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Abstract. The following is an elaboration on the linear non-local model of viscoelastic fluids pro-

posed in a previous work (Goddard, 2010, Int. J. Eng. Sci. 48, 1279). As a recapitulation of that
work, the basic theory is presented in terms of the temporal frequency and spatial wave number in the

Laplace-Fourier domain. Taylor-series expansions in these variables provides a weakly non-local theory

in spatio-temporal gradients that is more comprehensive than the “bi-velocity” model of Brenner. The
linearized Chapman-Enskog kinetic theory is shown to provide a confirmation of the more general theory,

from which one can reconstruct a fully non-local integral model.

Following the work of Davis and Brenner (2012, J. Acoust. Soc. Am. 132, 2963). the general theory

is employed to derive dispersion relations for acoustic, thermal and shear-wave propagation in compress-
ible viscoelastic fluids. At Burnett order the Chapman-Enskog theory gives a cubic polynomial in wave

number squared which reduces in the dissipative quasi-static limit to a quadratic like that given by the

classical Navier-Stokes-Fourier model and the bi-velocity modification of that model.

With minor modification, the present analysis applies to viscoelastic shear and dilatational wave prop-

agation in solids with higher-gradient and Cosserat effects, where it may, for example, find application
to the field of rotational seismology.

1. Introduction

Following a previous work (Goddard, 2010), hereinafter referred to as Ref 1, we consider here a linear,
fully non-local model for the thermo-mechanics of fluids. As was the case with Ref 1, the present paper
is motivated in part by the ideas of the late H. Brenner who wrote extensively at the end of his career on
the possible breakdown of the classical Navier-Stokes-Fourier model of momentum and heat flux arising
from strong inhomogenieties due to large temperature or density gradients (Brenner, 2010, 2012). This
ostensibly motivates his revised constitutive theory, “bivelocity fluid mechanics”, based on the notion
that barycentric velocity, associated with material inertia and kinetic energy, is not appropriate for the
description of internal stress in a fluid or solid. In its place, he proposes a “volume” or “work” velocity,
together with various constitutive models for the “diffuse volume flux” representing the difference between
the two velocities. This stratagem serves inter alia to introduce higher spatial gradients of temperature
and velocity into the constitutive theory.

An alternative perspective is offered in Ref 1, where it is argued that the above revision is necessitated
by the breakdown of the thermo-mechanically simple material of Coleman and Noll (Coleman and Noll,
1961; Coleman, 1964) and that Brenner’s constitutive theory is a restricted version of a more general
non-local theory. Such a theory, anticipated in numerous previous works (Eringen, 2002, and references
therein), was sketched out in Ref 1, which leaves unanswered certain questions regarding the magnitude
of material-specific length and time scales involved in the breakdown of the classical model and the in-
adequacy of the bi-velocity model as a strictly linear theory.

The purpose of the present work is to elucidate further the above questions, by considering specific models
that are fully non-local in both space and time, i.e. models which involve long-range interactions in space
combined with long-range history effects in time. In particular, we show that the linear model which
emerges at “Burnett order” in the classical Chapman-Enskog kinetic theory is a special case of the general
model. As appreciated by others (Müller and Ruggeri, 1998), this kinetic theory involves relaxation effects
of the type described earlier by Maxwell’s viscoelasticity (Maxwell, 1867) and later by Cattaneo’s retarded
thermal conductivity (Cattaneo, 1948). As we shall also show, Brenner’s theory represents a restriction to
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the dissipative response arising on time scales longer that the Maxwell-Cattaneo relaxation times. Also,
it is shown that a fully non-local model can be reconstructed from the linearized Chapman-Enskog theory.

Acoustic wave propagation represents a plausible testing ground for non-local thermo-mechanical effects,
as already recognized by Davis and Brenner (2012) and the present paper provides an extension of that
work. It also presents an extension of Ref 1 that identifies the hyperstresses conjugate to higher velocity
gradients. However, the applications to wave propagation are restricted to the linear momentum balance,
with no account taken of higher-order inertial terms. Finally, we establish a connection to various non-
local models of wave propagation in complex solids.

2. Fourier-Laplace representation: Recapitulation of Ref 1

Following the analysis of Ref 1, we recall that Fourier representations embody the notion of wave-number
dependent transport coefficients, capturing the dispersive effects associated with higher gradients. When
extended to the time domain by means of the Laplace transform, one obtains a similar description of
frequency effects in materials with memory1. Hence, the transform

(1) ψ̂(k, s) = ψ̂t(k, s) =
1√
8π3

∫
R

∫ ∞
0

e−ık·x−st
′
ψ(x, t− t′) dV (x) dt′

provides a localized description in Fourier space (k, s) of a spatio-temporally delocalized field in physcial
space, ψt(x

′, t′) = ψ(x′, t − t′), x′ ∈ R, t′ ≥ 0, and vice versa. Accordingly, a causal, non-local and
linear constitutive equation between two sets of tensor fields

(2) Φ(x, t) = {ϕ(1), . . . ,ϕ(m)}(x, t), and Ψ(x, t) = {ψ(1), . . . ,ψ(m)}(x, t− t′),
for t′ ≥ 0, of the type pursued by Eringen (Eringen, 1992, 2002), can be represented by the linear form:

(3) Φ̂(k, s) = L̂(k, s)Ψ̂(k, s)

where L̂ represents a matrix of tensor moduli. Thi relation is tantamount to the spectral theory of
commutative linear operators with {ık, s} → {∇, ∂t}, and the time-honored Fourier-Laplace transforms
provide a concrete algebraic representation.

With Φ̂(x, t) = {σ̂, q̂} representing stress σ̂ and heat flux q̂ in (2), one obtains a linear non-local theory
of thermo-viscoelasticity. We recall that Eringen (Eringen, 2002, Section 7) proposes a simpler non-local
theory for viscous incompressible fluids with uncoupled heat flux, a theory that was overlooked in Ref 1.

If we adopt a scaling in which k and s are replaced by non-dimensional forms λ0k and τ0s, with λ0
and τ0 denoting, respectively, appropriate material length and time scales, then k = |k| and s represent,
respectively, a Knudsen and a Deborah number. Hence, one obtains a weakly non-local spatio-temporal
models from the Taylor-series expansion of L̂(k, s) about the spatially uniform steady state k = 0, s = 0.
The expansion in k is, to terms O(k2), tantamount to the Burnett expansion of kinetic theory (Müller
and Ruggeri, 1998), whereas the expansion in s represents the “retarded motions” of Coleman and Noll
(Coleman and Noll, 1961; Coleman, 1964). In particular, the simple fluid emerges atO(k) in k. Dissipative
response, defining the Navier-Stokes-Fourier regime, arises for s → 0 at O(1) for q̂ and at O(s) for σ̂,
provided we take v̂ to be O(s), i.e.

(4) v = ∂tu, with ∴ v̂ = sû,

where u denotes material displacement from the positions at t = 0,

Following Ref 1 we consider a spatially nonlocal linear viscoelastic fluid in which the stress σ relative to
a spatially uniform equilibrium pressure p0 (replacing the deviatoric stress τ of Ref 1, which deals with
incompressible fluids) and the heat flux q, are represented by σ̂ [= σ̂ij ] and q̂ [= q̂i] as functions of velocity

v̂ [= v̂i] and departure θ̂ = T̂ − T0/s from the uniform absolute temperature T0 of the equilibrium base

1Since our “Fourier-Laplace” transform involves what is essentially a Fourier transform on t = [0,∞) with complex wave
vector s, we could as well employ the terminology “Fourier transform” and “Fourier space”.
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state. With Cartesian tensor components displayed for clarity, these can be written (Ref 1):

q̂ [= q̂i] = L̂(11)θ̂ + L̂(12)v̂

[
def
= L̂(11)θ̂ + L̂

(12)
ij v̂j

]
,

σ̂ [σ̂ij ] = L̂(21)θ̂ + L̂(22)v̂

[
def
= L̂

(21)
ij θ̂ + L̂

(22)
ijl v̂l

]
,

(5)

where the tensor coefficients L̂ depend on the complex frequency s and wave vector k. Here as in the
following, we indicate components of tensors on a given Cartesian system by means of square brackets
[ ] and the Cartesian summation convention is employed. In the following we employ colons to denote
contraction of the trailing components of a prefactor with all the components of the postfactor, with the
conventional dot for the scalar product of vectors.

For isotropic materials, the various tensors in (5) must be isotropic functions of the wave vector and, for
the case of symmetric stress assumed here, can be written down explicitly as (Ref 1):

L̂
(11)
i = Âki, L̂

(12)
ij = B̂δij + Ĉkikj , L̂

(21)
ij = D̂δij + Êkikj ,

L̂
(22)
ijl = F̂ δijkl + Ĝ(δilkj + δjlki) + Ĥkikjkl,

(6)

where the scalar coefficients Â, B̂, . . . , Ĥ are functions of s and k2, where k2 = kiki defines a generally
complex quantity, since we shall admit complex wave vectors k. Also, we have added carats to the co-
efficients defined in Ref 1, in order to distinguish them from their physical-space images considered below.

In direct tensor notation, the preceding relations become

q̂ = Âkθ̂ + (B̂1 + Ĉk⊗ k)v̂,

σ̂ = (D̂1 + Êk⊗ k)θ̂ + F̂ (k·v̂)1 + Ĝ(k⊗ v̂ + v̂ ⊗ k) + Ĥ(k·v̂)k⊗ k
(7)

Now, the requirement of real q and σ implies that the coefficient, say, K̂n of the general term in (7):

(8) K̂n(k, s)kn, where kn = kn−1 ⊗ k, n = 1, 2, . . . , k0 = 1,

must satisfy K̂∗n(k2, s) = (−1)nK̂n(k∗2, s), where asterisks denote complex conjugates here and below.
Hence, the coefficients of even (odd) order terms in k must be essentially real (imaginary). (By essentially
real we mean a function R 7→ R, i.e. a function that is real-valued when its arguments are real, whereas
essentially imaginary is a function R 7→ ıR, i.e. ı times an essentially real function.)

In line with the above remarks, and following Ref 1, we obtain from (6) a weakly nonlocal theory in space

by means of the wave-number expansions of K̂ = Â, B̂, . . . , Ĥ of the form

(9) K̂ = K̂0(s) + K̂1(s)k2 + K̂2(s)k4 . . . ,

where K̂m(s) are independent of k. As pointed out in Ref 1, Gallilean invariance of heat flux requires

that B̂0 = 0 which, by a general form of Onsager symmetry, implies that D̂0=0. We shall show presently
that the latter result arises from a properly restricted form of that symmetry.

Note that the stress defined by (7)2 represents a non-local quantity whose expansion in k defines a
hierarchy of hyperstresses. In particularly, by an extension of the dissipative forms discussed by Goddard
and Lee (2017) we have

σ̂ =
∑
m≥1

σ̂(m):(−ık)m−1, i.e. σ̂ij =
∑
m≥1

σ̂
(m)
ij,j1,...,jm−1

(−ık)m−1j1,...,jm−1
,

where σ̂(1) is Cauchy stress and the σ̂(m), m > 1, is the hyperstress conjugate to (ık)mv̂.

Now, if both B̂0 and D̂0 vanish, then (5) and (7) reduce to a standard form in which {∇θ,Sym(∇v)}
represent nine forces conjugate to nine fluxes {q,σ}. In that case, the local dissipation rate is given by:

(10) σ :∇v − q

T0
· ∇θ ≥ 0,
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in the dissipative regime, where σ,q are strictly dissipative. Thus, the global dissipation becomes2 (by
the Parseval-Plancherel theorem)∫

R
(σ :∇v − q

T0
· ∇θ) dV (x) = −ı

∫
R̂

(σ̂ :k∗v̂∗ − q̂·k∗ θ̂
∗

T0
) dV̂ (k)

= −ı
∫
R̂

(L̂
(21)
ij k∗i v̂

∗
j

θ̂

T0
+ L̂

(22)
ijl k

∗
i v̂
∗
j v̂l − L̂

(11)
i k∗i

|θ̂|2

T 2
0

− L̂(12)
ij k∗i v̂j

θ̂∗

T0
) dV̂ (k) ≥ 0,

(11)

where R is the spatial region occupied by the fluid and R̂ is its Fourier image (i.e. the transform of its

indicator function). Based on an unwarranted restriction to real-valued transforms θ̂, v̂, it is erroneously

concluded in Ref 1 that the general Onsager symmetry L
(21)
ij = L

(12)
ij eliminates dissipative coupling be-

tween temperature and velocity.

As a more restricted form of Onsager symmetry, note that (7) gives

p̂ = Îθ̂ + Ĵk·v̂, where Î = −(D̂ + Êk2/3), Ĵ = −(F̂ + 2Ĝ/3 + Ĥk2/3),

k·q̂ = Âk2θ̂ + (B̂ + Ĉk2)k·v̂,
(12)

with J → J0 = −ıβ0 for k → 0, where β0 denotes the standard bulk (or “volume”) viscosity. Thus, in
the dissipative regime, the quantities

θ∇·q/T0 − p∇·v ≥ 0, or ı(θ̂∗k·q̂/T0 − p̂∗k·v̂) ≥ 0

represent the dissipation rate. The significance of the term involving pressure work is obvious, while
the other term is essentially the potential Carnot work dissipated locally by irreversible heat flow, since
θ/T0 = −(1− T/T0). Hence, the Onsager symmetry of the linear relations (12) requires that

(13) (B̂ + Ĉk2)/T0 = −Î = (D̂ + Êk2/3), and ∴ D̂0 = B̂0 = 0

in the dissipative regime, a necessary restriction on the more general form proposed in Ref 1.

As they stand, the relations (7) represent linear non-local thermo-viscoelasticity, with the x-t images of

the coefficients K̂ = Â, B̂, Ĉ, ... providing the kernels of integral operators acting on f = {θ,v}. According
to (8) these assume the form

(14) K̂nkn(·)f̂→ (−ı)n
∫ ∞
t′=0

∫
R′
Kn(x′, t′)∇n(·)f(x− x′, t− t′) dV (x′) dt′,

where (·) represents an optional dot product or contraction. Moreover, since the coefficients K̂ are
functions of k that depend only on k2, they admit simplified inverse spatial transforms, as discussed in
the Appendix. We now consider the special cases of the general theory represented by the kinetic theory
of gases and by Brenner’s bivelocity model.

3. Linearized kinetic theory of gases

As a slight variant on the kinetic-theory results given by Chapman and Cowling (Chapman and Cowling,
1960, p. 410), Müller and Ruggeri (Müller and Ruggeri, 1998, p. 74) give the following implicit forms for
heat flux and shear stress in a monatomic gas

q = −τq
{
−5R

2
p∇θ + q̇ + q·∇v −Rθ∇·σ − 7

5
q∇·v − 4

5
q·∇v +

7

2
Rσ ·∇θ +

σ

ρ
·∇p

}
σ = τσ

{
p[∇v + (∇v)T − 2

3
∇·v1]− σ̇ − 2[σ∇v + (σ∇v)T ] +

2

5
[∇q + (∇q)T

−2

3
∇·q1]− σ∇·v

}(15)

where τσ and τq are the respective relaxation times for stress and heat flux, and R is the species-specific
gas constant in the ideal-gas law R = ρT/p. By means of the the leading linear terms in (15), we identify
the Newtonian shear viscosity and the Fourier conductivity, respectively, as

(16) µ = pτσ, and κ = 5Rpτq/2 = 5(τq/τσ)Rµ/2

2after extension to complex k and correction of a typographical error of Ref 1
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Taking τq = 3τσ/2 one recovers a standard approximation κ=̇5cV µ/2 for smooth spherically-symmetric
molecules (Chapman and Cowling, 1960, p. 273) with specific heat cV = 3R/2.

It is a straighhtforward matter to linearize the equations (15) about a uniform state of density ρ0, tem-
perature T0 and pressure p0 = peq(ρ0, T0), since terms involving products of quantities that vanish in the
uniform state do not contribute to the linearized equations. The function peq introduced here represents
the equilibrium equation of state, which is of course given by the above ideal-gas law for dilute gases, but
we allow here a more general equation of state.

Letting

(17) µ = ρ0ν =
µ0

(1 + τσ0s)
, κ = ρ0cp0α =

κ0

(1 + τq0s)
, τ =

4τσ0
5(1 + τσ0s)

, f0 =
2T0
5p0

,

one finds that the linearized equations take on the compact form in Fourier space:

σ̂ = 2µε̂+ ıτ[(k⊗ q̂ + q̂⊗ k)/2− (q̂·k)1/3], and q̂ = −ıκkθ̂ + ıκf0k·σ̂,
where

ε̂ = ı[(k⊗ v̂ + v̂ ⊗ k)/2− (k·v̂)1/3]

(18)

After a bit of algebra, one can solve the equations (18) for q̂, σ̂ in terms of θ̂, v̂, to give

q̂ = −κ{ıkθ̂f1 + µf0f2[k2v̂ + f1k⊗ k·v̂/2]},

σ̂ = 2ıµf2[(k⊗ v̂ + v̂ ⊗ k)/2− (k·v̂)1/3] + κτf1(k⊗ k− k21/3)[θ̂− ıµf0f2(k·v̂)/3],

where f1 = [1 + 2(λk)2/3]−1, f2 = [1 + (λk)2/2]−1, λ =
√
κτf0

(19)

The terms in θ̂ appearing in the expression for σ̂ represent a non-local form of Maxwell’s celebrated ther-
mal stress (Maxwell, 1879, Eqs. (53)-(54)) in a rarefied gas. According to Maxwell’s kinetic theory, a good
estimate of the magnitude of this stress relative to the Newtonian viscous stress is ν0|∇2θ|/T0

√
tr(ε2),

where ν0 = µ0/ρ0 is the kinematic viscosity and
√

tr(ε2) the effective shear rate. Hence, according to the
kinetic theory, the thermal stress will generally to be important only in the slow shearing of a rarified
gas, as pointed out by Maxwell and noted in Ref 1.

Comparing with the general forms (7), one finds that the coefficients Â, B̂, · · · , Ĥ are given by

Â = −ıκf1, B̂ = −κµk2f0f2, Ĉ = −κµf0f1f2/3,

Ê = κτf1, Ĝ = ıµf2, Ĥ = −ıκτµf0f1f2/3,
(20)

and it is easy to obtain expansions in k2 of the type (9).

According to the kinetic theory of dilute monatomic gases, the irreversible contribution to pressure
vanishes (Chapman and Cowling, 1960; Müller and Ruggeri, 1998), implying that the coefficients Î , K̂ in
(12) are zero and hence that

(21) D̂ = −Êk2/3, and F̂ = −2Ĝ/3− Ĥk2/3,

determining the remaining coefficients D̂, F̂ . However, one should not expect these relations to hold for
more general fluids, such as liquids and polyatomic gases, whose bulk viscosity β0 = ıĴ0 = −ı(F̂0+2/3Ĝ0)
is generally non-zero.

The terms in (17) of the form (1+τs) represent exponential relaxation in the time domain. As such, they
describe Maxwell’s viscoelasticity and Cataneo’s heat conduction, which admit both mechanical shear
waves and heat waves, reflecting a breakdown of purely diffusive, dissipative response on time scales τ.
We recall that Ignaczak and Ostoja-Starzewski (2009) give a comprehensive treatment of the local theory
of finite thermoelastic wave speeds, represented by terms O(k) in (19). By contrast, and as anticipated
above, we expect dissipative response to arise in the small Deborah number limit De = τ0s << 1.

It is shown in the Appendix that one can analytically determine the inverse transforms of the coefficients
in (20) by means of the formula (42), thereby providing the kernels in the integral operator (14). This
provides a fully non-local model which should be much superior to weakly non-local models involving
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a sequence of higher spatial gradients, since integral operators, in contrast to differential operators, are
generally bounded. This is especially significant in the neighborhood of singularities, as illustrated by
the well-known work of Eringen (Eringen, 2002, Section 6.14) on crack-tip stresses in linear elasticity.

4. Bivelocity model

Here, we analyze here a recent version of Brenner’s bi-velocity model (Brenner, 2010), in order to com-
pare it with the linear theory proposed above. Given that Brenner’s modeling rests heavily on appeals to
linear irreversible thermodynamics (“LIT”), it is appropriate to employ a fully linearized version of the
type employed in the present paper and, also, to restrict the analysis to dissipative response.

Since Brenner employs somewhat special variables and notation, we have included Table 1 to clarify the
relation of his variables to those employed in the present work:

Table 1: Variables and Notation

Quantity Brenner (2010) Present
absolute temperature T T0 + θ
barycentric velocity vm v
“work”3 or “volume” velocity vw vw
diffuse “volume” flux jw = vw − vm jw = vw − v
pressure tensor P peq1− σ
pressure p = tr(P)/3 p = peq−tr(σ)/3
“thermodynamic” pressure p peq
shear stress T τ = σ + pI
heat flux ju q
“entropic” heat flux q = ju + p jw q + peq jw
thermal conductivity for q k κ0
shear & bulk viscosity η & ζ µ0 & β0

We adopt that form of Brenner’s model which he deems appropriate to creeping (inertialess) flow4, as
represented by his Eqs. (2.7), (2.12) and (2.13) (Brenner, 2010). In the present notation, these become:

q = −κ0∇θ + L12∇peq − peq jw=̇− κ0∇θ + L12[(∂θp)0∇θ + (∂ρp)0∇ρ]− p0 jw

jw = −L21T
−1∇θ + L22∇peq=̇− L21T

−1
0 ∇θ + L22[(∂θp)0∇θ + (∂ρp)0∇ρ]

σ = 2µ0∇vw = 2µ0[∇v +∇jw], p = −β0∇·vw = −β0∇·(v + jw),

(22)

where overbars represent symmetric deviators and =̇ denotes the approximation arising from linearization
about the uniform base state employed elsewhere in the present article. In Brenner’s model, the coef-
ficients Lij are assumed to describe a dissipative linear system, with corresponding Onsager symmetry
L21 = L12.

To compare with the present constitutive theory, it suffices to eliminate jw from (22), and it is algebraically
expedient to express these relations as Fourier-Laplace transforms. Account taken of the linearized mass
balance (cf. Eqs. (27 below), one thereby obtains relations of the form (7) and (12), with

Â = ı
{

[L12 − p0L22](∂θp)0 − κ0 + L12p0/T0
}
, B̂ = 0, Ĉ = [L12 − p0L22]ρ0(∂ρp)0/s

Ê = −2µ0[L22(∂θp)0 − L12/T0], Ĝ = ıµ0, Ĥ = 2ıµ0ρ0(∂ρp)0L22/s,

Î = β0[L22(∂θp)0 − L12/T0]k2 = −(D̂ + Êk2/3),

Ĵ = −ıβ0[1 + ρ0(∂ρp)0L22k
2/s] = −(F̂ + 2Ĝ/3 + Ĥk2/3),

(23)

from which it follows that

(24) β0 = 2µ0/3, D̂ = 0, F̂ = 0

3called “dynacentric” in Ref 1
4Otherwise, his constitutive equations appear to contain inertial terms that are hard to reconcile with the principle of
material frame indifference.
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Note that (Brenner, 2010) takes

(25) L12 = T0α0β0, where α0 = κ0/ρ0cp0, and β0 = −(∂θρ)p0/ρ0 = (∂θp)0/ρ0(∂ρp)0,

involving the thermal diffusivity α0 and isobaric coefficient of thermal expansion β0. With certain reser-
vations, he then takes L22 = α0β0/(∂θp)0, which would imply that L22(∂θp)0−L12/T0 and, hence, Î and

Ê vanish in (23). Thus, the Maxwell thermal stress represented by the term Ê in (7) also vanishes.

Brenner does not invoke the restrictions on the coefficients of viscosity µ0,β0 that are required for
consistency with the general model proposed in this work.

5. Application to linear thermo-acoustic waves

For the uniform fluid at rest, we adopt mechanical and caloric equations of state connecting equilibrium
pressure and specific internal energy to temperature and density:

(26) p = peq(θ, ρ), and ε = εeq(θ, ρ), with ∂θεeq = cv, ∂ρεeq =
1

ρ2
[
p− θ(∂θpeq)

]
,

where cV denotes the isochoric specific heat.

The present treatment of temperature and density as independent variables is inspired by the modern
literature on continuum thermodynamics, where various intensive variables are given as derivatives of
Helmholtz free energy. It seems to us more natural than the formulation based on pressure and entropy
adopted in standard treatises on acoustics (Pierce, 1981) but in any case can be easily converted to
the latter. Accordingly, we shall refer to the “entropy mode” identified by (Pierce, 1981, p. 523), and
subsequently by Davis and Brenner (2012), as the“thermal mode”, noting that the modal amplitudes
are simply related by a constant of proportionality (Pierce, 1981, Eq. (10-3.16)) according to the linear
theory which follows.

Thus, with subscripts 0, 1 referring, respectively to a uniform equilibrium state and a small perturbation
on that state, such that ζ = ζ0 + ζ1, for any variable ζ, the linearized balances of momentum, mass, and
energy reduce in the absence of body forces or radiant energy transfer to:

ρ0∂tv1 = −(∂θp)0∇θ1 − (∂ρp)0∇ρ1 +∇·σ1, where (∂zp)0 = ∂zpeq
∣∣
T0,ρ0

, z = θ, ρ,

∂tρ1 = −ρ0∇·v1, and ρ0cv0∂tθ1 = ∇·q1 − T0(∂θp)0∇·v1,
(27)

This stated, we shall now drop the subscript 1 on perturbations, as done implicitly in the preceding
discussion, where (7) provides constitutive equations for the perturbed heat flux and stress q and σ in
terms of θ and ρ.

Other than an assumption of a dissipative regime for small s, we shall not consider in detail the restrictions
on the constitutive model arising from the entropy balance (the Clausius-Duhem inequality) and the
related “extended thermodynamics” (Müller and Ruggeri, 1998). However, we note that if heat flux is
neglected from (27) the last two members of (27) yield the condition of constant equilibrium entropy ηeq:

(28) ρ0∂tηeq = ρ0cv0∂tθ/T0 − (∂θp)0∂tρ/ρ0 = 0,

whereas the actual entropy η may generally increase owing to thermo-mechanical dissipation.

Modulo inhomogeneous terms arising from initial values of θ, ρ,v, the Fourier-Laplace transforms of (27)
reduce to the linear homogeneous form:

(29) ρ0sv̂ + ı(∂θp)0θ̂k +
ρ0
s

(∂ρp)0kk·v̂ − ıσ̂k = 0, and ρ0cv0θ̂ + ık·q̂ + ıT0(∂θp)0k·v̂ = 0

Substitution of (7) into (29) yields a set of four linear equations in θ̂, v̂. However, these can be reduced

to a set of two linear equations in θ̂,∇·v by employing the “divergence” form obtained by taking the dot
product of k with the first member of (29). The determinantal equation results then in the dispersion
relation for the resultant compressive modes:[

D̂ + Êk2 − (∂θp)0

] [
B̂ + Ĉk2 + T0(∂θp)0

]
k2−[

ρ0cv0s+ ıÂk2
] [
ρ0s−

{
2ıĜ+ ıF̂ − ρ0(∂ρp)0/s

}
k2 − ıĤk4

]
= 0

(30)

7



In the application of this relation to the time-periodic waves with temporal frequency ω it is understood
that s = −iω here and below.

In addition to the modes described by (30) there exists a decoupled “vorticity” or shearing mode involving
the vorticity w = ∇×v (Davis and Brenner, 2012; Pierce, 1990). By means of the Fourier representation
ŵ = ık× v̂ and the cross product of k with the first member of (29), one obtains

(31) [ρ0s− ıĜ(k2, s)k2]ŵ = 0,

which has an immediate interpretation in terms of the inverse G(x, t) of the transform Ĝ. As indicated
by the analysis in the Appendix, (31) describes shear waves on time scales τσ0. By contrast, in the dis-
sipative regime that emerges on longer time scales one obtains strongly damped diffusive modes (Davis
and Brenner, 2012; Pierce, 1990).

In sum, given the Fourier-Laplace inverses A(x, t), B(x, t), . . . ,H(x, t), the relations (30)-(31) provide a
fully non-local model of linear signal propagation, including long-range memory effects in time. Clearly,
a more restricted form is required for most practical applications. Thus, the retention of terms up to
O(k2) in (7) reduces the (30) to:[

D̂0 + (D̂1 + Ê0)k2 − (∂θp)0

] [
(B̂1 + Ĉ0)k2 + T0(∂θp)0

]
k2−[

ρ0cv0s+ ıÂ0k
2
] [
ρ0s− {2ıĜ0 + ıF̂0 − ρ0(∂ρp)0/s}k2

]
= 0,

(32)

which involves 5 distinct coefficients Â0, (B̂1 + Ĉ0), D̂0, (D̂1 + Ê0), (F̂0 + 2Ĝ0) with dependence on s
representing relaxation effects in the time domain.

By a slight extension of the kinetic theory of Section 3, four of the coefficients appearing in (32) and the
coefficient appearing in the limiting form of (31),

(33) [ρ0s− ıĜ0(s)k2]ŵ = 0,

are given respectively by

ıÂ0 =
κ0

(1 + τq0s)
, (B̂1 + Ĉ0) = − 4κ0µ0f0

3(1 + τσ0s)(1 + τq0s)
,

(D̂1 + Ê0) =
8κ0τσ0

5(1 + τq0s)
, ı(F̂0 + 2Ĝ0) =

β0 + 4µ0/3

(1 + τσ0s)
, and Ĝ0 =

ıµ0

1 + τσ0s

(34)

Note that the form of Ĝ0 and (33) imply elastic shear waves in at high frequencies s→∞, thereby elim-
inating infinite propagation speeds associated with the dissipative limit s→ 0 (Davis and Brenner, 2012).

Following Brenner (2010) and Davis and Brenner (2012), we have included a bulk viscosity coefficient
β0, but which now involves elastic relaxation5. The coefficient β0 vanishes according to the monatomic
kinetic theory, as does the remaining unspecified coefficient D̂0(s). Otherwise, we note from (7) that

D̂0(s) involves a non-equilibrium response of pressure to temperature variation. We further note that a
similar relaxation effect in the temperature-energy response would be obtained upon replacing the specific
heat cv0 by an s-dependent term ĉv0(s), analogous to a formalism proposed elsewhere (Goddard, 1992).

In the dissipative model obtained by neglecting terms τs and taking D̂0 = 0 (by the Onsager symmetry
discussed above), the dispersion relation (34) reduces to a cubic in both s and k2, whereas the model
considered by Davis and Brenner (2012) is cubic in s but quadratic in k2.

For the classical Navier-Stokes-Fourier model

(35) Â = Â0 = −ıκ0, B̂ = Ĉ = D̂ = Ĥ = 0, Ĝ = Ĝ0 = ıµ0, F̂0 + 2Ĝ0 = −ı(β0 + 4µ0/3),

the dispersion relation (32) reduces to

[s+ α0γk
2][s2 − (β0 + 4µ0/3)sk2/ρ0 + (∂ρp)0k

2]− (γ − 1)k2s = 0,

where α0 = κ0/ρ0cp0, and γ = cp0/cv0 = c2S/c
2
T = 1 + T0(∂θp)

2
0/ρ

2
0cv0(∂ρp)0

(36)

5The quantity (β0 + 4/3µ0)/ρ0 is equal to the quantity λ + 2ν in Eqs. (14) and (23) of Davis and Brenner (2012), who

employ the unconventional designation of ρ0λ in their Eq. (2) as bulk viscosity.
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with cS and cT denoting, respectively, the isentropic and isothermal speeds of sound, whose ratio is given
by the specific heat ratio γ. It is easy to show that (36) is identical with the form given by Davis and
Brenner (Davis and Brenner, 2012, Eq. (11)) if (β0 + 4µ0/3)/ρ0 is replaced by the equivalent quantity
(2ν0 + λ0) in their analysis and −ρ20(∂ρp)0 is identified as the isothermal compressibility.

The more general versions (32) and (34) can be written in the non-dimensional form

(ak̃2 + b)(ck̃2 + d)k̃2s̃− (s̃+ ek̃2)(s̃2 + fk̃2s̃+ gk̃2) = 0, where k̃2 = τσ0ν0k
2, s̃ = τσ0s,

with a = 8γα/5ν0, b = −(∂θp)0/ρ0cv0, c = −8ανρ0cp0T0/15ν2
0p0,

d = T0(∂θp)0τσ0/µ0, e = γα/ν0, f = −(β + 4µ/3)/µ0, g = (∂ρp)0τσ0/ν0 = c2T τσ0/ν0,

(37)

Note that k̃2 involves a squared length λ̃20 = τσ0ν0, which is related by a factor |c| to that introduced
in the Appendix. Note also that for dilute gases all the coefficients a, b, . . . , g are of order unity, so that
the polynomial in the first equation of (37) is “well-tempered”, that is has derivatives that are all of
comparable magnitude for arguments near unity.

Casting (37) in the standard form of a cubic equation in z = k̃2:

Az3 + Bz2 + Cz + D = 0,

with A = acs̃, B = (ad+ bc− ef)s̃− eg, C = (bd− g)s̃− (e+ f)s̃2, D = −s̃3,
(38)

the three roots are given by the well-known formula

zk = − B
3A

[
1 + 2(1− 3AC/B2)1/2 cos

(
2kπ + φ

3

)]
, for k = 0, 1, 2,

with φ = cos−1 ζ, where ζ = (1− 9AC/2B2 + 27A2D/2B3)(1− 3AC/B2)−3/2

(39)

The quantities involved in (39) are generally complex, and we can express the complex circular function
appearing there in terms of elementary functions as:

cos

(
2kπ + φ

3

)
=

1

2

(
e(2kπ+φ)ı/3 + e−(2kπ+φ)ı/3

)
=

1

2

(
e2kπı/3

[
ζ + ı

√
1− ζ2

]1/3
+ e−2kπı/3

[
ζ − ı

√
1− ζ2

]1/3)
, k = 0, 1, 2,

(40)

or, by means of yet other well-known formulae (Abramowitz and Stegun, 1965, Eqs. 15.1.3-19) in terms
of hypergeometric functions F = 2F1 as:

cos

(
2kπ + φ

3

)
= −1

2
[cos

φ

3
∓
√

3 sin
φ

3
], for k = 1, 2,

where cos
φ

3
= F

(
−1

6
,

1

6
;

1

2
; 1− ζ2

)
& sin

φ

3
=

1

3

√
1− ζ2 F

(
1

3
,

2

3
;

3

2
; 1− ζ2

)
,

(41)

with appropriate branch cuts for
√

1− ζ2 and with ζ = cosφ given by the last equation of (39).

Comparison to the bi-velocity model. We recall that the classical dispersion relation as well as the
modification proposed by Davis and Brenner (2012) involve a quadratic equation for z in lieu of (38).
It is clear that such a quadratic arises from (38) for |s̃| << 1, which is characteristic of the dissipative
regime represented by the previous studies. Indeed, by neglecting terms O(s̃3), one obtains a quadratic
similar to that given by Eq. (23) of Davis and Brenner (2012), with generally different coefficients. This
gives a dispersion relation that is quadratic in both k2 and s representing a PDE that is quadratic in
∇2 and ∂t, for which Davis and Brenner (2012) offer some special solutions that suggest experiments to
arrive at the correct coefficients in the dispersion relations.

Extension to solids and Cosserat media

With minor modifications the preceding analysis applies to graded (“higher-gradient”) isotropic linear
thermo-viscoelastic solids. For this purpose, it suffices to allow for static stress by taking account of (4)

and including terms that behave like s−1 for s→ 0 in the coefficients D̂, . . . , Ĥ in (7)2. It can be noted

that the coefficient D̂ serves to describe both static and dynamic thermoelasticity and, as with the fluids
considered above, the static contribution can be included in an equation of state for equilibrium pressure
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peq(θ, ρ).

Without pursuing the algebraic details, we note that the strain-gradient theory of Mindlin (1964), an-
ticipated by the seminal works of Piola (Dell’Isola et al., 2015), yields dispersion relations for both
dilatational and shear waves that are quadratics in k2 (Mindlin, 1964, Eq. (9.34)) with a much simpler
form than (32) and (37).

As an extension of Mindlin (1964), one may treat a more general Cosserat thermo-viscoelasticity by
addition to the list of variables in (2) and (5) the Cosserat rotation vector ϑ = [ϑi] and the moment

stress σ(2) = [σ
(2)
ij ], conjugate to ∇ϑ, and by replacing the stress σ by a non-symmetric tensor with

antisymmetric part defining a vector conjugate to ϑ. Under the rubric of micropolar elasticity, Eringen
(1984) has already given a comprehensive analysis for the isothermal case that leads to a cubic in k2 as
dispersion relation, and Abreu et al. (2017) provide a similar analysis with a view to the emerging field
of rotational seismology.

Finally, it should be noted one can extend the present type of analysis to anisotropic media like those
considered by Suiker et al. (2001) by appropriate symmetry restrictions and modification of the relations
(6). One possibility is to employ the joint isotropic invariants of the wave vector k and a set of structure
tensors to capture the anisotropy (Cowin, 1985; Man and Goddard, 2016).

Conclusions

The Abstract provides a generally adequate summary of the present work. It is worth emphasizing that
the Burnett-order linearized Chapman-Enskog kinetic theory is subsumed by the general wave-number
expansions proposed in the present work, which gives more general thermo-viscous response than that of
Brenner’s bi-velocity model, while also allowing for themo-viscoelastic behavior.

As matter for future work, it would be interesting to consider the utility of non-local models in resolving
certain fluid-mechanical singularities, such as three-phase contact lines, which bear a certain resemblance
to the linear-elastic singularities around crack tips addressed by the non-local elasticity of Eringen (2002).

Acknowledgement

I wish to acknowledge several helpful conversations with Professor A. M. J. Davis during the early stages
of this work. Also, I am grateful for the hospitality accorded me during extended stays in the Laboratoire
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Appendix: Inverse Transforms

We recall that the inverse Fourier transform of a function f̂(k), with k2 = kiki, is a function of r = |x|
given by the radial form Gradshteyn and Ryzhik (2000)

f(x) =
1√
8π3

∫
eık·xf̂(k) sin ϑ̂k2 dk dϑ̂ dϕ̂ = − 1√

2π

∫ ∞
k=0

∫ π

0

eıkr cos ϑ̂f̂(k) sin ϑ̂ dϑ̂k2 dk

=

√
2

π

∫ ∞
0

sinc(kr)f̂(k)k2 dk, where sinc(z) = z−1 sin z,

(42)

Thus, one can employ (42) to derive the inverse transforms K(t,x) = A(t,x), B(t,x), . . . of the coefficients
(8), noting that the functions f1, f2 in (19) can be written for i = 1, 2 as

fi = (1 + λ2i k
2)−1, where λ2i = biλ

2
0(1 + τ1s)

−1(1 + τ2s)
−1,

λ20 = 4κ0τ1f0/5, b1 = 1/2, b2 = 2/3, τ1 = τσ0, τ2 = τq0,
(43)

Now, the coefficients in (8) can all be expressed as affine forms in f1, f2, since

(44) k2f = k2(1 + λ2k2)−1 = (1− f)/λ2, and f1f2 =
b1

b1 − b2
f1 +

b2
b2 − b1

f2

First, note that substitution of f̂ = (1 + λ2k2)−1 into (42) gives

f(x) =

√
2

πr2

∫ ∞
0

k

1 + λ2k2
sin kr dk =

√
π

2λ4r2
exp

(
− r
λ

)
Second, note that

exp

(
− r
λ

)
= exp

(
−γ
√
s′2 − a2

)
, where s′ = s+

τ1 + τ2

2τ1τ2
, a =

τ2 − τ1

2τ1τ2
, γ =

(
τ1τ2

b

)1/2

r
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However, the inverse Laplace transform Abramowitz and Stegun (1965)

g(t) = L−1
{

exp
(
−γ
√
s2 − a2

)}
= δ(t− γ) +

aγ√
t2 − γ2

I1

(
a
√
t2 − γ2

)
u(t− γ),

where I1(z) is the Bessel function of the second kind, u(t) the Heaviside function and δ(t) = u′(t) the
Dirac delta, gives

h(t) = L−1
{

exp
(
−γ
√
s2 − a2

)}
= exp

(
−τ1 + τ2

2τ1τ2
t

)
g(t)

Thus, the coefficients in (20) are seen to involve various powers of (1 + τ1s) and (1 + τ2s) multiplying
the above transforms, so that the inverse Laplace transform of the resulting products can in principle be
obtained by convolution.
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