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Abstract
In their original formulation of the method of isotropic extension via structural tensors, which is meant for applications
to the derivation of coordinate-free representation formulas for anisotropic constitutive functions, both Boehler and
Liu start with the assumption that the invariance group of structural tensors is the symmetry group that defines the
anisotropy of the constitutive function in question. As a result, the method (with structural tensors of order not higher
than two) is applicable only when the anisotropy is characterized by a cylindrical group or belongs to the triclinic, mon-
oclinic, or rhombic crystal classes. In this note we present a reformulation of the method in which the aforementioned
assumption of Boehler and of Liu is relaxed, and we show by examples in finite elasticity and anisotropic linear elasticity
that the method of isotropic extension via structural tensors could be applicable beyond the original limitations.
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1. Method of isotropic extension as formulated by Boehler and by Liu
General representation theorems have long been obtained [1–3] for isotropic scalar-, vector-, and second-order-
tensor-valued functions of a finite number of vectors and second-order tensors. To make use of these general the-
orems, Boehler [4] and Liu [5] independently proposed the same method to derive coordinatefree representation
formulas for anisotropic constitutive functions. Take Liu [5] for definiteness. There he begins with the obser-
vation that “[m]any anisotropic materials possess structures which can be characterized by certain directions,
lines or planes, more specifically, say characterized by some unit vectors” m1, ..., mr, “and some [second-order]
tensors” M1, ..., Ms. For brevity, we henceforth put

⇀m := (m1, ..., mr),
⇀M := (M1, ..., Ms), (1)

and refer to mk (k = 1, ..., r) and Ml (l = 1, ..., s) as the structural tensors, which are specific first- and second-
order tensors that characterize the anisotropic material response in question. Let O(3) denote the group of
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orthogonal transformations on V , the translation space of the three-dimensional physical space. For Q ∈ O(3)
let

Q⇀m := (Qm1, ..., Qmr), Q⇀MQT := (QM1QT, ..., QMsQT). (2)

Liu [5] introduces the group Gs of orthogonal transformations that preserves each of the structural tensors, i.e.1

Gs := {Q ∈ O(3) : Q⇀m = ⇀m, Q⇀MQT = ⇀M}. (3)

The definition given by equation (3) is essentially the same as that given earlier by Boehler [4], who later calls
Gs the invariance group of the structural tensors ⇀m,⇀M [6].

Let ⇀v = (v1, ..., vp) and ⇀A = (A1, ..., Aq), where vi (i = 1, ..., p) are vectors and Aj (j = 1, ..., q) are second-
order tensors. Consider a class A of second-order-tensor-valued anisotropic constitutive functions S(⇀v,⇀A) with
the anisotropy characterized by a group Gs of the type given by equation (3), i.e. S satisfies

QS(⇀v,⇀A)QT = S(Q⇀v, Q⇀AQT) for each Q ∈ Gs. (4)

The method that Boehler [4] and Liu [5] proposed to obtain a coordinate-free representation formula for the
class A of anisotropic constitutive functions S is to seek a corresponding class Ext of constitutive functions
Ŝ(⇀v,⇀A,⇀m,⇀M) such that for each S ∈ A, there is an Ŝ ∈ Ext which satisfies

S(⇀v,⇀A) = Ŝ(⇀v,⇀A,⇀m,⇀M) (5)

for each (⇀v,⇀A) in the domain of S and observes the requirement2 that

QŜ(⇀v,⇀A,⇀m,⇀M)QT = Ŝ(Q⇀v, Q⇀AQT, Q⇀m, Q⇀MQT) for each Q ∈ O(3), (6)

i.e. that Ŝ is isotropic. Then we may appeal to representation theorems for isotropic functions to obtain a repre-
sentation formula for Ŝ and, a fortiori, for the anisotropic S. Moreover, it follows immediately from equations
(3), (5) and (6) that for each Q ∈ Gs

QS(⇀v,⇀A)QT = QŜ(⇀v,⇀A,⇀m,⇀M)QT

= Ŝ(Q⇀v, Q⇀AQT, Q⇀m, Q⇀MQT)

= Ŝ(Q⇀v, Q⇀AQT,⇀m,⇀M)

= S(Q⇀v, Q⇀AQT), (7)

i.e. the constitutive function S, as given by equation (5), satisfies equation (4). Conversely, Liu [5] proves (see
Theorem 3.1 there) that for each anisotropic S(⇀v,⇀A) with anisotropy defined by an invariance group Gs of struc-
tural tensors (see equation (3)), there exists an isotropic extension function Ŝ(⇀v,⇀A,⇀m,⇀M) such that equation (5)
holds. Liu’s theorem renders Boehler’s physical justification on the isotropy of Ŝ unnecessary when G = Gs. All
that we have said about anisotropic second-order-tensor-valued functions S(⇀v,⇀A) applies (with obvious minor
modifications) also to scalar- and vector-valued functions ψ(⇀v,⇀A) and u(⇀v,⇀A). What we have outlined above is
the method of isotropic extension of anisotropic constitution functions via structural tensors as formulated by
Boehler and by Liu.

As the method of Boehler and Liu treats only material symmetries characterized by invariance groups of
structural tensors, a question naturally arises, namely: Which subgroups of O(3) can be taken as an invariance
group of structural tensors of order not higher than two? For the special case where the anisotropic S maps a
finite number of second-order symmetric tensors to second-order symmetric tensors, Boehler [4] asserts that
besides transverse isotropy “the method proposed covers also all the crystal classes of the triclinic, monoclinic
and rhombic systems.” He does not say anything about the other crystal classes in his paper. Liu [5] remarks that
“[o]bviously, not every anisotropic material can be specified by symmetry group of the type” given by equation
(3), but he does not elaborate on what to him is obvious. Later in the same paper he gives a list (“which does
not mean to be exhaustive”) of groups Gs ⊂ O(3) that are characterized by some set {⇀m,⇀M} of structural tensors
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in the sense specified by equation (3). Besides transverse isotropy and orthotropy, Liu’s list includes groups
pertaining to crystal classes in the triclinic, monoclinic, and rhombic systems. More recently, Xiao et al. [9]
demonstrated that “any number of vectors and second order tensors can merely characterize and represent one
of the cylindrical groups and the triclinic, monoclinic, rhombic crystal classes.” They proceed to assert what
follows:

This suggests that, for anisotropic functions relative to any anisotropic material symmetry group other than those just mentioned,
the widely used isotropic extension method via structural tensors has to result in isotropic extension functions involving at least one
structural tensor variable of order higher than two.

But as Xiao et al. point out, “partial results for a simple case ... already suggest as examples formidable
complexity” of “unconventional isotropic functions involving at least one tensor variable of order higher than
two”.

We contend that the aforementioned limitations of the method of isotropic extension via structural tensors
(of order not higher than two) arise from an unnecessary requirement in the original formulation of both Boehler
and Liu, namely that the material symmetry in question be characterized by a group which keeps each structural
tensor invariant. After a reformulation which relaxes this requirement, it will become possible that the method
of isotropic extension could cover anisotropic constitutive functions with anisotropy defined by a symmetry
group which cannot be taken as an invariance group of structural tensors of order not higher than two. Before
we proceed further, we present some simple examples in finite and linear elasticity that will suggest how the
reformulation should be made.

2. Simple examples in finite and linear elasticity

2.1. Finite elasticity
Consider an elastic material point with a chosen undistorted reference configuration. Let F be the deformation
gradient, F = RU the polar decomposition of F, where R is the rotation tensor and U the right stretch tensor,
and C := U2 the right Cauchy-Green tensor. Let T be the Cauchy stress. The elastic response of the material
point is given by the constitutive function T = T(F). The principle of material frame-indifference dictates that

T(F) = RT(C)RT (8)

for some function T(C). Conversely for any function T(C), the function T(F) given by equation (8) satisfies
material frame-indifference. Let

G := {P ∈ O(3) : T(FP) = T(F) for each F in the domain of T(·)}

be the symmetry group of the elastic material point in question. The function T(C) in equation (8) satisfies

QT(C)QT = T(QCQT) for each Q ∈ G. (9)

Note that equation (9) is the specific form assumed by equation (4) in the present context. For details on these
preliminaries see, e.g. Truesdell [7].

If T(C) has an isotropic extension T̂(C,⇀m,⇀M), substitution of T̂ for T in equation (8) yields

T(F) = RT̂(C,⇀m,⇀M)RT

= T̂(B, R⇀m, R⇀MRT), (10)

where B = RCRT is the left Cauchy-Green tensor. Consideration of material frame-indifference suggests that
structural tensors in {⇀m,⇀M}, like C, remain unchanged under change of frame, and they pertain to the reference
configuration. It follows that members of {R⇀m, R⇀MRT}, like B, are defined on the current configuration and
they are objective. Moreover, the isotropy of the constitutive function T̂(B, R⇀m, R⇀MRT) implies that it satisfies
material frame-indifference.

Conversely, one may start by postulating

T = T̂(B, R⇀m, R⇀MRT) (11)
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as the current-configuration form of the constitutive function of the elastic material point. The principle of
material frame-indifference dictates that the function T̂ in equation (11) should satisfy the version of equation
(6) for the present context, i.e. that T̂ be isotropic. In fact, this approach will make anisotropic finite elasticity
fit into the theoretical scheme outlined by Boehler [4].

Now, let ei (i = 1, 2, 3) be a right-handed orthonormal triad of vectors in V . Let R(n,ω) denote the rotation
of angle ω about the axis defined by unit vector n. Suppose the elastic material point in question is orthotropic,
and its symmetry group is G = D2h with generators R(e2,π), R(e3,π), and the inversion −I, where I is the
second-order identity tensor. We want to seek an isotropic extension of the function T(C) for this orthotropic
material.

Let M1 := e1 ⊗ e1, M2 := e2 ⊗ e2, and M3 := e3 ⊗ e3. Clearly QMiQT = Mi (i = 1, 2, 3) for each Q ∈ G,
and G is the subgroup of O(3) that keeps each Mi invariant, i.e. G is the invariance group Gs of the structural
tensors M1, M2, and M3. Using Mi (i = 1, 2, 3) as structural tensors, Boehler [8] applies representation theorems
for isotropic functions to write down an isotropic extension for orthotropic functions that map second-order
symmetric tensors onto second-order symmetric tensors. As applied to T(C), the formula reads

T(C) = T̂(C, M1, M2, M3)

:= α1M1 + α2M2 + α3M3 + α4
(
M1C + CM1

)

+ α5
(
M2C + CM2

)
+ α6

(
M3C + CM3

)
+ α7C2, (12)

where

αi = αi(trM1C, trM2C, trM3C, trM1C2, trM2C2, trM3C2, trC3)
= α̃i(C, M1, M2, M3) (13)

for i = 1, ..., 7. Since G = Gs, by Liu’s theorem [5] every T(C) has an isotropic extension T̂(C, M1, M2, M3)
given by the representation formula (12).

Now suppose the elastic material point in question is tetragonal, and its symmetry group is G = D4h with
generators R(e2,π), R(e3,π/2), and −I. Since

R(e3,π/2)M1R(e3,π/2)T = M2, R(e3,π/2)M2R(e3,π/2)T = M1,

the symmetry group G of the tetragonal material is not an invariance group of the structural tensors Mi (i =
1, 2, 3). On the other hand, note that each Q ∈ G either keeps all Mi invariant or keeps M3 invariant and permutes
M1, M2.

In the representation formula (12), let us impose additional conditions on the coefficient α̃i such that

α̃1(C, M1, M2, M3) = α̃2(C, M2, M1, M3), α̃4(C, M1, M2, M3) = α̃5(C, M2, M1, M3),
α̃3, α̃6, α̃7 are symmetric in M1 and M2. (14)

Then the isotropic extension T̂ is symmetric in M1 and M2, i.e.

T̂(C, M1, M2, M3) = T̂(C, M2, M1, M3). (15)

It follows that under these conditions the isotropic extension (12) satisfies

T̂(C, QM1QT, QM2QT, QM3QT) = T̂(C, M1, M2, M3) for each Q ∈ G. (16)

Conversely, given a function T(C) that pertains to an elastic material point with symmetry group G = D4h

as described above, the material point is a fortiori orthotropic, so there exists an isotropic extension of T(C),
namely T̂(C, M1, M2, M3), which can be cast in the form of equation (12). It is easy to verify that the coefficients
α̃i of the isotropic extension T̂(C, M1, M2, M3) in equation (12) must satisfy the additional conditions given by
equation (14) for it to satisfy the requirement given by equation (16) for material symmetry. Hence, in the
isotropic extension given by equation (12) plus the additional conditions given by equation (14) we have arrived
at a representation formula for the constitutive function T(C) with tetragonal symmetry.
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Similarly, if we impose on equation (12) the conditions

α̃1(C, M1, M2, M3) = α̃2(C, M2, M1, M3), α̃2(C, M1, M2, M3) = α̃3(C, M1, M3, M2),
α̃3(C, M1, M2, M3) = α̃1(C, M3, M2, M1), α̃4(C, M1, M2, M3) = α̃5(C, M2, M1, M3),
α̃5(C, M1, M2, M3) = α̃6(C, M1, M3, M2), α̃6(C, M1, M2, M3) = α̃4(C, M3, M2, M1),

α̃7 is symmetric in M1, M2, and M3, (17)

the resulting representation formula gives an isotropic extension of T(C) when the symmetry group is Oh, i.e.
the elastic material point has cubic symmetry.

2.2. Linear elasticity
For further illustration and for later use, here we briefly revisit the examples above in the context of linear
elasticity. Let E be the infinitesimal strain. For the orthotropic material point with symmetry group G = Gs, the
invariance group of the structural tensors Mi = ei ⊗ ei (i = 1, 2, 3), the stress-strain relation T = T(E) satisfies
the equation

T(QEQT) = QT(E)QT for each Q ∈ G, (18)

where G = D2h = Gs for the present case. By Liu’s theorem [5], for each orthotropic T(E), an isotropic extension
T̂(E, M1, M2, M3) exists, for which Boehler [8] provides the representation formula

T(E) = T̂(E, M1, M2, M3)

:=
(
α1tr(M1E) + α2tr(M2E) + α3tr(M3E)

)
M1

+
(
α2tr(M1E) + β2tr(M2E) + β3tr(M3E)

)
M2

+
(
α3(tr(M1E) + β3tr(M2E)) + γ tr(M3E)

)
M3

+ α4
(
M1E + EM1

)
+ α5

(
M2E + EM2

)
+ α6

(
M3E + EM3

)
, (19)

where αk (k = 1, 2, · · · , 6), β2, β3, γ are undetermined coefficients.
Now consider the tetragonal case where G = D4h as described in the preceding subsection. Let us impose

the conditions β2 = α1, β3 = α3, and α4 = α5 on the coefficients in the representation formula (19) so that the
isotropic extension T̂ is symmetric in M1 and M2, i.e.

T̂(E, M1, M2, M3) = T̂(E, M2, M1, M3). (20)

Keeping the coefficients α1, α3, α5 and rewriting γ as α4, we obtain from (19) the representation formula

T(E) = T̂(E, M1, M2, M3)

:=
(
α1tr(M1E) + α2tr(M2E) + α3tr(M3E)

)
M1

+
(
α2tr(M1E) + α1tr(M2E) + α3tr(M3E)

)
M2

+
(
α3(tr(M1E) + α2tr(M2E)) + α4tr(M3E)

)
M3

+ α5
(
(M1 + M2)E + E(M1 + M2)

)
+ α6

(
M3E + EM3

)
, (21)

where αj (j = 1, 2, . . . , 6) are undetermined coefficients. In the Kelvin notation (see Section 4 below), the
elasticity tensor C that pertains to the stress-strain relation T = T̂(E, M1, M2, M3) in equation (21) is represented
by the 6 × 6 matrix

⎛

⎜⎜⎜⎜⎜⎝

α1 + 2α5 α2 α3 0 0 0
α2 α1 + 2α5 α3 0 0 0
α3 α3 α4 + 2α6 0 0 0
0 0 0 α5 + α6 0 0
0 0 0 0 α5 + α6 0
0 0 0 0 0 2α5

⎞

⎟⎟⎟⎟⎟⎠
. (22)
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It is a straightforward matter to verify that the function T̂(E, M1, M2, M3) in equation (21) is isotropic and, by
means of equation (20), that

T̂(E, QM1QT, QM2QT, QM3QT) = T̂(E, M1, M2, M3) for each Q ∈ G, (23)

which together imply with equation (21)1 that T(E), as given by the representation formula (21)2, indeed satis-
fies equation (18) with G = D4h. Moreover, as it is clear from the matrix given by equation (22) representing the
elasticity tensor C, every constitutive function T that satisfies equation (18) with G = D4h has an isotropic exten-
sion T̂ given by equation (21). Hence T̂(E, M1, M2, M3) as given by equation (21) is a perfectly fine isotropic
extension of the tetragonal constitutive function T(E) via the structural tensors M1, M2, and M3.

If we further impose on equation (21) the additional conditions that α3 = α2, α4 = α1, and α6 = α5,
then the resulting representation formula is an isotropic extension for the stress-strain relation T = T(E) of a
cubic material with symmetry group G = Oh. Conversely, the stress-strain relation of any cubic linearly-elastic
material can be expressed in the coordinate-free form given by equation (21) with the aforementioned additional
conditions on elastic coefficients imposed.

Remark 2.1. In the examples above we have used the method of isotropic extension via structural tensors to
derive coordinate-free representation formulas for anisotropic constitutive functions whose symmetry group
G does not keep every structural tensor invariant. Take tetragonal materials with G = D4h for instance. The
symmetry operation R(e3,π/2) ∈ G takes M1 to M2, M2 to M1, and preserves only M3. But, while R(e3,π/2)
does not keep every structural tensor invariant, it does preserve the isotropic extension function T̂ in equations
(16) and (21), which is in fact the crucial point at issue. In the formulation of Boehler and Liu, to require
that material symmetry be described by the invariance group Gs of the structural tensors, every element of
which should preserve each structural tensor (see definition (3)), is too restrictive and unnecessary. In fact
a material point may have several distinguished but equivalent directions, lines, or planes characterized by
structural tensors, as far as a certain physical property is concerned. An orthogonal transformation Q that, say,
leads to a permutation of the structural tensors which describe the distinguished but equivalent directions, lines,
or planes will not affect material response even if it does not keep each structural tensor invariant. Such an
orthogonal transformation should belong to the symmetry group G of the material. In the original formulation
one important role played by the requirement

Q⇀m = ⇀m and Q⇀MQT = ⇀M for each Q ∈ Gs (24)

is to guarantee that the isotropic extension satisfies (cf. equations (7)2, (16), and (23))

Ŝ(⇀v,⇀A, Q⇀m, Q⇀MQT) = Ŝ(⇀v,⇀A,⇀m,⇀M) for each Q ∈ G (25)

if G = Gs. As illustrated by the examples presented in this section, requirement (24) is not a necessary condition
for the validity of equation (25). !

3. Reformulation of the method of isotropic extension
For brevity, in what follows we restrict our discussion to second-order-tensor-valued constitutive functions. The
cases of scalar- and vector-valued functions are similar.

Let V be the translation space of the three-dimensional physical space and V⊗2 := V ⊗ V the space of
second-order tensors. Let V p := V × V × · · · × V (p times) and (V⊗2)q := V⊗2 × V⊗2 × · · · × V⊗2 (q times).
Let G be a subgroup of the orthogonal group O(3). For vi ∈ V (i = 1, ..., p) and Aj ∈ V⊗2 (j = 1, ..., q), let
⇀v = (v1, ..., vp) and ⇀A = (A1, ..., Aq). Let D be a domain in V p × (V⊗2)q that is invariant under the action of O(3),
i.e.

(Q⇀v, Q⇀AQT) ∈ D for each (⇀v,⇀A) ∈ D and Q ∈ O(3).

Our objective is to find a representation formula for a given class A of anisotropic constitutive functions S :
D → V⊗2 that satisfies

QS(⇀v,⇀A)QT = S(Q⇀v, Q⇀AQT ) for each Q ∈ G, (26)

where
Q⇀v := (Qv1, ..., Qvp), Q⇀AQT := (QA1QT, ..., QAqQT). (27)
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To this end, we reformulate the method of isotropic extension via structural tensors as follows: Seek specific
structural vectors m1, . . . , mr and/or second-order tensors M1, . . . , Ms, and a class Ext of functions Ŝ(⇀v,⇀A,⇀m,⇀M)
with domain

D × O(m1) × · · · × O(mr) × O(M1) × · · · × O(Ms),

where ⇀m and ⇀M are defined in equation (1), and

O(mk) = {Qmk : Q ∈ O(3)}, (k = 1, . . . , r)

O(Ml) = {QMlQT : Q ∈ O(3)}, (l = 1, . . . , s)

are the orbits of mk and Ml under O(3), respectively, such that

1. For each S ∈ A, there is an Ŝ ∈ Ext which is an extension of S in the sense that

Ŝ(⇀v,⇀A,⇀m,⇀M) = S(⇀v,⇀A) (28)

for each (⇀v,⇀A) in the domain D of S.
2. Ŝ is isotropic, i.e.

Ŝ(Q⇀v, Q⇀AQT, Q⇀m, Q⇀MQT) = QŜ(⇀v,⇀A,⇀m,⇀M)QT (29)

for each Q ∈ O(3).
3. For each (⇀v,⇀A) ∈ D, the function Ŝ(⇀v,⇀A,⇀m,⇀M) satisfies

Ŝ(⇀v,⇀A, Q⇀m, Q⇀MQT) = Ŝ(⇀v,⇀A,⇀m,⇀M) (30)

for each Q ∈ G.

Note that in the reformulation above, the symmetry group G of the material is not determined by the overly
restrictive requirement given by equation (3) that its elements keep each structural tensor invariant, which leads
to the limitations of the formulation of Boehler and Liu. Here the group G, the anisotropic S, the isotropic
extension Ŝ, and the structural tensors are interrelated through equations (26), (28), and (30).

For a constitutive function S(⇀v,⇀A), if we can find structural vectors mk (k = 1, . . . , r) and/or second-order
tensors Ml (l = 1, . . . , s) and an isotropic extension Ŝ of S such that the conditions given by equations (28) to
(30) hold, then for each Q ∈ G we have

S(Q⇀v, Q⇀AQT) = Ŝ(Q⇀v, Q⇀AQT,⇀m,⇀M)

= Ŝ(Q⇀v, Q⇀AQT, Q⇀m, Q⇀MQT)

= QŜ(⇀v,⇀A,⇀m,⇀M)QT

= QS(⇀v,⇀A)QT. (31)

Thus S has anisotropy characterized by the group G.
On the other hand, given a constitutive function S with anisotropy described by group G, whether there exists

an isotropic extension Ŝ with structural vectors and/or second-order tensors that satisfy the conditions given by
equations (28) to (30) above remains to be investigated.

4. Anisotropic linear elasticity
The simple example of anisotropic linear elasticity offers a glimpse of what could happen under the
reformulation. Let ei (i = 1, 2, 3) be a right-handed orthonormal triad of vectors in V . Let

M1 = e1 ⊗ e1, M2 = e2 ⊗ e2, M3 = e3 ⊗ e3, M4 = 1√
2

(e2 ⊗ e3 + e3 ⊗ e2),

M5 = 1√
2

(e3 ⊗ e1 + e1 ⊗ e3), M6 = 1√
2

(e1 ⊗ e2 + e2 ⊗ e1). (32)
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Let Sym be the linear space of second-order symmetric tensors. For two tensors A, B ∈ Sym, let A ·B := tr(AB)
denote the inner product of A and B in Sym. Under this inner product, the tensors Mα (α = 1, 2, . . . , 6) constitute
an orthonormal basis in Sym. Let C : Sym → Sym be the fourth-order elasticity tensor; it is a symmetric linear
transformation on Sym. In the Kelvin notation [10], the Cauchy stress T and the infinitesimal strain E are treated
as 6-dimensional vectors in Sym, and the elasticity tensor C as a symmetric second-order tensor in Sym ⊗ Sym

T =
6∑

α=1

(T · Mα)Mα, E =
6∑

α=1

(E · Mα)Mα, (33)

C =
6∑

α,β=1

cαβMα ⊗ Mβ , where cαβ = cβα = Mα · C[Mβ]. (34)

Note that cαβ are the entries of the 6 × 6 matrix that represents the elasticity tensor C under the basis Mα (α =
1, 2, . . . , 6). Since they are inner products, their values are independent of the choice of Cartesian coordinate
system in V .

The stress-strain relation T = T(E) = C[E] of a generally-anisotropic linearly-elastic material can be written
in the following coordinate-free form

T(E) = T̂(E, M1, M2, . . . , M6)

:=

⎛

⎝
6∑

α,β=1

cαβMα ⊗ Mβ

⎞

⎠

⎡

⎣
6∑

γ=1

(E · Mγ )Mγ

⎤

⎦

=
6∑

α,β,γ=1

cαβδβγ (E · Mγ )Mα =
6∑

α,β=1

cαβ tr(MβE)Mα, (35)

which is just an expression of the constitutive equation T = C[E] under the basis {Mα : α = 1, 2, ..., 6}.
Clearly T̂(E, M1, M2, . . . , M6) is an isotropic extension of the anisotropic T(E) via six structural tensors M1,
M2, …, M6. From the theory of anisotropic linear elasticity we know that, by putting suitable restrictions on
the elastic constants cαβ , constitutive equation T = C[E] with material symmetry characterized by any of the
32 crystallographic point groups and five transversely-isotropic limit groups can be put in the form of equation
(35). For instance, to get a representation formula for the class of tetragonal linearly-elastic materials discussed
in Section 2, we just need to put c11 = c22, c13 = c23, c44 = c55, keep in addition c12, c33, c66, and set all other
elastic constants zero. The resulting representation formula is

T(E) = T̂(E, M1, M2, . . . , M6)

:=
(
c11tr(M1E) + c12tr(M2E) + c13tr(M3E)

)
M1

+
(
c12tr(M1E) + c11tr(M2E) + c13tr(M3E)

)
M2

+
(
c13(tr(M1E) + c13tr(M2E)) + c33tr(M3E)

)
M3

+ c44
(
tr(M4E)

)
M4 + tr(M5E)

)
M5

)
+ c66tr(M6E)

)
M6. (36)

Thus, as shown by the example of anisotropic linear elasticity, under our present reformulation it is possible
that the method of isotropic extension could cover anisotropic constitutive functions with anisotropy defined by
any of the 32 crystallographic point groups and five transversely-isotropic limit groups with isotropic extension
functions involving only structural tensors of order not higher than two.

Remark 4.1. The original formulation of isotropic extension restricts attention to invariance groups of structural
tensors, which define the particular directions, lines, or planes that characterize the anisotropy in question. Our
reformulation relaxes this restriction, which opens the door to our using of Mα (α = 1, . . . , 6) as structural
tensors that cover at once all the aforementioned 37 groups of material symmetry. On one hand, in equation (35)
with the appropriate restrictions on elastic constants we have obtained a coordinate-free representation formula
which is an isotropic extension of the corresponding constitutive function for each of the aforementioned types
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of anisotropy. On the other hand, the geometric properties associated with these structural tensors no longer
have a clear cut connection to the geometric properties that are invariant under the symmetry group associated
with the anisotropy. !

Remark 4.2. In the original formulation of Boehler and Liu, the structural tensors for isotropic extension must
be chosen so that the invariance group Gs of the structural tensors is the symmetry group of the anisotropic
constitutive function in question. An over-prescription of structural tensors can easily reduce the invariance
group to the cases Gs = {I} or {I, −I}. However, over-prescription of structural tensors is allowed in the pro-
posed reformulation. For instance, for anisotropic linear elasticity, the invariance group of the structural tensors
Mα (α = 1, . . . , 6) is Gs = {I, −I}, a case of triclinic symmetry. By imposing suitable restrictions on elastic
constants in (35), we have used Mα (α = 1, ..., 6) as structural tensors for isotropic extension of linearly-elastic
constitutive functions for crystals and materials with symmetry characterized by any of the 32 crystallographic
point groups and five transversely-isotropic limit groups. !

In general, representation formulas should be as simple and elegant as possible. Here representation formula
(36) involves six structural tensors, whereas its alternate counterpart given by equation (21) carries only three,
namely M1 = e1 ⊗ e1, M2 = e2 ⊗ e2 and M3 = e3 ⊗ e3, where e1 and e2 define two 2-fold axes of rotational
symmetry, and e3 a 4-fold axis of symmetry for the tetragonal material in question. While the discussion above
indicates that our proposed reformulation of the method of isotropic extension provides a coordinate-free rep-
resentation for each type of linear-elastic anisotropy, work remains to be done to complete the list of irreducible
representations.

5. Concluding remarks
With the objective to derive coordinate-free representation formulas for anisotropic constitutive functions such
as S(⇀v,⇀A) with anisotropy characterized by a subgroup G of O(3) in the sense of equation (4), both Boehler [4]
and Liu [5] begin by restricting attention to the cases where G is an invariance group Gs of structural tensors, i.e.
it renders each member of a finite list of structural vectors ⇀m and/or second-order structural tensors⇀M invariant.
Liu proves that there exists an isotropic extension Ŝ(⇀v,⇀A,⇀m,⇀M) of any anisotropic S(⇀v,⇀A) whose symmetry
group G = Gs, an invariance group of structural tensors. Representation theorems for isotropic functions can
then be used to obtain coordinate-free representation formulas for the isotropic Ŝ and thus also the anisotropic S.
This is the method of isotropic extension via structural tensors as originally formulated by Boehler and by Liu.
Unfortunately, as pointed out by Xiao et al. [9], only cylindrical groups and those in the triclinic, monoclinic,
or rhombic crystal classes can be taken as invariance groups of structural tensors of order not higher than two.

In this paper, we present examples in finite and linear elasticity where we derive formulas for an isotropic
extension of constitutive functions with symmetry group that is tetragonal (D4h) or octahedral (Oh). Either of
these is not an invariance group of structural tensors of order not higher than two. These derivations suggest
a reformulation of the method of isotropic extension, in which we replace the assumption on symmetry group
G, namely that it is some invariance group Gs of structural tensors, by the condition given by equation (30) on
the invariance of Ŝ under the action of G on the structural tensors. We show by example of anisotropic linear
elasticity, that under the reformulation isotropic extension of the stress-strain relation, T = T(E) is possible for
material symmetry characterized by any of the 32 crystallographic point groups and five transversely-isotropic
limit groups. However, in general, the existence of isotropic extension for anisotropic constitutive functions,
which is guaranteed by Liu’s theorem when the symmetry group G is an invariance group Gs of structural
tensors, remains an open problem when G ̸= Gs.

The method of isotropic extension via structural tensors gives only a general procedure in outline. In appli-
cations, for each class of anisotropic constitutive functions with a specific material symmetry group G, suitable
structural tensors have to be selected to begin with. Application of representation theorems for isotropic func-
tions to get isotropic extensions will usually lead to formulas that are not irreducible. Using this method to
obtain irreducible representation formulas for anisotropic constitutive functions will require laborious work in
each specific case.
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Notes

1. Liu [5] in fact formulates his theory in a more general setting. In the definition given by equation (3) for Gs he puts Q ∈ G, where
G is a given subgroup of O(3), although he restricts attention to G = O(3) or G = SO(3) (i.e. the rotation group) in specific
developments of the theory. In this paper we are interested only in isotropic extensions and take G = O(3).

2. For the case where the independent variables of S and the structural tensors are objective or frame-indifferent [7], Boehler [4]
appeals to the principle of material frame-indifference to justify this requirement on the isotropy of Ŝ. This justification is based
on the assumption that ⇀v,⇀A,⇀m, and ⇀M include all “agencies” that affect the material response, which presumably are represented
by tensors associated with the current configuration of the material.
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