow granular layers driven

by sinusoidal vertical motion of rigid flat plates (Fauve
et al., 1989; Douady et al., 1989; Melo et al., 1994, 1995;
Clément et al., 1996; Metcalf et al., 1997; Umbanhowar
et al., 1996, 1998; Bizon et al., 1998; De Bruyn et al.,
1998; Bizon et al., 1999; Clément and Labous, 2000;
Umbanhowar and Swinney, 2000). With C representing
peak acceleration of the plate scaled by normal gravity, a
flat granular layer exhibits lift-off from the plate for
C > 1 and appears to bounce as a flat solid layer for
CK 2:5, just beyond which there emerge spatially periodic
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subharmonic (f=2) square or striped surface patterns,
depending on the frequency of vibration (Umbanhowar
et al., 1998). These patterns undergo subsequent transi-
tions, at larger distinct thresholds in C roughly indepen-
dent of frequency, to hexagonal patterns and ‘‘kinks”,
thence to various f=4 patterns and finally to ostensibly
chaotic states. A ‘‘phase diagram” in C and frequency is
sketched out by Umbanhowar et al. (1998).

One particularly intriguing feature is a localized f=2
‘‘oscillon” (Umbanhowar et al., 1996) appearing in a hys-
teretic way at the boundary between stripes and squares
and representing a major focus of the present paper. Strik-
ing photographs of oscillons on layers of brass beads are gi-
ven in the seminal work (Umbanhowar et al., 1996, and
journal cover), and excerpts of a video photograph by
members of the same research group (Umbanhowar,
2002) are shown below in Fig. 6.

The above granular patterns are frequently referred to
as Faraday waves or patterns, since they resemble those
arising from the classical Faraday instability (Kumar,
1996, 2000) on shallow liquid layers. However, it is worth
recalling that the celebrated experiments of Faraday
(1831) serve mainly to show that patterns on vibrated lay-
ers of fine powders arise from entrainment by vibratory
convection of air, a finding supported by his subsequent
experiments on shallow layers of pure liquids [reported
in the Appendix of Faraday (1831)]. Furthermore, unlike
the works cited above, many of Faraday’s experiments in-
volve flexural vibrations of the supporting plate, and the
patterns he observes for heavy (sand) particles in air ap-
pear relatively unexciting.

In contrast to Faraday’s liquid layers, it is clear from var-
ious experiments and particle-dynamics computer simula-
tions (Bizon et al., 1998; Clément and Labous, 2000) that
shallow granular layers generally do not maintain contact
with the vibrating plate. Indeed, the wavy patterns associ-
ated with the lowest-lying instability arise from a flat-layer
motion resembling that of a bouncing ball (Luck and Mehta,
1993). The importance of the resulting, generally violent
impact with the bottom has already been cited by Eggers
and Riecke (1999). Since the same kind of bouncing motion
is assumed in the standard model for the vibratory convey-
ing of granular solids (Colijn, 1985; Harding and Nedder-
man, 1990; Burmann, 1998), the issue of stability offers a
practical motivation for a more comprehensive mechanical
theory.

As a basis for the present model, several of the studies
cited above suggest that vibrated granular layers in vacuo
are governed mainly by inertia, gravity, and dissipative im-
pact with the vibrating plate. According to this simplified
view, the layer should be described by inviscid form of
the standard (Haff) granular-gas model, in ballistic flight
punctuated by solid-like inelastic rebound from the plate.
This is the scenario anticipated by the gas-dynamic model
of Goldshtein et al. (1996a,b), which we recall consists of
the compressible Euler equations coupled with the stan-
dard granular kinetic-energy balance, such that inelastic
particle collision represents the sole source of dissipation.
Subsequent numerical studies by Bougie et al. (2002),
based both on molecular-dynamics and the full granular-
gas model, as well as the later experimental observations

on quasi-two-dimensional layers by Huang et al. (2006),
do indeed reveal shock-like density and thermal waves fol-
lowing the impact of dense vibrated granular layers. In the
model to be considered here, the associated multi-particle
dissipation, assumed to occur on a short time scale corre-
sponding to transmission of a shock through the rebound-
ing granular layer, is represented simply by a global
coefficient of restitution. This coefficient, denoted by e
and to be distinguished from that describing inelastic im-
pact between particle pairs, is treated as a given constitu-
tive parameter, which we assume might be derived from a
suitable variant on the above granular-gas models (cf. Miao
et al., 2001).

As another simplification, 2D particle-dynamics simula-
tions (Clément and Labous, 2000, see esp. their Fig. 1) sug-
gest that changes in the overall density of the granular
layer occur on an exceedingly short time scale following
impact with the plate, except possibly in the gas-like states
resulting from nearly elastic collisions. Snapshots from a
similar type of simulation (of C. Bizon, Umbanhowar,
2002) in Fig. 1 show three different states of the granular
layer, with each separated approximately by one-half per-
iod of the plate vibration and with the intermediate state
showing the maximally compressed layer in contact with
the plate and the other states in contact with the plate
(not shown in the figures) only at their lowest extremities.
These numerical simulations are confirmed qualitatively
by the recent experiments of Kanai et al. (2005) on qua-
si-2D layers. These considerations serve in part to justify
the incompressible-liquid model adopted below.

In contrast to the inviscid fluid model of Goldshtein et al.
(1996a,b), the granular layer must exhibit a resistance to

Fig. 1. Movie frames extracted from particle-dynamics simulations,
formerly given on the web page http://super.phys.northwestern.edu/
~pbu/. With permission.
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deformation that will regularize the discontinuous
(‘‘weak”) solutions that would otherwise arise from local-
ized impact between the layer and the plate. In principle
this could be accomplished by assuming either solid-like
or a fluid-like behavior of the granular layer, and, in either
case, one can roughly envisage three global modes of defor-
mation, bending, (antiplane) shearing, and stretching that
would give rise to the required resistance.

We set aside the solid-like model with bending resis-
tance envisaged by certain workers (Ugawa and Sano,
2003; Sano, 2005; Kang et al., 2007) in favor of a Newto-
nian fluid model like that proposed by Bizon et al.
(1999). However, in contrast to the latter, our model as-
sumes solid-like rebound at the plate, and it does not ad-
mit states of tensile stress in the granular layer. The last
condition, an essential feature of non-cohesive granular
media, dictates an eventual separation of the granular
layer from the plate. It can be envisaged as tantamount
to instantaneous ‘‘cavitation” of a volatile liquid or other
‘‘no-tension” material (Angelillo, 1993). As discussed be-
low, this key assumption rules out the parametric Ray-
leigh–Taylor (Drazin and Reid, 1981) mechanism
proposed by Bizon et al. (1999) as the source of Faraday
patterns.

The intent of the present work is to set down the basic
constitutive theory and field equations for the above model
and to compare qualitatively certain solutions with prior
experiment and particle-dynamics simulation of other
workers. Among the possible benefits, the present effort
may pave the way to a sound mechanical foundation for
certain phenomenological dynamical-systems (DS) models
(Aranson and Tsimring, 1998; Rothman, 1998; Venkatara-
mani and Ott, 1998; Jeong and Moon, 1999; Jeong et al.,
2000; Blair et al., 2000), models that have been remarkably
successful in capturing several qualitative aspects of gran-
ular-layer dynamics. With a similar motivation, Eggers and
Riecke (1999) offer a model with a more evident mechan-
ical content, but it still relies on a phenomenological ‘‘gran-
ular diffusion”, whose mechanical origins are not obvious
to us.

From our point of view, purely phenomenological DS
models lack the inherent capability of continuum-mechan-
ical theories to deal with a variety of boundary-value prob-
lems, without requiring modification of the basic field
equations for each new situation. A case in point is the
vibratory transport of granular materials mentioned above,
which involves both normal and tangential impact with in-
clined surfaces. In contrast to DS models, the present mod-
el would require relatively straight-forward consideration
of tangential restitution combined with Coulomb friction
(Goldsmith, 1960). In a similar vein, the present model
could also serve to describe confined granular layers with
other body forces, such as the oscillating electric fields
(Aranson et al., 2000).

As a somewhat more abstract proposition, the present
study may contribute to the general methodology for gen-
erating localized excitations in various media. In the fluid-
mechanical case, some form of nonNewtonian behavior
seems to facilitate localization, as Lioubashevski et al.
(1999) report the generation of oscillons on the surface
of aqueous colloidal (clay) suspensions, which they attri-

bute to a nonlinear shear thinning with frequency-depen-
dent viscosity mðxÞ. The latter is also encompassed by the
theory of linear viscoelasticity, and the analysis of Kumar
(1999) suggests that fluid elasticity strongly modifies the
Faraday instability, even without the additional require-
ment of shear thinning. However, nonNewtonian response
may not be strictly necessary, since Arbell and Fineberg
(2000) observe oscillons on water layers driven with a
superposition of unequal but commensurate vibrational
frequencies.

In order to elucidate various fundamental issues, the
present study is focused then on the most elementary con-
stitutive model, involving two parameters, a coefficient of
restitution e and a kinematic viscosity m. While both are
treated as constant, they may be assumed to depend on
various parameters characterizing the periodic vibration
and the granular layer. In this way, the present model
can be viewed as an approximation to a more complete
theory, e.g., one involving an energy balance for granular
temperature, as foreseen by long-standing granular kinetic
theories (Jenkins and Savage, 1983).

After a description of the continuum model in the fol-
lowing section, we provide an analytical treatment of the
linear stability of periodically bouncing flat layers in Sec-
tion 3, in order to show clearly the difference between
non-cohesive granular layers and liquid layers. Then, in
Section 4, we report on our numerical simulation for a spe-
cial class of antiplane finite-amplitude motions as models
of oscillons and kinks, and we make qualitative compari-
sons where possible with certain experimental observa-
tions. Section 5 gives a brief summary of major
conclusions, certain inconclusive aspects of our analysis
and recommendations for possible improvement.

2. The continuum model

As anticipated above, our granular layer is governed by
a variant of the incompressible Navier–Stokes equations,
with tacit restriction to compressive (negative semi-defi-
nite) stress tensor. In a layer bounded from below by an
infinite rigid horizontal plate oscillating with vertical
amplitude Aez sin xt, the velocity vðt;xÞ with respect to
the plate is described by:

@tvþ v � rv ¼ mr2v�rP þ gðtÞ þ aðt; xÞ;r � v ¼ 0
o

ð1Þ

where m denotes kinematic viscosity, P ¼ pðt;xÞ=q denotes
pressure–density ratio, and where, with constant gravity
g0 > 0,

gðtÞ ¼ g0 ðC sinxt � 1Þ ez and C ¼ Ax2=g0 ð2Þ

denote, respectively, the effective gravity and the non-
dimensional acceleration. The quantity aðt;xÞ represents
the impulsive force or pressure gradient arising from im-
pact with the bottom plate, which is designated here as
the ‘‘Stosslet”1 and defined more precisely below. The pres-
ent equations (1) differ but slightly from those of Bizon et al.

1 Derived from the well-known Stokeslet of hydrodynamics and the
German ‘‘Stoß” (impact).
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(1999) who, setting aside the effects of localized impact, as-
sume an acceleration

G ¼ ðgþ aÞ � GðtÞez ð3Þ

depending only on t (with sign opposite to that employed
here).

The following analysis relies on the formal
decomposition:

x ¼ rþ zez; with r :¼ xex þ yey;

r ¼ @x ¼ ro þ ez@z; with ro :¼ @r ¼ ex@x þ ey@y;

v ¼ vo þwez; with vo :¼ uex þ vey;

9>=
>;
ð4Þ

where subscript o (orthogonal to ez) refers to the horizon-
tal plane and e to the natural cartesian basis. Then, the
lower and upper boundaries of layer of thickness
hðt; rÞP 0, are defined, respectively, by

z ¼ Zðt; rÞ ¼
fðt; rÞ;
fðt; rÞ þ hðt; rÞ

�
ð5Þ

and the surface kinematics are described by the well-
known relations

@tZ þ vo � $oZ ¼ w; at z ¼ Zðt; rÞ; ð6Þ

Finally, this relation together with the condition of vanish-
ing of surface traction, ½ðrvþrvÞT � � rðz� ZÞ ¼ 0, gives

ProZ ¼ m ðrovoÞ � roZ þ ðroZÞ � rovo �row� @zvo
� �

;

P ¼ mf2@zw� ðrowÞ � roZ � @zvo � roZg

)
ð7Þ

on the free surface (5) not in contact with the plate.
The Stosslet is defined formally, in terms of the coeffi-

cient of restitution e, by

a ¼ aez; with aðt; rÞ ¼ ð1þ eÞ _f2d�ðfÞ and
_f � wðt; r; fÞ; ð8Þ

with

_f2d�ðfÞdt ¼ _f d�ðfÞdf; _f d�ðfÞ
� �ð1þ eÞdðt � t�c Þ; at fðtcðrÞ; rÞ ¼ 0; ð9Þ

Here d� represents what might be called the Itô-Dirac delta
function, defined so as to select the right-hand limit of the
discontinuous function _fðtÞ at the instant of contact
t ¼ tcðrÞ. Since this procedure involves the product of gen-
eralized functions, a more careful construction based on a
limiting dynamical process is offered in Appendix A, which
also treats the perturbed Stosslet employed below and of-
fers a justification for the neglect of viscosity in arriving at
(10).

If we neglect the viscous term in (1), the impulsive
acceleration (8) gives rise to the discontinuity

wðtþc ; r; zÞ �wðt�c ; r; zÞ ¼
Z tþc

t�c

ð1þ eÞ _f2d�ðfÞdt

¼ �ð1þ eÞwðt�c ; r;0Þ ð10Þ

at time t ¼ tcðrÞ such that fðtc; rÞ ¼ 0. This relation corre-
sponds locally to the classical Rayleigh problem of a slen-
der solid body thrust impulsively through a viscous fluid,
and it further implies a solid-like rebound from the plate:

wðtþc ; r;0Þ ¼ �ewðt�c ; r; 0Þ: ð11Þ

In the special class of antiplane solutions considered below
@zw � 0 and (10) reduces to (11), which serves as a bound-
ary condition on wðt; rÞ.

The aforementioned Rayleigh problem suggests the
necessity of a cut-off length to avoid line singularities aris-
ing from a point contacts. The analysis given in the last sec-
tion of the Appendix A suggests the curvature of the
contact zone as a relevant length scale but also implies that
initially blunt contact zones should remain so after impact.
Furthermore, the numerical discretization employed in
most of this study provides a practical cut-off, with one
exception discussed below in conjunction with Eq. (67).

To further minimize the number of adjustable parame-
ters in this exploratory study e is treated as constant,
whereas a dependence on impact velocity _f could give a
better accounting for certain effects discussed below.
Although not considered in the present study, an addi-
tional dependence on layer thickness h, with e! 0 for a
h=d!1, where d is a representative particle diameter,
would serve to represent the adherence of deep granular
layers to surfaces undergoing small-amplitude vibration.

3. Flat layers and their stability

For a perfectly flat layer, w ¼ wð0ÞðtÞ; h ¼ const. and (1)
reduces to

dw
dt

ð0Þ

¼ GðtÞ � @P
@z

ð0Þ
; ð12Þ

where G ¼ GðtÞ is the acceleration defined by (3). It follow
trivially from (7) for a granular layer bounded by two free
surfaces that Pð0Þ � 0 and, hence, that WðtÞ represents the
bouncing ball with restitution e (Luck and Mehta, 1993; Bi-
zon et al., 1999).

The above situation to be contrasted with the flat layer
constrained to move with the bottom plate, such that
wð0Þ � 0 and

@P
@z

ð0Þ
¼ GðtÞ � gðtÞ: ð13Þ

In this case, the condition P ¼ 0 at the upper surface clearly
implies a negative pressure at the plate whenever GðtÞ > 0
which, while admissible for a liquid layer,2 is untenable for
non-cohesive solid layers, granular or otherwise. Hence,
the condition GðtÞ ¼ 0 signals the lift-off of a non-adherent
body previously at rest on the plate (Luck and Mehta,
1993; Bizon et al., 1999).

It is precisely the hydrostatic inversion for GðtÞ > 0 cou-
pled with perturbed surface elevation that drives the para-
metric instability of flat liquid layers (Drazin and Reid,
1981; Kumar, 2000). To make this immediately evident,
we employ a conventional notation, with superscript
(0),(1) representing the flat-layer base state and perturba-
tion, respectively, to write3

2 In the usual experiment P ¼ 0 corresponds to normal atmospheric
pressure, and lower pressures near the plate are not sustained long enough
to cause cavitation.

3 Stability analyses of liquid layers often incorporate hydrostatic
pressure directly into the stress tensor (Kumar, 1996, 2000), a stratagem
of questionable merit for non-cohesive media.
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Pðt; r; zÞ ¼ Pð0Þðt; zÞ þ Pð1Þðt; r; zÞ;
Zðt; rÞ ¼ Zð0ÞðtÞ þ Zð1Þðt; rÞ

)
ð14Þ

and, by means of (13),

Pðt; r; ZÞ ¼ Pð0Þðt; Zð0ÞÞ þ ð@zPð0ÞÞZð1Þ þ Pð1Þ þ � � �
� GðtÞZð1Þðt; r; Zð0ÞÞ þ Pð1Þðt; r; Zð0ÞÞ þ � � �

)
; ð15Þ

The term GðtÞZð1Þ in (15) represents the parametric destabi-
lization of liquid layers, an effect which is absent from non-
cohesive layers.

The above considerations are directly relevant to the
work of Bizon et al. (1999), who in effect replace gðtÞ in
(3) by Hðfð0ÞÞgðtÞ, where H denotes the Heaviside function
with Hð0Þ :¼ 0. This replacement eliminates hydrostatic
inversion during prolonged contact with the plate but al-
lows it during the free-flight period. As shown below, this
has dramatic implications for the stability analysis.

3.1. Periodic flat layers and linear stability

With lengths scaled by vibration amplitude A and times
by inverse frequency x�1, Eqs. (1) and (5) preserve their
form, with

mx=A2 ! m; gðtÞ ! sin t � C�1; p=qA2x2 ! P; . . .

ð16Þ

and with m representing an inverse Reynolds number (Bi-
zon et al., 1999). Then, the flat-layer state
uð0Þ ¼ vð0Þ ¼ 0;wð0Þ ¼WðtÞ is given by Luck and Mehta
(1993):

WðtÞ ¼W0 þ cos t0 � cos t � ðt � t0Þ
C

;

W0 ¼Wðtþ0 Þ ¼ �eWðt�0 Þ; ð17Þ
f ¼ fð0Þ ¼ ðW0 þ cos t0Þðt � t0Þ

þ sin t0 � sin t � 1
2C
ðt � t0Þ2 P 0; ð18Þ

where t0 represents launch time or phase relative to the
time t ¼ 0 at which acceleration of the bottom plate van-
ishes. The requirement of periodicity, with period
T ¼ 2Mp; M ¼ 1;2; . . ., (Luck and Mehta, 1993), implies
that

e ¼ 1� s
1þ s

; Wðtþ0 Þ ¼
1� s

s
cos t0; where

s ¼ 2C
T

cos t0 �
1� e
1þ e

: ð19Þ

The resultant profile of f vs. t for M = 2 is represented by a
slice x ¼ const: < 2 through the surface shown below in
Fig. 2.

The relation (19) places severe restrictions on the value
of restitution necessary to achieve periodicity. Since the
experiments on granular layers discussed above appear
generally to involve periodic states, this may suggest a var-
iable restitution coefficient e that allows for resonant tun-
ing to the forcing frequency. This effect is suggested by the
rudimentary model of Miao et al. (2001), with a granular
temperature and a global restitution depending impact
velocity, and also by the finding of Clément and Labous

(2000) that a fairly specific dependence on collision veloc-
ity of the interparticle restitution is necessary to secure
agreement between particle-dynamics simulations and
experiment. For the present purposes, we simply invoke
the flat-layer tuning (19) as a way to define e for flat-layer
base states and perturbations of these states.

With the preceding notational conventions, and with
account taken of the equations satisfied by the flat-layer
base state, the linearized disturbance equations become:

@tv
ð1Þ þ v

ð0Þ
� rvð1Þ ¼ mr2vð1Þ þ að1Þ � rPð1Þ

r � vð1Þ ¼ 0;
�

ð20Þ

where að1Þ ¼ að1Þez is a purely formal representation of the
perturbed Stosslet discussed further below.

The considerations of the preceding paragraphs lead to
boundary conditions:

@tZ
ð1Þ ¼ wð1Þ; ð21Þ

and

m rowð1Þ þ @zv
ð1Þ
o

� �
¼ 0

Pð1Þ ¼ 2m@zwð1Þ

9=
; ð22Þ

on the unperturbed free surfaces

z ¼ Zð0ÞðtÞ ¼
fð0ÞðtÞ;

fð0ÞðtÞ þ hð0Þ;

(
ð23Þ

where

Zð1Þðt; rÞ ¼
fð1Þðt; rÞ; at z ¼ fð0ÞðtÞ;
fð1Þ þ hð1Þðt; rÞ; at z ¼ fð0ÞðtÞ þ hð0Þ;

(
ð24Þ

with hð0Þ denoting the uniform thickness of the flat layer.
Following the general outlines of Kumar’s analysis (Ku-

mar, 1996) and employing the coordinate transformation
z� fð0ÞðtÞ � hð0Þ=2! z, with h � hð0Þ, one readily reduces
the governing equations (20)–(23) to

ð@t � mr2Þr2wð1Þ ¼ ð1þ eÞr2
owð1Þðt; r; 0Þ _fð0Þd�ðfð0ÞÞ; ð25Þ

for �h=2 < z < h=2, with

Fig. 2. Elevation fðt; xÞ for kink from FDA (51)–(54) for M = 2.
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mð@2
z �r2

oÞwð1Þ ¼ 0;

ð@t � m@2
z þ 3mr2

oÞ@zwð1Þ ¼ 0;

@tZ
ð1Þ ¼ wð1Þ

9>=
>; ð26Þ

at z ¼ �h=2. In contrast to liquid layers, the equations for
wð1Þ are clearly decoupled from the perturbation Zð1Þ of sur-
face elevation.

The impulsive term in (25) follows directly from the
Appendix A. Since we expect r2

o to dominate @2
z near the

impulse, the discontinuity in r2
owð1Þ implied by (25) is di-

rectly inherited from that of (20). Furthermore, for period-
ically bouncing flat layers the term in question represents a
periodic impulse, and (25) becomes a singular Floquet
equation. However, a full Floquet analysis is not necessary,
and we merely apply a time-independent stability analysis
over the period between impulses, with initial state repre-
sented by the usual Fourier decomposition.

By means of the standard normal-mode analysis (Ku-
mar, 1996), with t ¼ 0 representing the beginning of a per-
iod and with

wð1Þ ¼ ŵðzÞ expfrt þ ko � rg; @t ! r; r2
o ! �k2

o ; ð27Þ

Eqs. (25) and (26) reduce to the eigenvalue problem

L� kMð Þŵ ¼ 0; where k ¼ r=m;

M ¼ @2
z � k2

o ; L ¼M2; ð28Þ

and

ðMþ 2k2
oÞŵ ¼ 0; and M� 2k2

o � k
� �

@zŵ ¼ 0;

at z ¼ �h=2: ð29Þ

That the eigenvalue k is real follows from the self-ad-
joint property of (28) and (29), which we establish as fol-
lows: With scalar product

h/;wi ¼
Z þh=2

�h=2
/ðzÞwðzÞdz ð30Þ

and from the well-known result

h/;Mwi ¼ Jf/;wg þ hM/;wi; where

Jf/;wg ¼ ð/@zw� w@z/Þjþh=2
�h=2; ð31Þ

it follows that

h/;M2wi ¼ Jf/;Mwg þ JM/;wg þ hM2/;wi: ð32Þ

However, (29) and the definition of Jf/;wg give

Jf/;Mwg þ JfM/;wg ¼ kJf/;wg: ð33Þ

On multiplication of the first equation of (31) by k and sub-
traction from (33), we have

h/; ðL� kMÞwi ¼ hðL� kMÞ/;wi ðQ :E:D:Þ: ð34Þ

To determine the eigenvalues, note that the general
solution ŵðzÞ to (25) can be written as a linear combination
of hyperbolic sines and cosines with arguments koz and qz
(Kumar, 1996), where

q2 ¼ k2
o þ k:

The solution can further be decomposed into linearly inde-
pendent solutions, one involving only sines, representing

odd functions of z and corresponding to varicose modes,
and the other involving only cosines, even functions and
sinuous modes (cf. Kumar, 2000). Application of the
boundary conditions leads, after some algebra, to the secu-
lar equations:

tanh cj
tanhj

� 	�1

¼ 4c
ðc2 þ 1Þ2

; ð35Þ

where

c2 ¼ ðq=koÞ2 ¼ 1þ k=k2
o ; and j ¼ koh=2;

and the exponents �1 apply to varicose and sinuous
modes, respectively.

One sees immediately, for all real j P 0, that c ¼ 1 is a
solution of both equations in (35) representing neutral
states r ¼ 0, whereas for varicose modes there is a second
solution, c ¼ 0 with r ¼ �mk2

o , representing simple viscous
damping. Given the behavior of tanh, it is easy to show that
these are the only solutions to (35). Hence, as a major find-
ing of the present work, we conclude that the flat-layer
base states are linearly stable and therefore that pattern
formation on flat layers must arise from nonlinear
instability.

The finite-amplitude solutions considered next, which
presumably originate from nonlinear instability, are seen
to be the nonlinear counterparts of various solutions to
(21)–(23), (25), (26) for m! 0.

4. Small-m antiplane solutions

Inspection of (1) and (5) reveals an asymptotic solution
for m! 0 of the form, with

w ¼ Oð1Þ; roZ ¼ Oð1Þ; @zw ¼ oð1Þ;
vo ¼ oð1Þ; P ¼ OðmÞ;

ð36Þ

such that w ¼ wðt; rÞ satisfies

ð@t � mr2
oÞwðt; rÞ ¼ gðtÞ þ ð1þ eÞw2d�ðfÞ;

@tf ¼ wðt; rÞ

)
ð37Þ

with h = const.
Note that (36) differs from the standard boundary-layer

scaling, with

vo ¼ Oðm1=2Þ; roZ ¼ Oðm�1=2Þ; . . . ;

since the dominant logitudinal motion is here confined to a
finite distance h. Note further the omission of a pressure
gradient @zP in (37), a term that would be necessary to rep-
resent singular states of prolonged contact with

f � 0; w � 0; @zP ¼ gðtÞ < 0:

Such states appear to arise mainly in flat layers, as in (13),
and to correspond to the ‘‘absorbing” regions of phase space
identified by Luck and Mehta (1993) for the bouncing ball.
To represent these states and the subsequent escape by
lift-off, we adopt the artifice of Bizon et al. (1999), in effect
replacing gðtÞ by HðfÞgðtÞ in (37), together with the lift-off
condition @tw ¼ gðtÞ > 0 for w ¼ 0 (Luck and Mehta, 1993).

Motions of the type u ¼ v ¼ 0; w ¼ wðt; rÞ, called ‘‘anti-
plane” in theoretical elasticity, represent a rectilinear
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shearing in which inertial nonlinearity is negligible. Hence,
the nonlinearity in (37) arises entirely from the Stosslet
and the consequent dependence on tc in (10), exactly as
is the case with the bouncing ball of Luck and Mehta
(1993). This form of solution gives rise to a constant layer
thickness and represents the finite-amplitude counterpart
of the sinuous modes of the linear stability analysis. The
above-cited numerical simulations and experiments (Clé-
ment and Labous, 2000; Umbanhowar, 2002; Ugawa and
Sano, 2003; Kanai et al., 2005) suggest the possibility of
this type of motion, but also reveal a second, more complex
motion involving lateral velocities with change of layer
thickness, perceptible to some extent in Fig. 1.

As it stands, there exist no other characteristic length
scale in the current problem, and the simple form of (37)
allows us henceforth to set m � 1 representing a coordinate
rescaling r!

ffiffiffi
m
p

r.

4.1. Time-periodic solutions (TPS)

With a ¼ 1
2 ;

1
3 ;

1
4 ; . . . ; denoting an assumed subharmonic

frequency, we consider periodic solutions to (37), with
fðt; rÞ; wðt; rÞ given by the real Fourier series on ð0;2p=aÞ,

fðt; rÞ ¼
X1

n¼�1
f̂nðrÞeinat; with f̂n ¼ f̂��n; ð38Þ

wðt; rÞ ¼
X1

n¼�1
ŵnðrÞeinat; with ŵn ¼ inaf̂n; ð39Þ

where asterisks denotes complex conjugates, and

f̂0ðrÞ ¼ �
X1

n¼�1
f̂nðrÞeinatcðrÞ; ð40Þ

with tcðrÞ 2 ½0;2p=a� denoting the contact time in (9) and
(10) et seq.

The series (39) generally is only conditionally conver-
gent owing to the discontinuity at t ¼ tcðrÞ. This is sub-
sumed in the theory of Fourier series of generalized
functions (Lighthill, 1958), according to which the Dirac
delta is given by

dðt � tcÞ ¼
a

2p
þ a

p
X1
n¼1

cos naðt � tcÞ

¼ a
2p

X1
n¼�1

einaðt�tcÞ; ð41Þ

Therefore, on substituting (39) and (41) into the first mem-
ber of (37) one obtains the Fourier representation

r2
oŵn ¼ inaŵn þ

a
2p
ð1þ eÞwðt�c Þe�inatc � ĝn;

n ¼ 0;1;2; . . . ; ð42Þ

where, with dij denoting the Kronecker delta,

ĝn ¼ �
1
C

dn0 þ
i
2

djnj m

� 	
¼ ĝ��n; m :¼ 1=a; ð43Þ

is the Fourier transform of gðtÞ. Note that (42) can also be
obtained via the standard term-by-term transformation of
(37), with:

f̂ n ¼
a

2p

Z
P

e�inatfdt;

where P is an arbitrary 2p=a interval. The latter may be
chosen to exclude the point tc and, hence, the delta
function in (37), in which case the discontinuity in w
is captured by the integration of @tw from tþc to
ð2p=aÞ þ t�c .

As indicated by (39), ŵ0 � 0, so that wðt; rÞ has zero
mean on any 2p=a period and

a
2p
ð1þ eÞwðt�c Þ ¼ ĝ0 ¼ �

1
C

ð44Þ

representing the mean balance between impulse and grav-
ity. Hence, (42) reduces simply to

r2
oŵn � inaŵn ¼ �

1
C

e�inatcðrÞ � ĝn; n ¼ 0;1;2; . . . ð45Þ

It follows from a well-known convergence property of
Fourier series (Sneddon, 1995), together with (39) and
(44), that

X1
n¼�1

ŵnðrÞeinatc ¼1
2
fwðt�c ; rÞ þwðtþc ; rÞg

¼ 1
2
ð1� eÞwðt�c ; rÞ

¼ � pð1� eÞ
aCð1þ eÞ ¼ � cos t0; ð46Þ

at points t ¼ tc of discontinuity in w. The final equality,
which follows from (19) and (46), provides an implicit
equation for tcðrÞ in terms of ŵnðrÞ, so that (45) and (46)
represent a set of nonlinear PDEs for ŵnðrÞ and tcðrÞ. Upon
truncation of the series at n ¼ �N, (46) obviously reduces
to a polynomial of degree 2N for expfiatcg.

The TPS (38) represents a limit cycle whose stability
will be elucidated by the numerical finite-difference solu-
tions to (37) discussed below.

4.1.1. Iterative solution
Eqs. (45) and (46) are amenable to iterative solution

based on the incremental form:

r2
ouk � inauk ¼ �Q k ¼ � 1

C
e�inatk

c � e�inatk�1
c

� �
; with

uk ¼ ŵk � ŵk�1; k ¼ 1;2; . . . ; ð47Þ

where subscript n is suppressed and tk
c is given by ŵk

through (46).
Owing to the discontinuous nature of (46), it does not

appear feasible to employ any standard linearization of
Qk in terms uk, leading us to adopt instead a more tenuous
extrapolation of Q k from prior values Qk�1;Qk�2; . . . With
any such approximation for Qk, the complex Helmholtz
equation (47) then can be solved via the appropriate
Green’s function to give the kth approximation wk in terms
of prior approximations wk�1;wk�2; . . . For the present
work, we have employed the simplest conceivable itera-
tions, with either Q k ¼ Q k�1 or Qk ¼ �Q k�1, both of which
appeared to give the same final result whenever conver-
gence was achieved.

To simulate kink or oscillon structures, we consider
either linear or axisymmetric spatial dependence with
r! x or r! r, respectively. Then, a particular solution of
(47) is given by elementary Green’s functions in the form:
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ukðnÞ ¼ FþðnÞ
Z 1

n
F�ðn0Þ

Q kðn0Þ
Wðn0Þ dn0 þ F�ðnÞ

Z n

0
Fþðn0Þ

� Q kðn0Þ
Wðn0Þ dn0; ð48Þ

if jQ j is sufficiently small for jnj ! 1, where WðnÞ ¼
WfF�; Fþg is the Wronskian.

With b :¼ ðinaÞ1=2, the functions F;W are given by

F�ðnÞ ¼ e�bn; n ¼ x; W ¼ 2b; ð49Þ

or

F�ðnÞ ¼
I0ðbnÞ
K0ðbnÞ

�
; W ¼ n�1 ¼ r�1 ð50Þ

in the linear and axisymmetric cases, respectively.

4.2. FDA solutions

The problem at hand lends itself readily to numerical
solution by the ‘‘method of lines” (Schiesser, 1991), in
which one employs a suitable discretization in r to reduce
the problem to a set of ODEs in t, which then are stably
solved by Runge–Kutta methods. For the present purposes,
we employ the spatial discretization

r ¼ ðiDxÞex þ ðjDyÞey; i; j ¼ 1;2; . . . ;

and the corresponding finite-difference approximation
(FDA):

fðt; rÞ ! fðtÞ; wðt; rÞ ! wðtÞ; . . . ; L! L; ð51Þ

where

fðtÞ ¼ ½fðt;nÞ�; wðtÞ ¼ ½wðt;nÞ�; L ¼ ½Lm;n� ð52Þ

represent column vectors and square matrix, respectively,
and n;m; . . . are column vectors with integer components
that ordinally label the discrete spatial grid points i; j.

Then, (37) can be written as the set of linear constant-
coefficient ODEs

dw
dt
¼ mL wþ gðtÞr; and

df

dt
¼ wðtÞ; ð53Þ

with rebound condition:

wðtþc ; nÞ ¼ �ewðt�c ;nÞ; for fðtc;nÞ ¼ 0; n 2 P; ð54Þ

where P represents a set of one or more simultaneous con-
tact points, while the column vector r has all components
equal to unity and represents spatially uniform states with
L r ¼ 0. Thus, the solution to (37) is reduced to an event-
driven numerical simulation, with contact condition in
(54) representing discrete contact events.

For later purposes, note that the linear form (53) admits
analytical integration, such that, in the time period
tc < t < t0c between distinct contacts, the solution can be
expressed formally in terms of matrix functions as

wðtÞ ¼ exp mLðt � tcÞf gwðtþc Þ þ fWðtÞ �WðtcÞgr;

f ¼ mLÞ�1ðexp mLðt � tcÞf g � 1
� �

wðtþc Þ þ fZðtÞ � ZðtcÞgr;

)

ð55Þ

where W; Z represent the flat-layer states:

WðtÞ ¼
Z t

0
gðt0Þdt0; ZðtÞ ¼

Z t

0
Wðt0Þdt0; ð56Þ

with arbitrary time origin t ¼ 0.
The matrix exponential in (55) represents a discretized

Green’s function, and an alternative, potentially more
accurate expression for w is obtained on replacing the first
member of (55) by the discretization of

wðt; rÞ ¼
Z
R

Goft � t0c; r; r
0g½wþc ðr0Þ �Wðt0cÞ�dA0 þWðtÞ

ð57Þ

with tcðrÞ defined by

fðtc; rÞ ¼ 0; and wþc ðrÞ ¼ wðtþc ; rÞ; ð58Þ

where R denotes the xy plane, dA its area element,

wþc ðrÞ :¼ wðtþc ; rÞ; t0c ¼ tcðr0Þ ð59Þ

and Go the exact Green’s function for L ¼ @t � mr2
o:

Goðt; r; r0Þ ¼L�1 ¼ expfmtr2
og: ð60Þ

With r2
o ! �k2

o , the second expression of (60) provides
various Fourier representations, one of which corresponds
to a well-known Gaussian form for point impulses in the
plane and to:

Goðt; r; r0Þ ¼
1

4pmt
exp � r2 þ r02

4mt

� 	
I0

rr0

2mt

� 	
; ð61Þ

for circular-sheet impulses, where r ¼ jrj and I0 is standard
notation for the modified Bessel function (see, e.g., Sned-
don, 1995, pp. 194–198).

As discussed below, a quadrature based on (51), with
discretization

Go ! GðtÞ ¼ ½Gm;nðtÞ�; ð62Þ

appears to produce a more agreeable description of oscil-
lons than the straight-forward integration of (53) to be
considered next.

4.3. Computations of kinks and oscillons

A MATLABe ODE solver with event detection (‘‘ode113‘‘
and ‘‘fzero”, respectively) were employed to treat the sys-
tem (53) and (54). On detection of a zero crossing of any
component or set of components of f, integration is
stopped and then restarted after the corresponding com-
ponents of w are updated according to the rebound condi-
tion in (54).

Two special cases of localized structures were treated
corresponding to kinks and oscillons (Melo et al., 1995;
Umbanhowar et al., 1996, 1998). The kink consists of a nar-
row transition zone separating two flat layers, bouncing
out of phase with one another, whereas an oscillon is a spa-
tially localized axisymmetric perturbation of an extended
flat layer. In its simplest form, a kink is a one-dimensional
structures, with

fðt; rÞ ¼ fðt; xÞ; . . . ; r2
o ¼ @

2
x ;

whereas oscillons have
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fðt; rÞ ¼ fðt; rÞ; . . . ; r2
o ¼ r�1@rðr@rÞ:

According to the current model, these represent localized
viscous zones on an otherwise inviscid layer. Under the

above spatial discretization, both are represented simply
by vector arrays fðtÞ ¼ ½fiðtÞ�; . . ., with fiðtÞ ¼ fðt; iDsÞ,
where s ¼ x or r, respectively.

4.3.1. Kinks
Various attempts to treat (45) and (46) via (47)–(49),

with a discrete set of uniformly spaced grid points in
x ¼ x=

ffiffiffi
m
p

, met with limited success. An initial state was
chosen as two flat layers satisfying (19), out of phase by
180�, and separated by a transition region given by a lin-
ear interpolation in elevation joining their parallel
straight edges. This invariably evolved to a single flat
layer, with one flat layer gradually encroaching on the
other. By contrast, we recall that experimental kinks ap-
pear to require an additional subharmonic driving fre-
quency for such lateral movement (Aranson et al.,
1999). In the present simulation, the lateral displacement
of one layer by the other could be prevented only by ‘‘pin-
ning” both layers in their initial states. However, in this
case the initially linear transition region eventually
degenerated into irregular stripes, roughly parallel to
the two flat-layer boundaries, whenever it was more than
two or three grid points in width.

The above finding, which suggests a remarkably thin
viscous interlayer of thickness oð

ffiffiffi
m
p
Þ, is partly borne out

by the numerical solution based on (51)–(54). With the
standard discretization

Lij ¼
1

Dx2 ðdi;j�1 þ di;jþ1 � 2di;jÞ; for i; j ¼ 2; . . . ;N � 1

ð63Þ

at internal points and with pinning of the end points to
flat-layer states, the numerical solution of (51)–(54) yields
the kink-like structure shown in Fig. 2 for M = 2. However,
the FDA is clearly defective near the edges of the transition
layer, where there is a slight but evident discontinuity in
slope @xf, implying a corresponding discontinuity in @xw
and, hence, in shear stress.

All the computations reported here are for the period-
doubled states M = 2, although we obtain similar results
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Fig. 3. Oscillon velocity wðt; rÞ �WðtÞ relative to surrounding flat layer
from TPS.
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Fig. 4. Elevation fðt; rÞ for oscillon from TPS.

Fig. 5. Polar plot corresponding to different time slices from Fig. 4, proceeding cyclically from top left to top right, followed by bottom left to bottom right.
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for nearby integral values of M. These somewhat unsatisfy-
ing results for kinks suggests additional nonlinear effects
not embodied in the basic model or else not captured by
our antiplane approximation.

4.3.2. Oscillons
The relations (47), (48), (50) were applied to the system

(45) and (46) with up to thirty Fourier modes. For a far-
field 4p-periodic flat layer with contact time
t0 � tcð1Þ ¼ 0 and velocity WðtÞ given by (18), this re-
sulted in convergence to solutions ~w;~f;~tc . The computed
surfaces of relative velocity ~w�W shown in Fig. 3 for the
case of N = 30 Fourier modes in (38) and (39) appear alto-
gether reasonable and exhibit discontinuities associated

with both ~w and W. There is also evidence of an overshoot
resulting from the Gibbs phenomenon (Gottlieb and Shu,
1997) for Fourier series.

Unfortunately, the calculated values of contact time
~tcðrÞ all lie near zero, and the Fourier series obtained from

~fðt; rÞ ¼
Z t

tc

~wðt0; rÞdt0

becomes negative at certain points ðt; rÞ. Thus, the relation
(46) apparently does not allow for a practically accurate
determination of tcðrÞ. However, as evident from the sec-
ond member of (37) f is determined only up to an arbitrary
function of r, and, hence, we may take

wðt; rÞ � ~wðt; rÞ;

fðt; rÞ ¼ ~fðt; rÞ þ 1
2

~fðtmðrÞ; rÞ � j~fðtmðrÞ; rÞj
n o

; ð64Þ

tcðrÞ ¼ tmðrÞ; ð65Þ

where for given r, tmðrÞ is the value of t at which ~fðt; rÞ
achieves its minimum. Thus, the second member repre-
sents a shift to positive values everywhere, whenever this
minimum is negative. With this modification, the com-
puted time-periodic surface of fðt; rÞ for M ¼ 2 is shown
in Fig. 4, where it is evident that the contact time tcðrÞ
makes a sharp transition between two essentially constant
values over a distance Dr << 1.

An alternative iteration scheme, with tk
c given by (65) in

terms of fkðt; rÞ by means of (64), produced results very
close to those of Fig. 4. The polar plot of fðrÞ vs.
0 6 t 6 4p in Fig. 5 conveys a better appreciation of the
oscillon structure implied by the information in Fig. 4.
The frames are separated by approximately p=4 or 1/8 of
plate-vibration cycle. The rippled states seen there are

Fig. 6. Frames extracted from a video photograph of an experimentally generated oscillon and ordered as in Fig. 5 (courtesy of Umbanhowar.)

Fig. 7. Three cycles of fðr; tÞ � ZðtÞ from FDA based on Green’s function
(61).
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reminiscent of other models of oscillons, the DS model of
Jeong and Moon (1999) and Yochelis et al. (1999), and
the two-dimensional oscillons (Eggers and Riecke, 1999),
the latter of which have not been found experimentally.

By way of comparison, Fig. 6 shows a sequence of
frames extracted from a video photograph (courtesy of
Umbanhowar) of a top view of an experimentally gener-
ated oscillon, reportedly the best and perhaps the only vi-
deo record available (Umbanhowar, 2002). The interval
between frames is approximately p=4 along the horizontal
and p=2 in the transitions between top and bottom.
Although there is a certain qualitative similarity between
Figs. 5 and 6, notably in the occurrence of peaks and craters
and in the collapsing peaks, Fig. 5 exhibits mirror-like
symmetry between the top and bottom sequences and
small-scale ripples that are not discernible in any of the
experimental photographs.

To implement the FDA solution of the ODEs (53), the
quasi-logarithmic transformation

r ¼ en � 1; with r�1@rðr@rÞ ¼ e�2n @2
n þ

e�n

1� e�n
@n

� �
ð66Þ

which, with n 	 ln r for r >> 1 and n 	 r for r << 1 was
employed, allowing for large steps Dr in the presumed
flat-layer state at r >> 1 while avoiding the singularity at
r ¼ 0 of the simple logarithmic transformation n ¼ ln r.
With the standard discretization of @n and @2

n , a numerical
solution of (37) was undertaken, with the periodic solution
represented by Fig. 5 taken as the initial state. It was found
that the numerical solution converged extremely slowly,
devolving ostensibly to a state that was only roughly peri-
odic, with an approximate period doubling but with con-
siderable variation in peak amplitudes of fðt; rÞ from
cycle to cycle. This state of affairs suggests either an unsta-

ble limit cycle, with transition to a quasi-periodic state, or
else that the numerical solution of (53) is unreliable. Given
the strong influence of bottom impact, the latter appears
most likely.

By way of further investigation, a modified FDA was
employed in which the discretized velocity w is deter-
mined by means of the discretized Green’s function (62)
and the discretized form of (57), effectively replacing the
first member of (53). For convenience, the second member
of (53) is integrated with the previous ODE solver and
event detector, to determine contact locus ðtc; rcÞ. Thus,
starting from one set of discretized quantities in (56), one
integrates forward to the next.

To overcome numerical convergence problems arising
ostensibly from large spatial gradients in Go, a modified
restitution condition was employed in which the Stosslet
was diffused over a finite area, according to

wðtþc ; rÞ ¼ wðt�c ; rÞ � ð1þ eÞwðt�c ; rcÞ expð�jr � rcj=qcÞ;
ð67Þ

with a corresponding modification of (57) and its discret-
ized form. Partly on physical grounds and partly motivated
by the last section of the Appendix A, the length scale qc

provisionally was identified with the radius of curvature
of f at rc . Since FDA estimates of this quantity were found
generally to lie in the range 0:001—0:005, and since explor-
atory calculations showed insensitivity to the precise value
in this range, qc was set equal to 0:001 in all subsequent
calculations.

A sample computation of elevation relative to the flat
layer is presented in Fig. 7, which shows three representa-
tive cycles extracted from a much larger number of virtu-
ally identical steady cycles with period close to 4p. The
same results are presented in the polar plot of Fig. 8, where
the time intervals are approximately p=32;p=8;p=4;

Fig. 8. Snapshots of oscillon computed by FDA based on Green’s function (61), arranged as in Figs. 5 and 6.
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p=2;p=2;p=16, proceeding cyclically from upper left to
lower right. As evident from both Figs. 8 and 9 the col-
lapse of the peak appears much more abrupt than in Figs.
5 and 6.

5. Conclusions

The Abstract summarizes the major contributions of the
present study. As pointed out there, our theoretical and
numerical study lends considerable support to the idea
that pattern formation on vibrated granular layers is driven
by the inherently nonlinear interaction at the bottom
boundary. Moreover, contrary to impressions conveyed
by much of the literature, the absence of granular tensile
stress serves to distinguish the instabilities on granular
layer from the (Rayleigh–Taylor) instabilities and (Faraday)
patterns on liquid layers.

Given the simplicity of the basic model employed above
and the antiplane approximation, the numerical solution to
the current problem turns out to be surprisingly difficult.
Hence, there remain certain discrepancies between numer-
ical solutions, notably

1. stable subharmonic ðf=2Þ kinks found with FDA but not
with TPS;

2. smooth TPS oscillons, but FDA oscillons that exhibit
only approximate f=2 behavior and show irregular vari-
ations in peak height unless computed by means of the
antiplane Green’s function;

3. subharmonic f=2 oscillons from the last-mentioned cal-
culation that display quantitatively different shapes
from the f=2 TPS oscillons.

The above discrepancies are attributed to the difficulty
in accurately tracking bottom contact, in a model where
the related nonlinear instability is crucial. Clearly, further
improvement is needed in the numerical methods.

As a separate issue, the differences between the com-
puted oscillons and the limited experimental observations
suggest that more complex solutions with ‘‘stretching
modes”, involving varicose layers and lateral motion,
should be investigated. Given the sensitivity to bottom im-
pact, a change in layer thickness, e.g., a small perturbation
on the antiplane solutions, is expected to significantly af-
fect the localized solutions found above. More importantly,

varicosity is obviously implicated in the spatially extended
waves that are much more prevalent in experiment and
simulation (De Bruyn et al., 1998; Clément and Labous,
2000; Jeong et al., 2000). For example, the 2D particle-
dynamics simulation shown in Fig. 1 involves an evident
lateral ‘‘sloshing” mode, with alternation of crest and
troughs in one plate cycle.

As still more fundamental issue, the basic model clearly
needs some modification, such as velocity-dependent res-
titution, in order to justify the flat-layer tuning employed
in the present study. Furthermore, the assumed kinematic
viscosity m might also be allowed to depend on impact
velocity, to reflect a possibly important dependence on
granular temperature immediately following impact. Plau-
sible forms for such modifications appear to be well within
the reach granular kinetic theory (Jenkins and Savage,
1983), with appropriate extensions to high densities.

Appendix A. Inelastic impulse and perturbations

Here, we employ an idealized model of inelastic impact
in order to define the product of generalized functions in-
volved in (8). The mechanics of impact, involving rate-
dependent or hysteretic contact forces, are relevant to a
number of fields (Goldsmith, 1960), particularly granular
media (Luding, 1997). With ideas motivated by that litera-
ture, we consider a class of generalized functions derived
from impact or ‘‘scattering” dynamics, an approach that
appears complementary to the methods of ‘‘non-smooth
mechanics” employed by others (cf. Moreau, 1999). We
first treat ODEs, strictly applicable only to the flat layer
or single particle, and then estimate the effects of layer
curvature and viscosity in (1).

A.1. The flat layer

Consider the autonomous set

_w ¼ dw
dt
¼ f ðw; fÞ ð68Þ

_f ¼ df
dt
¼ w ð69Þ

with specific force or acceleration a ¼ f ðw; fÞ such that an
incoming initial state, with f ¼ f� > 0;w! w� < 0 for
t ! �1, always results in a final state having
f ¼ fþ P 0;w! wþ P 0 for t !1, where f ðw�; fÞ ¼ 0. In
the standard way, we write (69) as

dw
df
¼ f ðw; fÞ=w ð70Þ

representing the phase portrait shown in Fig. 9(a), involv-
ing incoming and outgoing branches, with restitution

e ¼ �wþ=w�: ð71Þ

The restitution generally depends on f�;w�, but we are
concerned here with the limit process defined by � # 0,
with

f ðw; fÞ ¼ f�ðw; fÞ ¼
1
�

Fðw; f=�Þ; ð72Þ

ww +-

ζ

0

ζ
w-

ζ
w-

a b
Fig. 9. (a) Impact phase plane and trajectory. (b) Perturbed flat layer, with
(upper sketch) and without (lower sketch) perturbation in tc ,
respectively.
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where Fðw; zÞ is a bounded O(1) function with bounded
O(1) z-derivative @F=@z. In this case, the dynamics occurs
on time and space scales Oð�Þ, and (70) can be written in
terms of a stretched coordinate �f ¼ f=� as

dw
d�f
¼ Fðw;�fÞ=w ð73Þ

with initial asymptote w! w� for �f!1, and with resti-
tution eðw�Þ given by the final asymptote w! wþ for
�f!1.

By means of the solution wf�fg to (73), we then have
wþ �w� � �ð1þ eÞw� which serves to define a general-
ized function _fd�ð_f; fÞ, such that

dw
dt
¼ d_f

dt
¼ ð1þ eÞ _f2d�ðfÞ ð74Þ

produces the same jump wþ �w�.

A.2. Velocity-independence

The special case of a velocity- or energy-independent
restitution involves severe restrictions on f ðw; fÞ, which
are clarified by letting v ¼ w=w�, so that (73) becomes

dv
d�f
¼

F v w�;�f
� �
v w2

�
ð75Þ

with v! 1 for �f!1. Obviously, the solution to (75) and
the final asymptote v! �e for �f!1must depend gener-
ally on the parameter w� appearing in (75), except for very
special forms of f. One notes immediately that a sufficient
condition for independence of w� is that f ðw; fÞ be homo-
geneous of degree two in w, a notable example being

f ðw; fÞ ¼ w2h sgnðwÞ; ff g ð76Þ

allowing for different dependence on position f on the
incoming and outgoing branches of the type often postu-
lated for inelastic impact (Goldsmith, 1960).

The relation (76) suggests the notation employed in (8)
but may not represent the only possibility. For example,
the linear viscoelastic (‘‘spring-dashpot”) model:

f ¼ x2
0f�

1
s

w; ð77Þ

with (elastic) frequency x0 and (viscous) relaxation time s,
has constant restitution e, as (Luding, 1997) shows. In a
more direct proof, note that (70) can be integrated by ele-
mentary methods to give

ðw� kþfÞ1�bðw� k�fÞ1þb ¼ const:; ð78Þ

where

k� ¼
1� b�1

2s
; with b�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðx0s

p
Þ2; ð79Þ

are the roots of k2 þ k=s�x2
0. The singular solutions

w�ðfÞ ¼ k�f of (70) represent asymptotes for f!1, with

e ¼ �w�
wþ
¼ 1� b

1þ b
: ð80Þ

Hence, on relaxing the implicit restriction to bounded
w�, (77) provides a counterexample to (76). However,

the generalized function of interest arises from the stiff
limit:

k� 	 �x0; b	 ð2x0sÞ�1
; w� 	 �f; for �� ðx0sÞ�1! 0;

ð81Þ

which implies elastic impact, with e 	 1� �! 1 (Luding,
1997). An interesting question, not explored here, is
whether (77) can represent an ‘‘inner” elastic approxima-
tion for small � to an ‘‘outer” inelastic force of the form
(76).

A.3. Perturbations

For velocity-independent restitution, it is clear that per-
turbed impacts, for which w� ¼ wð0Þ� þwð1Þ� and wð0Þþ ¼
�ewð0Þ� , must also satisfy wð1Þþ ¼ �ewð1Þ� . This can be repre-
sented by a Stosslet perturbation

að1Þ ¼ ð1þ eÞ _fð1Þ _fd�ðfÞ; ð82Þ

so that (20) gives the corresponding form for a granular
layer:

wð1Þðtþc ; r; zÞ �wð1Þðt�c ; r; zÞ ¼ �ð1þ eÞwð1Þðt�c ; r; 0Þ; ð83Þ

where

tcðrÞ ¼ tð0Þc þ tð1Þc ðrÞ: ð84Þ

The perturbation tð1Þc generally involves perturbations both
in dwell time and arrival time. For the former, one may de-
fine a dwell time by h� þ hþ, where

h� ¼ �
Z �

0

1
wðfÞ �

1
w�

 �
df;

given the existence of the combined integrals taken over
the solution branches discussed above. However, it is evi-
dent that h ¼ Oð�Þ for �! 0 and, hence, that perturbations
in this quantity generally should be negligible compared to
the perturbation in arrival time determined from the per-
turbed contact condition:

fðtc; rÞ ¼ fð0Þðtc; rÞ þ fð1Þðtc; rÞ ð85Þ
¼ @tf

ð0Þðtð0Þc ; rÞtð1Þc ðrÞ þ fð1Þðtð0Þc ; rÞ þ � � � ¼ 0: ð86Þ

Within the framework of an infinitesimal theory it is
reasonable to employ the pre-impulsive value of the dis-
continuous function @tf

ð0Þ and to require that the perturbed
impact precede the unperturbed impact, so that tð1Þc 6 0, as
illustrated by the left-hand side of Fig. 5(b). With these
restrictions, (86) leads to a nonlinear relation:

tð1Þc ðrÞ ¼ �Rf�1=wð0Þðtð0Þc �; rÞgRf�fð1Þðtð0Þc ; rÞg; ð87Þ

where RðsÞ ¼ sHðsÞ denotes the ramp function. Thus, our
accounting for perturbed arrival time takes us beyond
the realm of linear stability theory.

A.4. Curvature and viscous effects

To illustrate the salient points, it suffices to consider the
axisymmetric form of the antiplane PDEs (37) near an iso-
lated point of impact t ¼ tc; r ¼ 0, say. Also, we take as sin-
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gular body force the special form (76), without dependence
of h on sgn(w), such that

@tw� mr�1@rðr@rÞw ¼
w2

�
h

f
�

� 	
; ð88Þ

where the non-singular body force gðtÞ are omitted. We as-
sume the layer is locally flat in the vicinity of contact, such
that the Taylor series

fðt; rÞ ¼ f0ðtÞ þ f2ðtÞr2 þ . . . ;

wðt; rÞ ¼ w0ðtÞ þw2ðtÞr2 þ � � � ; ð89Þ

apply. Then, with the identical scaling employed above,
one obtains from the Taylor series representation of (88)
the ODEs

d
dt

fi ¼ wiðtÞ; i ¼ 0;1; . . . ; with t ¼ ðt � tcÞ=�;

d
dt

w0 ¼ w2
0hðf0Þ þ 4�mw2;

d
dt

w2 ¼ 2w2w0hðf0Þ þ
w2

0

4
h0ðf0Þf2; . . . ;

where h0ðsÞ denotes a derivative with respect to s. Clearly,
the effect of viscosity on the basic Stosslet is Oð�Þ provided
w2 remains Oð1Þ.
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