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This article deals with the Hadamard instability of the so-called µ(I) model of dense
rapidly sheared granular flow, as reported recently by Barker et al. (J. Fluid Mech.,
vol. 779, 2015, pp. 794–818). The present paper presents a more comprehensive study
of the linear stability of planar simple shearing and pure shearing flows, with account
taken of convective Kelvin wavevector stretching by the base flow. We provide
a closed-form solution for the linear-stability problem and show that wavevector
stretching leads to asymptotic stabilization of the non-convective instability found by
Barker et al. (J. Fluid Mech., vol. 779, 2015, pp. 794–818). We also explore the
stabilizing effects of higher velocity gradients achieved by an enhanced-continuum
model based on a dissipative analogue of the van der Waals–Cahn–Hilliard equation
of equilibrium thermodynamics. This model involves a dissipative hyperstress, as
the analogue of a special Korteweg stress, with surface viscosity representing the
counterpart of elastic surface tension. Based on the enhanced-continuum model, we
also present a model of steady shear bands and their nonlinear stability against parallel
shearing. Finally, we propose a theoretical connection between the non-convective
instability of Barker et al. (J. Fluid Mech., vol. 779, 2015, pp. 794–818) and the loss
of generalized ellipticity in the quasi-static field equations. Apart from the theoretical
interest, the present work may suggest stratagems for the numerical simulation of
continuum field equations involving the µ(I) rheology and variants thereof.

Key words: complex fluids, granular media, instability

1. Introduction
Granular flows are ubiquitous in nature and technology, a fact that accounts for a

large body of research devoted to the development of continuum models for flows
on length scales much larger than the typical grain diameter. Of particular interest
here is the phenomenological ‘µ(I)’ model proposed by Jop, Forterre, Pouliquen and
co-workers (MiDi 2004; Jop, Forterre & Pouliquen 2005, 2006), which has proven
useful for dense rapidly sheared flows in chutes and avalanching granular layers.
However, Barker et al. (2015), hereafter referred to as Ref. 1, conclude that this

† Email address for correspondence: jgoddard@ucsd.edu
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model is generally ill-posed in the sense of Hadamard, exhibiting the classical linear
instability against short-wavelength perturbations. We recall that such phenomena are
part and parcel of material instability, long recognized in solid mechanics and more
recently in the mechanics of complex fluids (see, e.g., Goddard 2003, and references
therein).

While the work of Ref. 1 is highly relevant to the modelling of granular flow,
particularly as it pertains to numerical simulations, we do not share the authors’
assessment of Hadamard instability as physically ‘unrealistic’. On the contrary,
we assert that this type of instability signals the emergence of spatiotemporal
discontinuities, as ‘weak solutions’ of the underlying field equations for numerous
physical phenomena, including aerodynamic shocks, hydraulic jumps, thermodynamic
phase transitions and, most relevant to the present work, shear bands or other forms
of localized deformation in complex solids and fluids.

In the examples cited above, one should distinguish those involving dynamic or
‘geometric’ instability from those representing material instability (Goddard 2003),
a matter discussed further in the following. In either case, numerical simulation
generally requires advanced techniques such as shock capturing, adaptive mesh
refinement or meshless methods (cf. Belytschko, Chiang & Plaskacz 1994) to represent
certain discontinuous solutions that find widespread applicability in various fields of
mechanics and thermodynamics.

Moreover, as particularly appreciated in the field of plasticity (see, e.g., Forest
& Aifantis 2010; Henann & Kamrin 2014), weak solutions may be regularized by
means of enhanced-continuum models that involve non-local or weakly non-local
‘gradient’ effects. From a physical point of view, such effects represent the emergence
of microscopic or mesoscopic length scales or, loosely, ‘Knudsen effects’. As one of
the benefits for numerical simulation, regularization stabilizes against short-wavelength
disturbances and imparts a diffuse structure to otherwise sharp discontinuities.

The above considerations provide much of the motivation for the present work
whose principal objectives are to

(1) explore a simple gradient regularization of the µ(I) model and
(2) provide a more complete linear-stability analysis of the regularized model.

For the purposes of (1), we shall adopt a viscoplastic tensorial analogue of the
scalar van der Waals–Cahn–Hilliard (vdW–C–H) model of equilibrium thermodynamics,
under isothermal conditions, with dissipation potential replacing Helmholtz free energy
and with velocity gradient replacing density. We make no claim for the physical
validity of this largely phenomenological model of gradient effects, merely noting
that it is one of the simplest models imaginable and that it embodies the dissipative
analogue of a special form of Korteweg stress (Anderson, McFadden & Wheeler
1998), with surface viscosity arising as the counterpart of equilibrium surface tension.
We recall that appeals have been made to the vdW–C–H model in the treatment of
other dissipative phenomena (e.g. by Forest & Aifantis 2010), and the thermodynamic
version has been connected to microscopic forces by Gurtin (1996). For our purposes,
it conveniently elucidates several theoretical issues that have not been sufficiently
emphasized in past works.

In the case of (2), we shall show that the phenomenon of wavevector stretching,
identified in several previous works (Goddard 2003) but neglected in the analysis
of Ref. 1, results in the asymptotic stability of the µ(I) model, irrespective of the
vdW–C–H regularization. In effect, initially unstable wavevectors are rotated by
shearing into an ultimately stable orientation, as foreseen in the path breaking study
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304 J. D. Goddard and J. Lee

of hydrodynamic stability by Thomson (Thomson 1887, later Lord Kelvin). To lend
a certain plausibility to this scenario, we shall also explore an approximate model
of a stable shear band with characteristic thickness derived from the vdW–C–H
model. (Following the original submission of the present work, three papers have
appeared (Heyman et al. 2016; Barker et al. 2017; Barker & Gray 2017), the first
two indicating that compressibility effects can also regularize the µ(I) model. The
third paper confirms our surmise that ill-posedness is associated with marginal
convexity of the dissipation potential in the regimes of constant µ while offering
a modified form of µ(I) to alleviate this difficulty. However, whatever their other
merits, scale-independent models of the kind provided in these works cannot describe
the diffuse shear bands that may eventually emerge from material instability.)

While our stability analysis applies to any homogeneous shear as base state, we
shall focus attention here on the two important special cases of planar flows, the
simple shear treated in Ref. 1 and pure shear.

As a word on notation, we note that, when needed occasionally for clarity, we
employ Cartesian tensor notation, with sums over repeated indices, with commas
denoting partial derivatives, with tensor components indicated in brackets [ ] and
with occasional listing of vector components in parentheses ( ). In coordinate-free
notation, the linear transformation of vectors v into vectors by second-rank tensors
A is denoted by Av = [Aijvj], and the special case of the Euclidean scalar product
(i.e. ordered contraction) of tensors having equal rank by the standard mathematical
‘dot’ product. We occasionally employ the brackets [ ] as standard notation for
skew-symmetrization of tensor components and for the arguments of functionals
defined on fields.

2. Gradient regularization of µ(I)
As the method we employ applies to general models of viscoplasticity, we offer

a derivation of constitutive equation and momentum balance based on the notion
of a dissipation potential and the associated hyperstresses and variational principle.
Readers not interested in these details can skip immediately to the momentum balance
presented below in (2.11).

Consider a strictly dissipative material endowed with frame-indifferent dissipation
potential (Edelen 1972, 2005; Goddard 2014; Saramito 2016) depending on the first
two spatial gradients of the material velocity field v(t, x),

ψ(D,∇∇v)=ψ(QDQT,Q∇Q∇vQT), with D = 1
2(∇v + (∇v)T), (2.1)

where D is the deformation rate and Q = Q(t) is an arbitrary time-dependent but
spatially independent orthogonal tensor.

A simple special case is represented by the vdW–C–H equation. (The terminology
‘van der Waals–Cahn–Hilliard’ is more accurate historically (Rowlinson 1979) than
the oft-used ‘Cahn–Hilliard’. We recall that Korteweg proposed a more general stress
arising from a Helmholtz free energy contribution of the form ρ,iρ,jρ,ij.) Here,

ψ(D,∇∇v)=ψ0(D)+ χ |∇∇v|2, (2.2)

where we take χ to be a positive constant, and the term in the higher-order velocity
gradient |∇∇v|2 = (∇∇v) · (∇∇v) = vi,jkvi,jk serves to provide a local regularization
whenever ψ0 becomes locally non-convex. We recall that the gradient term in the
standard scalar version of the vdW–C–H equation involves fluid density in place
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On the stability of µ(I) 305

of ∇v (Cahn & Hilliard 1958; Gurtin 1996), providing an energy penalty on large
gradients. This yields well-posed field equations in the case of non-convex free energy
with phase transition and serves to define the equilibrium surface tension in the limit
χ→ 0.

In the following, we deal with strongly dissipative materials, i.e. strictly dissipative
materials devoid of gyroscopic or ‘powerless’ stress (Goddard 2014), for which
the partial derivatives of the dissipation potential ψ(D, ∇∇v) yield work-conjugate
(symmetric Cauchy) stress T (1) and hyperstress T (2) respectively, according to

T (1)
=
∂ψ

∂D
=
∂ψ0

∂D
and T (2)

=
∂ψ

∂(∇∇v)
= 2χ∇∇v, (2.3a,b)

and the volumetric rate of dissipation is given by

D= T (1)
· D + T (2)

· ∇∇v = T (1)
ij Dij + T (2)

ijk vk,ij. (2.4)

The hyperstress T (2)
= [T (2)

ijk ] represents a generalized ‘pinch’ n · T (2)
= [niT

(2)
ijk ] acting

on a material plane with unit normal n, which can be represented by a force dipole
consisting of equal and opposite forces. The symmetric part [niT

(2)
i( jk)] involves forces

acting along the line of centres of their points of application, representing a normal
pinch or symmetric ‘stresslet’, whereas the antisymmetric part [niT

(2)
i[ jk]] involves

forces acting perpendicular to their line of centres, representing a ‘torque’ or ‘rotlet’.
It should be noted that the gradient of vorticity enters into the mechanical power and
that most of the concepts of kinematics and stress carry over from the various works
on the elasticity of solids, where the strain energy (Helmholtz free energy) rather
than the dissipation potential is involved. (Whereas the theory for elastic solids or
fluids leads to elastic surface tension, the hyper-dissipative model can apparently yield
a surface viscosity, which as far as we know would constitute a novel continuum
approach to the subject.)

Thus, upon enslaving microstructural to continuum kinematics as in the classic work
of Mindlin (1964), achieved by taking his relative displacement gradient γij = 0, one
obtains the linear-elastic analogue of the present work, with his strains εij replacing
our strain rates Dij. Our quasi-static equation of equilibrium (2.7) follows from that
of Mindlin upon relaxing the assumption of incompressibility and combining his
equations (4.1), effectively eliminating his ‘relative stress’ σij. Mindlin’s work also
shows that, within a linear isotropic gradient model, one may anticipate further
quadratic terms in ∇∇v beyond that adopted in the simpler one-parameter model
(2.2) of the present study.

The Hamiltonian momentum balances for the hyper-elastic system of Mindlin do not
apply to hyper-dissipative systems, except in the limit of quasi-static (i.e. inertialess)
motion. Hence, further analysis is required to obtain the relevant balances for the
latter, and we begin with the variational principle leading to the quasi-static balance.
We note that similar methods have been adopted in past works of Hill (1956) and
Leonov (1988), methods that are made rigorous mathematically by the later works of
Edelen, e.g. Edelen (1972, 2005), which are highlighted and simplified in the survey
by Goddard (2014).

It should be noted that the variational derivative of the functional of v(x, t)
representing the global dissipation potential,

Ψ [v] =

∫
V
[ψ(D,∇∇v)− p∇ · v] dV, (2.5)
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306 J. D. Goddard and J. Lee

subject to incompressibility ∇ · v = 0 in the spatial domain V , is given by

δΨ [v] =

∫
V

[
∂ψ

∂D
· δ∇v +

∂ψ

∂(∇∇v)
· δ∇∇v − p∇ · δv

]
dV

=

∫
V
[T (1)

ij δvi,j + T (2)
ijk δvi,jk − pδvj,j] dV

=

∫
V
[(T (1)

ij δvi),j − T (1)
ij,jδvi + (T

(2)
ijk δvi,j),k

− (T (2)
ijk,kδvi),j + T (2)

ijk,jkδvi − (pδvj),j + p,jδvj] dV

=

∫
∂V

n · [(T (1)
−∇ · T (2)

− pI) · δv + T (2)
· ∇δv] dS

−

∫
V
[∇ · T (1)

−∇p− (∇∇) · T (2)
] · δv dV, (2.6)

where pressure p plays its usual role as Lagrange multiplier and use has been made
of the divergence theorem for integration by parts. Noting that δv= 0 on ∂V implies
that the surface-tangential gradient of δv vanishes on ∂V , this establishes the following
variational theorem.

Stationarity of the global dissipation potential for all variations δv(x)
subject to incompressibility ∇ · v(x) = 0 in V and to fixed v and n · ∇v
on ∂V yields the quasi-static equation of equilibrium.

The latter is given by (2.6) as

∇ · T (1)
−∇p− (∇∇) · T (2)

= 0, i.e. T (1)
ij,j − p,i − T (2)

jki,jk = 0,

or ∇ · T −∇p= 0, where T := T (1)
−∇ · T (2), i.e. T ij = T (1)

ij − T (2)
jki,k, (2.7)

where T obviously serves as the effective stress tensor. Despite the ostensible
reduction to a single stress tensor, we should re-emphasize that the hyperstress
T (2) can give rise to singular surface stresses balancing discontinuities in the Cauchy
stress T (1), as mentioned below in our analysis of shear bands. We further note that
the presence of such effects at the nominal free surface of thin avalanching layers
could invalidate theories based on variants of the µ(I) model, as already suggested
by certain strongly non-local models (Henann & Kamrin 2014).

Now, one can extend (2.7) to include gravitation or other fixed body forces g by
replacing ψ with ψ − φρsg · v in the first term of (2.6). Then, by a further appeal to
d’Alembert’s principle, one can then replace g with the total acceleration g− dtv in
the resulting equation of equilibrium to obtain the complete linear momentum balance,

ρsφdtv =−∇p+∇ · T + ρsφg and ∇ · v = 0, with dt = ∂t + v · ∇, (2.8a,b)

a relation that no longer follows directly from the above extremum principle. Here,
ρs is the constant solid density of the grains, p is the pressure, g is the gravitational
acceleration and dt is the material (or ‘substantial’) time derivative. Thus, with
reinterpretation of the stress tensor T , the linear momentum balance retains the same
form as for a simple (‘non-polar’) material.
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On the stability of µ(I) 307

2.1. Application to the µ(I) model
In the model of Jop et al. (2006) (cf. Ref. 1) for granular rheology, the Cauchy
stress T (1) is given by a rate-dependent version of Drucker–Prager plasticity with
rate-dependent friction coefficient µ(I),

T (1)
= ∂Dψ0 =µ(I)pE, with µ(I)=µ0 +

(µ∞ −µ0)

(I + I∗)
I, and (2.9a)

ψ0 =
p
θ

[
µ∞I + (µ0 −µ∞)I∗ ln

(
I + I∗

I∗

)]
. (2.9b)

Here, the normalized form or ‘director’ E , the Euclidean norm of the strain rate |D|
and the inertial number are defined respectively by

E :=
D

|D|
, |D| :=

√
tr(D2) and I = θ |D|, with θ = d

√
2ρs/p, (2.10a−c)

where I∗ is an empirical constant (denoted by I0 in several previous works), d is a
representative grain diameter, p is the local pressure, θ plays the role of an inertial
relaxation time and the quantities µ∞>µ0 represent limiting friction coefficients. One
obtains the standard version adapted to simple shear upon replacing the Euclidean
norm by the norm ‖D‖ = |D|/

√
2 employed in Jop et al. (2006) and Ref. 1.

We note that ψ0 is marginally convex in the special case of constant µ (Goddard
2014), which we believe accounts for the general tendency to material instability in
perfectly plastic models. The potential multiplicity of solutions will be made more
evident by the model of shear banding presented below in § 4.

The momentum balance (2.8) can now be recast as

ρsφdtv =−∇p+∇ · (µ(I)pE)− 2χ∇4v + ρsφg. (2.11)

The third term on the right-hand side of (2.11) arises from the hyperstress T (2), and
the momentum balance of Ref. 1 is obtained by taking χ ≡ 0. The preceding term
represents the standard Cauchy stress and, confirming the analysis of Ref. 1, can be
expanded to yield

∇ · (µ(I)pE)=
µ(I)(2−

′

µ)

2
E∇p+ (

′

µ−1)
µ(I)p
|D|
[(E∇)∇v] · E +

µ(I)p
2|D|
∇

2v. (2.12)

Then, the momentum balance in (2.8) becomes

ρsφdtv =−N∇p+
(
′

µ−1)µp
|D|

[(E∇)∇v] · E +
µp

2|D|
∇

2v − 2χ∇4v + ρsφg, (2.13)

where we employ the notation

N = I −
(2−

′

µ)µ

2
E,

′

µ=
I

µ(I)
dµ(I)

dI
=

d logµ(I)
d log I

and
′′

µ=
d2µ(I)

dI2

I2

µ(I)
(2.14a−c)

here and below.
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308 J. D. Goddard and J. Lee

3. Linear-stability analysis
In the usual way, the perturbed velocity v and pressure are written as

v = v(0) + v(1) and p= p(0) + p(1), (3.1a,b)

where the superscripts (0) and (1) denote the base state and the perturbation
respectively. The perturbed friction coefficients are given by

µ=µ(0) +

(
∂µ

∂p

)(0)
p(1) +

(
∂µ

∂D

)(0)
· ∇v(1) and (3.2a)

′

µ =
′

µ
(0)
+

(
∂
′

µ

∂p

)(0)

p(1) +

(
∂
′

µ

∂D

)(0)

· ∇v(1). (3.2b)

On substituting (3.1) and (3.2) into (2.13), the linearized equations of perturbed
motion become

ρsφ(d(0)t v(1) + v(1) · ∇v(0))=−N (0)
∇p(1)

+ (
′

µ
(0)
− 1)

µ(0)p(0)

|D(0)
|
(E (0)
∇)(E (0)

· ∇v(1))+
µ(0)p(0)

2|D(0)
|
∇

2v(1) − 2χ∇4v(1)

+

µ(0)( ′′µ(0) − ′

µ
(0)
)

4p(0)
p(1) +

µ(0)

2|D(0)
|
(
′

µ
(0)
−
′′

µ
(0)
)E (0)
· ∇v(1)

 E (0)
∇p(0),

where N (0)
= I − αE (0), with α =

[
(2−

′

µ)

2
µ

](0)
, (3.3)

and the equations of Ref. 1 are obtained by taking ∇p(0) = 0 and χ = 0.
With |D(0)

|
−1 as time scale and d as length scale, we henceforth adopt the following

non-dimensional variables:

x̄=
x
d
, t̄=

√
2|D(0)

|t, v̄ =
v

√
2|D(0)

|d
,

p̄=
p

2ρsd2|D(0)
|2
, χ̄ =

χ
√

2ρsd4|D(0)
|
, ḡ=

g
2d|D(0)

|2
.

 (3.4)

Various factors of
√

2, included here to simplify the results presented below for simple
shear, can be eliminated by substituting the norm ‖D‖ = |D|/

√
2 employed in Ref. 1

and mentioned above. For later reference, we note that inspection of the combination
of terms ∇2v and ∇4v in (2.13) indicates that χ̄ is proportional to the square of a
ratio of microscopic to macroscopic length scales.

Employing the above non-dimensional variables and dropping the superimposed bars
for simplicity, we can write (3.3) in component form as

φ[(d(0)t v(1))i + v
(0)
i,j v

(1)
j ]

=−N(0)
ij p(1),j − 2βγE (0)

ij E (0)
kl v

(1)
k,jl + γ v

(1)
i,jj − 2χv(1)i,jjll, and v(1)j,j = 0,

with N(0)
ij = δij − αE (0)

ij , β = 1−
′

µ
(0)

and γ =
µ(0)p(0)
√

2
, (3.5)

for the case of uniform base pressure p(0).
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The parameters
′

µ
(0)
, α, β and γ of this study are related to the parameters ν, q, r

and η(0) of Ref. 1 respectively by

′

µ
(0)
= ν, α = q=µ(0), β = r= 1− ν and γ = η(0). (3.6a−d)

We employ E for the normalized deformation rate denoted by A in Ref. 1, with
different norms as discussed above, and the vector k for the wavenumber in lieu of
ξ of Ref. 1, which is defined below as ık.

It should be noted that the quantities γ /φ and χ/φ represent ratios of inertial to
dissipative forces, replacing the inverse of the Reynolds number for Newtonian fluids.
Since these quantities are O(1) in the following analysis, inertia can be assumed to
be relatively unimportant. Hence, we are led to characterize the instability found in
Ref. 1 and analysed below as material instability, of a type that is already manifest
in the quasi-static equations obtained by taking φ ≡ 0 on the left-hand side of (2.11)
or (3.5). As discussed below, this type of instability can be attributed to the loss
of generalized ellipticity of the highest-order differential operators on the right-hand
side of (3.5), as indicated, e.g., by the classical analysis of Browder (Browder 1961;
Brezis & Browder 1998). The first of these papers indicates clearly the connection
to the transient instability found in Ref. 1. This type of linear instability, with
initially large transient growth rates, may of course be more relevant to the numerical
simulation of nonlinear instability than the asymptotic linear stability established
analytically by the following analysis. In this respect, the transient instability bears a
certain resemblance to that arising from the non-normality of linear-stability operators
(Trefethen & Embree 2005) which can trigger nonlinear effects.

We now consider a base state v(0) = L(0)x with spatially uniform velocity gradient
L(0)= (∇v(0))T. Then, with the Fourier-space representation f̂ (k) of fields f (x) and the
duality x↔ ı∇̂ and ∇↔ ık, (3.5) can be written as

d̂(0)t v̂
(1)
=

[
M −

1
φ
(γ k2
+ 2χk4)I

]
v̂
(1)
+mp̂(1), where

M =
2βγ
φ
(E (0)k)⊗ (E (0)k)− L(0) and m=−

ı
φ

N (0)k,

with k= |k| =
√

kiki and d̂(0)t = ∂t − (L
(0)Tk) · ∇̂, (3.7)

where I denotes the unit tensor.
It is further worth noting that the term in L(0) appearing in the expression for M

represents convective distortion of the Fourier mode v̂ by the base flow, whereas that
appearing in the convected derivative, defined by the final term of (3.7), represents
wavevector stretching (Thomson 1887; Goddard 2003). We shall show below that the
latter term is crucial to the asymptotic stability for t→∞.

Taking the scalar product with k of (3.7) and invoking incompressibility, k · v̂(1)= 0,
and its consequence,

k · (d̂(0)t v̂
(1)
)= k · L(0)v̂(1), (3.8)

we obtain p̂(1) as one component of the oblique projection m⊗ k/m · k,

p̂(1) =
1

k ·m
k · (L(0) −M)v̂(1). (3.9)

Substitution of (3.9) into (3.7) then gives
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310 J. D. Goddard and J. Lee

d̂(0)t v̂
(1)
= Av̂

(1)
, where

A=

(
I −

(N (0)k)⊗ k
k · N (0)k

)
(M − L(0))+ L(0) −

1
φ
(γ k2
+ 2χk4)I. (3.10)

The first term in round brackets on the right-hand side of (3.10) represents another
oblique projection, orthogonal to k, and is independent of k= |k|. It should be noted
that k · N (0)k= k2

− α(k · E (0)k) is a positive-definite quadratic form in k since α < 1
and |E (0)

| = 1 (cf. Ref. 1).
Transformation of (3.10) from the coordinate k to the dual material coordinate

κ gives the linear-stability equation as the canonical ordinary differential equation
(ODE),

dυ̂

dt
= A(t, κ)υ̂, with υ̂(t, κ)= v̂

(1)
(t, k),

dυ̂

dt
=

(
∂υ̂

∂t

)
κ

,

with k= (F(0))−Tκ, and dtF(0)
= L(0)F(0),F(0)

= I @ t= 0, (3.11)

where κ represents the initial wavevector k at t= 0 and the superscript −T represents
inverse transpose. This provides the linear-stability theory for general homogeneous
shearing, similar to that treated elsewhere (Goddard 2003), where it is identified as a
time-dependent (or ‘non-autonomous’) stability problem.

For time-dependent stability, we recall that the eigenvalues of A(t, κ) in (3.11) serve
mainly to determine local stability at time t and fixed κ , with logarithmic growth of
spectral energy |υ̂|2(κ, t) = υ̂∗ · υ̂ given by the first equation of (3.11) as twice the
Rayleigh quotient, namely

d
dt

ln |υ̂|2 = 2
υ̂∗ · Aυ̂

|υ̂|2
, (3.12)

where ∗ denotes complex conjugate. Whenever A has real eigenvalues, we may take
υ̂∗ = υ̂, and the maximum of the right-hand side over all υ̂ equals 2λ(t), where
λ(t) is the largest eigenvalue. Otherwise, the complex eigenvalues of A represent
stationary points in the complex plane (Didwania & Goddard 1993). In the former
case, it follows that the greatest eigenvalue λ(t) implies asymptotic stability in the
sense of energy if λ(t) < 0 for t→∞.

3.1. Stability of steady simple shear
Following Ref. 1, we consider a homogeneous steady simple shearing as the base state,
with non-dimensional versions of the canonical forms given by v(0) = (x2, 0, 0),

L(0) =

0 1 0
0 0 0
0 0 0

 and E (0)
=

1
√

2

0 1 0
1 0 0
0 0 0

 , with |D(0)
| = 1/

√
2. (3.13a,b)

Hence, (F(0))−T
= (I − L(0)Tt), and the wavevector k is given in terms of the initial

wavenumber κ by (3.11) as follows. (See equation (40) in the remarkable paper
of Thomson (Thomson 1887, §§ 32–39). His exact solution for the perturbation
of a simple shear flow governed by the Navier–Stokes equations illustrates the
shortcomings of stability analyses based on initial growth rates, as pointed out in
several previous works, e.g. Alam & Nott (1997).)

k(κ, t)= (k1, k2, k3)= (κ1, κ2 − κ1t, κ3), (3.14)
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with wavevector stretching restricted to the component k2. Appendix B presents a
Squire’s-type theorem showing that planar perturbations with k3 = 0 are the least
stable.

For planar perturbations, the components of the tensors appearing in (3.10) can be
displayed in the 2D format,

I −
N (0)k⊗ k
k · N (0)k

=
1
Φ1

Φ1 + k1

(
α
√

2
k2 − k1

)
k2

(
α
√

2
k2 − k1

)
k1

(
α
√

2
k1 − k2

)
Φ1 + k2

(
α
√

2
k1 − k2

)
 ,

M − L(0) =
1
φ

[
βγ k2

2 βγ k1k2 − 2φ
βγ k1k2 βγ k2

1

]
,


(3.15)

where Φ1 = k · N (0)k= k2
−
√

2αk1k2 and Φ2 = γ k2
+ 2χk4. Hence,

A11 =
1
φΦ1
[−βγ k2

2(k
2
1 − k2

2)−Φ1Φ2],

A12 =
1
φΦ1
[−βγ k1k2 + φ](k2

1 − k2
2),

A21 =
1
φΦ1
[βγ k1k2(k2

1 − k2
2)],

A22 =
1
φΦ1
[βγ k2

1(k
2
1 − k2

2)−Φ1Φ2 + 2φk1(k2 − αk1/
√

2)],


(3.16)

where the components of A without convection are obtained by setting φ = 0 in the
numerator of the expressions for A12 and A22.

The determinantal condition det(A−λI)= 0 gives the eigenvalue λ of A with largest
real part as

λ =
A11 + A22

2
+

[(
A11 − A22

2

)2

+ A12A21

]1/2

=
1

2φΦ1
[βγ (k2

1 − k2
2)

2
− 2Φ1Φ2 + 2φk1(k2 − αk1/

√
2)+Φ1/2

3 ], (3.17)

where

Φ3 = β2γ 2(k2
1 − k2

2)
4
+ 2φ2k2

1(αk1 −
√

2k2)
2

− 2βγφk2
1(k

2
1 − k2

2)(
√

2αk2
1 − 4k1k2 +

√
2αk2

2). (3.18)

Negative values of Φ3 represent oscillatory behaviour, analogous to the ‘flutter’
instabilities exhibited by certain elasto-plastic models, the subject of a comprehensive
review by Bigoni (1995).

When convection is neglected, we have

Φ3 = β
2γ 2(k2

1 − k2
2)

4 and λ=
βγ (k2

1 − k2
2)

2
−Φ1Φ2

φΦ1
. (3.19a,b)
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FIGURE 1. (Colour online) Stability diagram for (a) without and (b) with convection, for
χ = 0, with I = 0.0001, φ = 0.5 and p(0) = 1. The solid curves represent neutral stability.

Since Φ3 is non-negative in this case, it follows that there is no oscillatory behaviour
without convection. Moreover, since Φ3 does not depend on χ , the oscillatory
frequencies arising from convection do not depend on χ . However, the amplitude of
oscillation does depends on χ through the real part of λ, as discussed further below.

These relations can be put in polar form, based on the polar representation

k= |k| =
√

k2
1 + k2

2 and ϑ = tan−1(κ2/κ1), (3.20a,b)

where k is the magnitude of the in-plane wavevector and ϑ is its angle with the
direction of flow. With c = cos ϑ and s = sin ϑ , the eigenvalue from (3.17) can be
expressed as

λ=
1

2φΦ̃1
[βγ k2(c2

− s2)2 − 2Φ̃1Φ2 + 2φc(s− αc/
√

2)+ Φ̃1/2
3 ], (3.21)

where

Φ̃3 =Φ3/k4
= β2γ 2(c2

− s2)4k4
− 2βγφc2(c2

− s2)(
√

2α − 4cs)k2

+ 2φ2c2(αc−
√

2s)2 and Φ̃1 =Φ1/k2
= 1−

√
2αcs,

}
(3.22)

in which the trigonometric relations c2
− s2
= cos 2ϑ and 2cs= sin 2ϑ also apply.

3.2. Transient instability
Here, we consider the modifications of the stability analysis of Ref. 1 by the inclusion
of convection and the vdW–C–H gradient terms. Since that analysis is strictly valid
only for the growth rates inferred from the initial state, the wavenumber k is to be
interpreted here as its initial value κ . We shall employ the term ‘transient instability’
(or ‘stability’) to denote positive (or negative) growth rates based on these initial
values. The parameters employed in this study are the values proposed by Jop et al.
(2005), namely µ0 = 0.383, µ∞ = 0.643 and I∗ = 0.279, unless otherwise specified.

Some contours of the initial growth rate, represented by the real part of the
eigenvalue λ from (3.18), are shown in the stability diagram of figure 1, where panels
(a) and (b) represent stability with and without convection respectively (L(0)≡ 0 in all
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FIGURE 2. (Colour online) Stability without convection for (a) χ = 0 and (b) χ = 0.005,
with I = 0.0001, φ = 0.5 and p(0) = 1. The solid curves represent neutral stability.

terms except I), for I= 0.0001 and χ = 0. The solid curves represent neutral stability,
λ= 0, with lighter zones representing unstable regions. Figure 1(a) is identical to the
result of Ref. 1, whereas figure 1(b) shows that convection causes strong distortion
of the neutral stability curve, eliminating parts of two unstable branches. It should be
noted that convection has a more pronounced effect in the regions of small k, as it
represents a contribution of order zero in k to (3.21), compared with terms of higher
order in k arising from the dissipative stresses.

Figure 2 illustrates the effect of χ , where it is obvious that the vdW–C–H model
provides a wavenumber cutoff, shrinking unstable zones accordingly. By choosing very
large χ one can, not surprisingly, eliminate the unstable zones almost completely.

Figure 3 shows the combined effects of convection and wavenumber cutoff for
various values of χ , with I = 0.0001. It is once again clear that the region of
instability is greatly reduced by increasing χ . This is perhaps made clearer by the
plots in terms of polar variables in figure 4. It should be noted that the growth rates
in 0 6 ϑ <π are also repeated in π6 ϑ < 2π when convection is included.

As discussed above, oscillatory behaviour with Im(λ) 6= 0 arises for negative Φ3,
and, writing X= k2 > 0, we see from (3.21) that Re(λ) and Φ3 are given by separate
quadratic polynomials in X. Then, in order to have undamped oscillation, we must
require the simultaneous conditions

Φ3 < 0 and Re(λ)> 0, for X > 0, (3.23)

on these two quadratics. While we have not been able to provide a straightforward
and rigorous algebraic proof of the impossibility of (3.23), a detailed numerical
investigation for various values of k at closely spaced increments of ϑ in (0, 2π)
and for various values of χ we failed to achieve the condition. Hence, we are led to
conjecture that oscillatory solutions are always damped.

Figure 5 shows the corresponding imaginary part of the eigenvalue λ for a particular
set of parameter values, where the finger-like regions bounded by the dashed lines
contain the non-zero imaginary values of λ. Also shown are two contours of Re(λ),
the neutral stability curve and a curve representing damping. In line with the above
conjecture, the oscillatory behaviour is damped.

Following Ref. 1, we present in figure 6 a stability diagram in the I–1µ plane to
show the effect of χ with and without convection, for k = (0.1, 0.8) (or k = 0.806,
ϑ = 82.9◦). The curves shown there are loci of neutral stability, and the regions inside
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FIGURE 3. (Colour online) Stability with convection for increasing χ values: (a) 0,
(b) 0.001, (c) 0.1 and (d) 1, with I = 0.0001, φ = 0.5 and p(0) = 1.
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FIGURE 4. (Colour online) Figure 3 in polar variables.
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FIGURE 5. (Colour online) Oscillatory behaviour resulting from convection, for χ = 0,
I=0.0001, p(0)=1 and φ=0.5. The oscillation frequency is non-zero within the finger-like
regions bounded by dashed curves and equal to zero upon and outside these curves. The
solid and dotted curves are contours of the real part of λ, the former representing neutral
stability.
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FIGURE 6. Stability in the I–1µ plane, (a) without and (b) with convection, showing the
effect of χ , where k= (0.1, 0.8) (k= 0.806, ϑ = 82.9◦), p(0) = 1 and φ = 0.5.

the closed curves or beneath the open curves are the stable regions. The curve χ =0 in
figure 6(a) is a magnified version of that given in Ref. 1, indicating that the perfectly
plastic case of constant µ, with 1µ= 0, is always unstable. However, this instability
is apparently removed at a critical χ value between 0.001 and 0.002, where the closed
curve opens up to form an unbounded stable region. Interestingly, this critical χ value
is nearly 10 times larger when convection is included, as illustrated by figure 6(b).

In summary, the preceding results indicate that convection distorts the regions of
transient instability, completely eliminating instability for some directions of k while
leading to short-wavelength instability for others, in the absence of cutoff by the
gradient terms in χ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

65
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
D

 L
ib

ra
ri

es
, o

n 
09

 N
ov

 2
01

7 
at

 0
3:

58
:2

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.651
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


316 J. D. Goddard and J. Lee

3.3. Asymptotic behaviour
According to (3.14), for large t and κ1 6= 0, we have |k2| � |k1|, resulting in the
following asymptotic forms:

A11 ∼ k2
2[(β − 1)γ − 2χk2

2]/φ, A12 ∼−A12 ∼ βγ k1k2/φ,

A22 ∼−k2
2[γ + 2χk2

2]/φ and λ∼ A11,

}
(3.24)

up to terms of relative magnitude O(|k2|
−1). Since β − 1=−

′

µ6 0, for µ∞ > µ0, it
follows from (3.24) that the local growth rate for χ > 0 is never positive for large
t whenever κ1 6= 0. In the exceptional case κ1 = 0, where k(t) ≡ κ = (0, κ2), it is
easy to show by means of (3.16)–(3.18) that λ is never positive for χ > 0. Therefore,
we conclude that any transient instability is eventually killed off by wavevector
stretching, irrespective of vdW–C–H regularization. The resulting asymptotic stability
is illustrated by a numerical solution of (3.11). For the incompressible planar flows
considered here, this is facilitated by the following closed-form solution for the
stream function.

3.3.1. Scalar solution to (3.11)
For planar flow, the condition of incompressibility can be expressed in the usual

way in terms of a stream function ψ(x1, x2) as

v1 = ∂x2ψ, v2 =−∂x1ψ, (3.25a,b)

which in terms of Fourier transforms becomes

v̂1 = ık2ψ̂, v̂2 =−ık1ψ̂ or v̂ = ık⊥ψ̂,

where k⊥ = (k2,−k1)=Qk,Q=

[
0 1
−1 0

]
, (3.26)

Q is orthogonal and k⊥ is identical to the flipped wavevector introduced in Ref. 1. It
is easy to see that the preceding linear relations also apply to perturbations. Hence,
after making use of dk/dt=−L(0)Tk, the ODE can be reduced to the form

k
dψ̂
dt
= Bkψ̂, where B=QTAQ+ L(0)T. (3.27)

Now, k and k⊥ serve as orthogonal bases for 2D vectors and it is easy to show
that k⊥ ·Bk= 0, i.e. the right-hand side of (3.27) has zero component in direction k⊥.
By Fredholm’s theorem, applied implicitly in Ref. 1, this establishes that k is in the
range of B and, hence, is an eigenvector of B. Thus, (3.27) involves only components
in the direction k, given by orthogonal projection as

dψ̂
dt
=Λ(t, κ)ψ̂, where Λ=

k · Bk
k2

. (3.28)

Here,

Λ=
1

φk2Φ1
{φ[k1k2(k2

+Φ1)−
√

2αk4
1] + βγ k2(k2

1 − k2
2)

2
−Φ1Φ2k2

} (3.29)

is the eigenvalue for eigenvector k of B.
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It follows that the solution to the linear-stability problem for constant L(0) is given
by

v̂
(1)
= ψ̂0Q exp

{∫ t

0
Λ(t′, κ) dt′

}
k= ψ̂0Q exp

{
I
∫ t

0
Λ(t′, κ) dt′ − L(0)Tt

}
κ, (3.30)

which gives

|v̂
(1)
| = |ψ̂0|k exp

{∫ t

0
Λ(t′, κ) dt′

}
, (3.31)

where, in all of the above formulae,

k(t, κ)= exp{−L(0)Tt}κ, with k= [κ · exp{−L(0)t} exp{−L(0)Tt}κ]1/2. (3.32)

It is easy to show that (3.31) gives the same result as that obtained by substitution of
v̂
(1)
=ψk⊥ into (3.12). Moreover, when convection is neglected, one finds that k ·Bk=

k⊥ · A k⊥, and, hence, that k⊥ is an eigenvector of A with eigenvalue Λ, as already
found in Ref. 1.

Making use of the asymptotic form (3.24), we find for large k with |k2|� |k1| that

Λ∼
k2

2

φΦ̃1
[(β − Φ̃1)γ − 2Φ̃1χk2

2] ∼ λ, with Φ̃1 =Φ1/k2
∼Φ1/k2

2, for t→∞, (3.33)

where λ is the eigenvalue of A with largest real part, which confirms the asymptotic
behaviour inferred previously from (3.24).

Figure 7 presents semi-log plots of (3.31), with |ψ̂0| = 1/κ and, hence, |v̂(1)| = 1
at t = 0, as obtained from the integration of (3.28) by means of the finite-difference
approximation (FDA) and the MATLABr numerical integrator ‘ode45’ for two values
κ = 1 and κ = 5, and parameter values

I(0) = 0.001, I∗ = 0.2790, µ0 = 0.3830, µ∞ = 0.6430, φ = 0.5, p(0) = 1,
(3.34a−f )

with cessation of integration for values of |υ̂| less than 0.001. Figures 7(b) and
7(c) serve to illustrate the effect of κ = |κ | for ϑ = 45◦. These figures are not
changed drastically by taking χ = 1, whereas the transient instability in figure 7(d) is
completely eliminated.

As pointed out above in the paragraph following (3.5), material instability can also
be characterized as the loss of generalized ellipticity in the quasi-static (inertialess)
field equations. The latter can be obtained by omitting all inertia terms from (3.11)
and (3.27), which gives the following expression for Λ:

Λ=
βγ (k2

1 − k2
2)

2

Φ1(k)
− (γ k2

+ 2χk4)=−
βγ (ξ 2

1 − ξ
2
2 )

2

Φ1(ξ)
+ γ ξ 2

− 2χξ 4, (3.35)

where ξ = ık, the so-called symbol, is the algebraic representation of the differential
operator ∇ (Renardy & Rogers 2006). Hence, the positive-definite quadratic form
Φ1(ξ) in real-valued ξ represents an anisotropic Laplacian. The latter can be reduced
to the usual Laplacian on an appropriate coordinate system, with Φ−1

1 representing
the corresponding Green’s function.
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FIGURE 7. The magnitude |v̂(κ, t)| of various Fourier modes versus t for χ = 10−6 and
initial conditions (a) κ = (−0.5, 0.866), (b) κ = (−0.707,−0.707), (c) κ = (−3.54,−3.54)
and (d) κ = (0.259, 0.966).

Now, generalized ellipticity may be defined as the requirement that the differential
operator represented by −Λ be positive definite in real-valued ξ (Browder 1961;
Brezis & Browder 1998; Renardy & Rogers 2006), which in the present context
requires that χ > 0. Therefore, the vdW–C–H regularization is essential for material
stability according to this criterion, and it seems worthwhile to illustrate how this
regularization might serve to impart a diffuse length scale to shear bands.

4. Model of a steady shear band and its nonlinear stability
Based on the preceding analysis, with large k2 representing dominant gradients in

the direction y= x2, we assume a single stabilized shear band localized at y= 0 in an
initially unperturbed shear flow with g= 0,∇p= 0, and v= (y, 0) will take the form
of a stable fully developed flow in the x = x1 direction with v = (u(y), 0) and with
the partial derivatives (∂t, ∂x) of all quantities vanishing. Hence, after one integration
with respect to y, the momentum balance (2.11) reduces to the ODE

u′′′ = f (u′)=
µ(I)−µ(I(0))

2
√

2χ I(0)2
sgn(u′)

=
(µ∞ −µ0)I∗(|u′| − 1) sgn(u′)

2
√

2χ I(0)(I(0) + I∗)(I(0)|u′| + I∗)
,

with I = I(0)|u′| and I = I(0)|u′| and I(0) = 1/
√

p, (4.1)

where primes denote differentiation with respect to y and we employ the non-
dimensional variables (3.4). We further invoke the condition u′ → 1 for |y| → ∞,
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corresponding to the unperturbed flow. Hence, assuming that u(y) is an odd function
of y, we may focus on the half-space y> 0 with further conditions u(0)= 0.

As discussed below, the form of the ODE (4.1) indicates that the limit χ→ 0 leads
to a well-known singular perturbation for small χ , in which one may generally neglect
the vdW–C–H terms in the ‘outer region’ lying outside a thin shear band of thickness
O(χ 1/2), which we recall represents the ratio of microscopic to macroscopic length
scales.

To pursue an analytical treatment, we note that the function f (u′) in (4.1) can be
written as the derivative dψ̃0/du′ of a modified form of the dissipation potential ψ0,

ψ̃0(u′)=
(µ∞ −µ0)I∗
2
√

2χ I(0)3

[
|u′|

1+ I∗/I(0)
− ln

(
I(0)|u′|

I∗
+ 1
)]

. (4.2)

Then, by a standard method, (4.1) can be integrated twice to yield u′ as an implicit
function of y,

y= Y(u′, u′0)=
∫ u′0

u′

dw√
2[ψ̃0(w)− ψ̃0(1)]

. (4.3)

It should be noted that (4.1)–(4.2) imply that ψ̃0(w) − ψ̃0(1)→ 0 quadratically and
y→∞ logarithmically in |w− 1| as w→ 1.

It is an easy matter to convert the preceding relation to the second implicit form

u= y+
∫ u′0

u′

(w− 1) dw√
2[ψ̃0(w)− ψ̃0(1)]

∼ y+∆0, for |u′|→ 1,

where ∆0 =

∫ u′0

1

(w− 1) dw√
2[ψ̃0(w)− ψ̃0(1)]

, (4.4)

which gives u′ implicitly as a function of u and y, and shows that u′0 = u′(0) is a
free parameter that must be specified to complete the solution. The quantity ∆0, the
intercept at y = 0 of the asymptotic solution for y→∞, represents one-half of the
apparent slip on a shear band of zero thickness at y = 0 as seen in the far field. It
can be calculated by numerical quadrature for given u′0 and provides quite a useful
criterion for convergence of the numerical solution considered next. The quadrature
was performed in the present study by means of the MATLABr function ‘integral.m’.

It should be noted that under the rescaling

ȳ= y/I(0)
√
χ, ū= u/I(0)

√
χ, ψ̄ = I(0)2χψ̃0, ∆̄0 =∆0/I(0)

√
χ (4.5a−d)

(where overbars are not to be confused with prior usage to denote the present non-
dimensional variables), u′ is invariant and the relation (4.4) gives, upon division by
I(0)
√
χ , a description of the inner layer discussed above in terms of ȳ, ū, ψ̄ and ∆̄0.

Since numerical methods are generally necessary to treat (4.3) or (4.4), it is more
efficacious to integrate (4.1) numerically. Upon replacement of u and y by the scaled
variables ū and ȳ defined in (4.5), the ODE (4.1) maintains the same form, with

χ→ 1, I(0)→ 1, I∗→ I∗/I(0). (4.6)

Moreover, one can show that the replacement of χ by χµ0 in (4.5) converts the
parameter 1µ = µ∞ − µ0 to 1µ/µ0, with µ0 → 1 elsewhere. Since the same
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FIGURE 8. Velocity profile in a model steady-state shear band with u′0 = 28,
I(0)/I∗ = 0.036, µ0 = 0.383 and µ∞ = 0.643.

transformation applies to the full momentum balance, it serves to justify the general
validity of the stability plot of Barker et al. (2015), represented by figure 6 in the
present paper. We do not adopt this additional scaling in the present paper, since µ0

is not varied.
As pointed out above, the quantity u′0=u′(0) is an unknown which must in principle

be specified by the complete solution to the full momentum balance. We recall that
such a numerical solution was carried out in Ref. 1 for a non-homogeneous shear flow
for χ =0. While the authors found instability, it is not clear what role nonlinear effects
may play and, in line with comments in the introduction, whether their numerics serve
to rule out asymptotically stable states with sharp shear bands.

It would take us well beyond the scope of the present work to pursue numerical
solutions of the full momentum balance. Instead, we provide below a one-dimensional
analysis of the nonlinear stability of steady shear bands against normal sinusoidal
perturbations as a function of u′(0). For illustrative purposes, we consider here
the assumption that, up to factors of order unity, u′(0) ∼ k2,max, where k2,max is
the component k2 of the wavenumber in the vicinity of the maximum growth rate
according to the linear-stability analysis. As indicated in the preceding paragraphs, a
reasonable approximation for the transient growth rate is provided by the eigenvalue λ
given by (3.17), whenever real. Hence, we have made use of the MATLABr program
‘fminunc’, with the quasi-Newton option, to determine numerically the unconstrained
minimum in −λ(k). Thus, for parameter values µ0 = 0.383, µ∞ = 0.643, I∗ = 0.279,
I(0) = 0.001, χ = 10−6, we find kmax ≈±(2, 28).

Figure 8 shows the corresponding curve of u/I(0)
√
χ versus y/I(0)

√
χ obtained

for u′(0) = 28 by means of the MATLABr numerical integrator ‘bvp4c.m’, a
finite-difference code applicable to two-point boundary-value problems. Also shown
as a dashed line in figure 8 is the asymptote for large y/I(0)

√
χ , whose intercept

at y = 0 represents the quantity ∆0 defined in (4.4). We note that the integration is
sensitive to the choice of the initial FDA mesh, as defined by the number of mesh
points N and the FDA step-size 1y, and the comparison of the intercept calculated
from u(yf ) − yf , where yf = N1y, against the exact value ∆0 calculated numerically
from the last equation in (4.4).
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We note that in the case of a constant friction coefficient µ0 = µ∞ the one-
dimensional form of (2.11) becomes

2χu′′′′ −
µ0p
√

2
(sgn(u′))′ = 0, (4.7)

which formally involves a Dirac delta at points of transition from u′= 0 to u′ 6= 0. It is
clear that the term in χ represents a singular surface traction which balances the jump
in frictional stress at such points. In any case, (4.7) can be integrated immediately to
give the odd solution in y with representation appropriate to the infinite half-space
y> 0,

u=
{

c0, for y> δ,
pµ0y3/12

√
2χ + u′0y, for 0 6 y< δ. (4.8)

The continuity condition u= c0 at y= δ provides one condition on the three quantities
c0, u′0 and δ. For u′0 > 0, it follows that there is a discontinuity pµ0δ

2/4
√

2χ + u′0 in
u′ at y = δ, leading to the Dirac delta anticipated above in (4.7). At any rate, upon
specification of any two quantities, the solution consists of a rigid unyielded region
y > δ riding on a shear band in 0 6 y 6 δ. It appears that other solutions given by
piecewise cubics in y are possible for finite regions 0 6 y 6 L.

Based on the preceding analysis, one can envisage solutions with any number of
diffuse shear bands interspersed with more gently sheared regions, which not only
reflects multiplicity of solution but is no doubt related to the mesh-size dependence
in various numerical treatments of the underlying field equations (Belytschko et al.
1994).

While the above steady shear bands represent one possible solution of the steady
field equations, it remains to show that they represent stable points in the space of all
steady solutions.

4.1. Nonlinear stability of shear bands against parallel shearing
Without attempting a full two-dimensional analysis, we consider the nonlinear stability
governed by the one-dimensional form of (2.11) for u(t, y),

∂tu= ∂y
[
h(∂yu)− 2∂3

y u
]
, with h(∂yu)=

1
√

2
µ(I) sgn(∂yu) and I = I(0)|∂yu|, (4.9)

where u, y denote the variables ū, ȳ defined in (4.5) and t denotes the scaled time

t̄= t/φI(0)4χ. (4.10)

It is obvious that this scaling of variables restricts all parameter dependence to the
function µ(I) and that the partial differential equation (4.9) reduces to the rescaled
ODE (4.1) at steady state.

To investigate the stability of the steady-state velocity u = us(y), we consider
the special case of an initial condition on (4.9) given by a perturbation of us. After
considering several possibilities, we have settled on what appeared to be a particularly
unstable perturbation represented by the sinusoidal form

u(0, y)= u0(y)= us(y)+ A sin k2y, (4.11)

with constant amplitude A and spatial frequency k2. We employ a standard FDA
with spatial discretization on nodal points yi, i = 1, . . . , N, with y1 = 0 and with
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FIGURE 9. Stable shear band with k2=27.8 for u′0=28.0, I(0)/I∗=0.036, µ0=0.3830 and
µ∞= 0.6430. The solid curves represent the initial steady-state and sinusoidally perturbed
shear band with amplitude A= 300, while the pointsu represent the final shear band.

representative spacing 1yi. We then employ the method of lines (MOL) (Schiesser
2012) to solve the ODEs resulting from the discretization of (4.9) numerically by
means of the MATLABr stiff integrator ode15s.m. The details are summarized below
in appendix C, and, as pointed out there, we employ a certain number M of invariant
‘ghost nodes’ at each end of the y interval at which u(t, yi)= us(yi).

Stability of the initial steady-state profile us(y) is measured by the mean square
departure ε =

∑
i |u(tmax, yi)− us(yi)|

2 at the time t= tmax required for convergence of
the unsteady solution. The most stable shear band for various values of the parameters
µ0, µ∞, I(0) can be determined by fixing one member of the pair k2, u′0, where u′0 =
u′s(0), and minimizing ε with respect to the other one.

However, a few initial calculations revealed that k2,opt =̇ u′0, so that it is somewhat
more efficient to minimize the quantity ε with respect to both members of the pair.
This is accomplished by means of the MATLABr program fminunc.m, with initial
guess k2 = u′0, for various values of u′0. Thus, with initial guess u′0 = k2 = 28, one
finds u′0 = 28 and k2 = 27.8 as the optimal or maximally stable pair, for which the
original, perturbed and final shear bands are shown in figure 9. In this calculation,
the y interval is divided into N nodes, with M� N ghost nodes at each end of the
interval. As indicated in figure 9, the sinusoidal perturbation is suppressed at the ghost
nodes in order to maintain the correct boundary conditions on the unsteady solution.

Contrary to our initial hope of establishing a unique point k2, u′0, we find instead
a fairly definite locus of optimal points in the k2–u′0 plane with k2,opt=̇u′0,opt. This is
summarized by the scatter plot in figure 10 of 72 different runs with diverse values
of the various parameters. The least-squares straight line shown there is given by
u′0 = 0.998k2, the root mean square fractional error of which is approximately 1 %.
Remarkably, the results appear to be almost independent of the sinusoidal perturbation
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FIGURE 10. (Colour online) Maximally stable u′0 versus k2 for 72 different combinations
I(0)/I∗ = 0.1, 1, 10, 1µ= 0, 0.1, 0.2, 0.4 and M = 10 ghost nodes. The number of mesh
points ranged from 700 to 1000, with FDA step-size 1y= 0.1, and initial guesses of the
form k2 = u′0 = 20, 30, 40, 50.

amplitude A, although A does have some influence on the convergence of the unsteady
solution.

For completeness, we have also investigated the stability of the homogeneous shear
field with above sinusoidal perturbation, i.e. the stability of the state with us = y
in (4.11). With u = 0 imposed at y = 0 as the only constraint, we find unbounded
growth near y = 0 without achieving a profile that resembles our steady shear band.
Although one might conclude that our steady shear band does not represent a general
point of attraction in the space of steady-state solutions, and is perhaps attainable
only through 2D effects, we are inclined to attribute the form of the instability to our
finite-difference implementation of the method of lines. While it would be interesting
to employ more robust spectral methods, this would take us well beyond the scope of
the present paper.

5. Pure shear

To illustrate the effects of base-state shearing, we consider a base state defined by
v(0) = (x1,−x2)/2, with

D(0)
≡ L(0) =

1
√

2
E (0)
=

1
2

[
1 0
0 −1

]
. (5.1)

Hence, for planar disturbances, the relation for k(t, κ) in (3.11) becomes

k= exp(−tL(0)T)κ, with k1 = κ1κ2/k2 and k2 = κ2 exp(t/2). (5.2)

Then, by the methods employed above, we find the eigenvalue λ of A with largest
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real part to be

λ=
1

2φΦ1

[
4βγ k2

1k2
2 − 2Φ1Φ2 + φ

(
k2

1 − k2
2 −

α
√

2
k2

)
+Φ

1/2
3

]
,

where Φ1 =

(
1−

α
√

2

)
k2

1 +

(
1+

α
√

2

)
k2

2,

and Φ3 = 2k2
1k2

2[8β
2γ 2k2

1k2
2 + 4βγφ(k2

1 − k2
2 − αk2/

√
2)+ φ2(α2

− 2)]. (5.3)

When convection is neglected, we find that

Φ3 = 16β2γ 2k4
1k4

2 and λ=
4βγ k2

1k2
2 −Φ1Φ2

φΦ1
. (5.4a,b)

Figure 11 shows the effects of χ and convection on stability, and figure 12 illustrates
oscillatory behaviour. It should be noted that the unstable regions in both figures are
rotated by approximately 45◦ relative to the corresponding regions for simple shear,
which is relevant to the associated shear-band models.

Oscillatory behaviour occurs when Φ3 < 0 in (5.3), or in the region

8β2γ 2k2
1k2

2 + 4βγφ(k2
1 − k2

2 − αk2/
√

2)+ φ2(α2
− 2) < 0, (5.5)

the boundaries of which are readily found to be

k1 =±

[
φ

2βγ

(
1+

α
√

2

)]1/2

, (5.6)

upon solving for k2
2 in terms of k2

1. These are shown in the stability diagram of
figure 12, where, in contrast to simple shear, there now exist both stable and unstable
oscillations.

Since k1k2= κ1κ2, a constant, from (5.2), the asymptotic behaviour with or without
convection is stable,

λ∼−
1
φ
Φ2 ∼−

1
φ
(γ k2

2 + 2χk4
2), for t→∞, (5.7)

with relative error O(k−2
2 )=O(et). Clearly, we have stability even for χ = 0.

Once again, one may derive a model for the shear band resulting from material
instability. Thus, making use once more of the MATLABr program ‘fminunc’ to
determine the unconstrained minimum in −λ(k) numerically, for parameter values
µ0=0.383,µ∞=0.643, I∗=0.279, I(0)=0.001, χ =10−6, we find kmax≈±(26.0,22.5).
This corresponds roughly to the classical ≈45◦ shear-band orientation found in
previous experiments and numerical simulations. Figure 13 shows the growth of the
Fourier mode, and it is seen from panel (b) that the transient growth can become
quite large before being quenched by a combination of wavevector stretching and
damping by higher gradients.

The above result leads us to express (2.11), with g = 0 and ∇p, on a coordinate
system oriented at 45◦ to that involved in (5.1), reducing it to the form (4.1) and
(5.1) to the form (3.13). Therefore, the analysis of the shear band reduces essentially
to that of § 4, with appropriate modification of the boundary condition on u′(0). On
this new coordinate system, the above value of kmax becomes ≈± (2, 34) as opposed
to the value ±(2, 28) found in § 4 for simple shear. Given the rough agreement of
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FIGURE 11. (Colour online) Stability for pure shear without convection, for χ values of
(a) 0 and (b) 0.001, and with convection, for χ values of (c) 4× 10−5 and (d) 0.001, for
I = 0.0001, φ = 0.5 and p(0) = 1.
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FIGURE 12. (Colour online) Oscillatory behaviour for pure shear resulting from
convection, for χ = 0, I = 0.0001, p(0) = 1 and φ = 0.5. The oscillation frequency is
non-zero within the central regions bounded by dash-dotted vertical lines. The solid and
dotted curves are contours of the real part of λ, with the former representing neutral
stability.

these values and in light of the non-unique solution to our shear-band model, it hardly
seems worthwhile to repeat the calculation leading to figure 8 with an only slightly
modified boundary condition on u′(0).
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FIGURE 13. The magnitude |υ̂(κ, t)| of initially stable and unstable Fourier modes versus
t for planar pure shear for χ = 10−6 and initial conditions (a) κ = (−0.5,−0.866) and (b)
κ = (1, 0.0001).

6. Concluding remarks

Our major findings are adequately summarized in the abstract and the introduction.
To briefly recapitulate the most important of these, we find for both planar simple
shear and pure shear that the linear instability of the µ(I) model identified by Barker
et al. (2015) is modified through convection by the base flow, giving way to long-
time stability induced by Kelvin wavevector stretching. The addition of gradient effects
via the vdW–C–H model provides a wavenumber cutoff that serves to stabilize the
dynamical equations over the entire time domain, to regularize the quasi-static field
equations and to assign a diffuse length scale to eventual shear bands.

We find that steady shear bands are stable against steady parallel sinusoidal shear
fields, provided that the normal velocity gradient of the shear band is very nearly
equal to the wavenumber of the sinusoidal perturbation. To obtain a unique shear
band, it is necessary to assume some preferred wavenumber, e.g. the most unstable
one according to linear theory. A challenge for future work is to elucidate shear-
band formation in the presence of more complex spatial perturbations to homogeneous
shearing.

In summary, we conclude that the (Hadamard) short-wavelength instability found
by Barker et al. (2015) is connected to the loss of ellipticity in the quasi-static
field equations. Although transient and eventually quenched by wavevector stretching
according to linear theory, the instability is doubtless problematical for numerical
simulation and it may also trigger nonlinear instabilities. The addition of higher-
gradient effects like those considered in the present work should go a long way
towards alleviating such problems.

As a practical matter, the present work may suggest a stratagem for numerical
simulation of materially unstable viscoplasticity, in which a transient form of the
vdW–C–H or similar regularization is invoked to minimize transient instabilities, with
the possibility of describing the structure of shear bands on longer time scales if so
desired. Our simple model of a shear band based on the vdW–C–H model suggests
that spatial boundary conditions, required in principle by any higher-gradient model,
can be chosen somewhat arbitrarily, as the higher gradients tend to have a spatially
localized domain of influence.
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As additional future work, it would be worthwhile to apply the current theory to
other homogeneous shear flows, such as axisymmetric straining of the kind that arises
in the standard quasi-static tests of soil mechanics or in more rapid converging-hopper
flows. While somewhat distinct from the issue of material instability, an investigation
should be carried out of the coupling of pressure gradients in the base flow to the
perturbed momentum balance, an effect neglected in Ref. 1 and the present study.

As a deeper theoretical issue, it would be interesting to investigate the possible
relation between the weakly non-local model of the present study and the fully non-
local variants of the µ(I) model proposed by Pouliquen & Forterre (2009) and more
recently by Kamrin and co-workers (see, e.g., Henann & Kamrin 2014). We recall that
the latter model can be tied to a Ginzburg–Landau formalism, which shares a certain
kinship to the vdW–C–H model of the present study (Gurtin 1996).
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Appendix A. Derivation of the perturbed equations (3.3)

On substituting (3.1) and (3.2) into (2.13), the perturbed equations of motion
become

ρsφ(∂tv
(1)
+ v(0) · ∇v(1) + v(1) · ∇v(0))=−∇p(1)

+
(2−

′

µ
(0)
)µ(0)

2
E (0)
∇p(1) +

[(
∂µ

∂p

)(0)
p(1) +

(
∂µ

∂D

)(0)
· ∇v(1)

]
E (0)
∇p(0)

−
1
2

µ(0)
(∂ ′µ

∂p

)(0)

p(1) +

(
∂
′

µ

∂D

)(0)

· ∇v(1)


+
′

µ
(0)
[(

∂µ

∂p

)(0)
p(1) +

(
∂µ

∂D

)(0)
· ∇v(1)

]}
E (0)
∇p(0)

+
(
′

µ
(0)
− 1)µ(0)p(0)

|D(0)
|

(E (0)
∇)(E (0)

· ∇v(1))+
µ(0)p(0)

2|D(0)
|
∇

2v(1) − 2χ∇4v(1), (A 1)
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where (
∂µ

∂p

)(0)
=

(
dµ
dI
∂I
∂p

)(0)
=

(
−

I
2p

dµ
dI

)(0)
=−

µ(0)
′

µ
(0)

2p(0)
,(

∂
′

µ

∂p

)(0)

=

[
∂I
∂p

(
1
µ

dµ
dI
−

I
µ2

(
dµ
dI

)2

+
I
µ

d2µ

dI2

)](0)
=−

1
2p(0)

[
′

µ
(0)
− (

′

µ
(0)
)2 +

′′

µ
(0)
]
,(

∂µ

∂D

)(0)
=

(
dµ
dI
∂I
∂D

)(0)
=

(
I
dµ
dI

E

|D|

)(0)
=µ(0)

′

µ
(0) E (0)

|D(0)
|
,(

∂
′

µ

∂D

)(0)

=

[
∂I
∂D

(
1
µ

dµ
dI
−

I
µ2

(
dµ
dI

)2

+
I
µ

d2µ

dI2

)](0)
=

[
′

µ
(0)
− (

′

µ
(0)
)2 +

′′

µ
(0)
]

E (0)

|D(0)
|
.



(A 2)

By rearranging (A 1) and making use of (A 2), we obtain

ρsφ
(
∂tv

(1)
+ v(0) · ∇v(1) + v(1) · ∇v(0)

)
=−∇p(1) +

(2−
′

µ
(0)
)µ(0)

2
E (0)
∇p(1)

+
(
′

µ
(0)
− 1)µ(0)p(0)

|D(0)
|

(E (0)
∇)(E (0)

· ∇v(1))+
µ(0)p(0)

2|D(0)
|
∇

2v(1) − 2χ∇4v(1)

+

µ(0)( ′′µ(0) − ′

µ
(0)
)

4p(0)
p(1) +

µ(0)

2|D(0)
|
(
′

µ
(0)
−
′′

µ
(0)
)E (0)
· ∇v(1)

 E (0)
∇p(0). (A 3)

Appendix B. A Squire’s-type theorem for µ(I) rheology
Allowing for out-of-plane perturbations, the components of the tensors in (3.15) are

given by

I −
N (0)k⊗ k
k · N (0)k

=
1
Φ1


Φ1 + k1

(
α
√

2
k2 − k1

)
k2

(
α
√

2
k2 − k1

)
k3

(
α
√

2
k2 − k1

)
k1

(
α
√

2
k1 − k2

)
Φ1 + k2

(
α
√

2
k1 − k2

)
k3

(
α
√

2
k1 − k2

)
−k1k3 −k2k3 Φ1 − k2

3

 ,
(B 1)

M − L(0) =
1
φ

 βγ k2
2 βγ k1k2 − 2φ 0

βγ k1k2 βγ k2
1 0

0 0 0

 , (B 2)

where Φ1 = k · N (0)k, k2
= k2

2D + k2
3, k2

2D = k2
1 + k2

2 and Φ2 = γ k2
+ 2χk4.
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Making use of the relation det(A− λI)= 0, the eigenvalues λ of A are found to be

λ1
2
=
βγ [(k2

1 − k2
2)

2
+ k2

3k2
2D] − 2Φ1Φ2 ±Φ4

1/2

2φΦ1
, (B 3)

λ3 =−
Φ2

φ
=−

1
φ
(γ k2
+ 2χk4), (B 4)

where

Φ4 = β2γ 2(k2
1 − k2

2)
4
+ 2φ2k2

1(αk1 −
√

2k2)
2

− 2βγφk2
1(k

2
1 − k2

2)(
√

2αk2
1 − 4k1k2 +

√
2αk2

2)

+ k2
3 [β

2γ 2k2
2D(k

2
3k2

2D + 2(k2
1 − k2

2)
2)

+ 2βγφk1[(k2
1 − k2

2)(2k2 −
√

2αk1)− 2k2k2
3]] . (B 5)

Comparison of the three eigenvalues indicates that the in-plane eigenvalue λ1 has the
largest real part, so that planar disturbances are the least stable, Q.E.D.

Appendix C. Numerical solution of (4.9)
To solve (4.9) numerically, we employ the well-known MOL (Schiesser 2012), with

spatial discretization at N nodal points in y, converting (4.9) to a set of ODEs that
can be solved by standard solvers. Specifically, we choose a standard FDA with

y→[yi], u(t, y)→ u(t)= [ui(t)], ∂m
y u→D(m)u= [D(m)

ij uj], with ui(t)= u(t, yi),

for i, j= 1, . . . ,N, and
du
dt
=D(1)(h− 2D(3)u), with hi = h(D(1)

ij uj), (C 1)

where the rows of the matrices D(m) are given by the classic interpolation coefficients
of Fornberg (1988), generalized to an arbitrary number of interpolation points P >
m. To generate these coefficients for m = 1, 3, we have made use of the third-party
MATLABr program ‘fdcoeffF.m’.

We employ the MATLABr stiff integrator ‘ode15s.m’ to integrate the N-
dimensional ODE subject to the initial condition u(0)= u0 = [u0(yi)] given by (4.11).
We note that for the above ODE, it is rather easy to derive the analytical Jacobian,
which is essentially the same as the matrix defining linear stability.

To satisfy the spatial boundary at the ends of the interval (y1, yN), we employ M
‘ghost nodes’ y1, . . . , yM and yN−M+1, . . . , yN at either end, where ui(t) = us(yi) for
all t> 0. To enforce this condition on the ODE solver, we set the top and bottom M
rows of D(1) equal to zero, i.e. D(1)

i,j = 0, for i= 1, . . . ,M and i= N −M + 1, . . . , N,
and we adopt the modified initial condition

u0(yi)= us(yi)+ R(yM+1, yN−M)A sin k2yi, (C 2)

where R denotes the rectangular pulse vanishing on the ghost nodes and otherwise
equal to unity. This leaves N − 2M ‘active’ nodes, and we choose P = 2M as the
number of Fornberg interpolation points, so that interpolation on the N − P active
nodes in the centre of the interval (0,1) may include up to M ghost nodes at either
end.

The ODE solver is run for a preset time t= tmax, long enough to ensure convergence
of u(t). As indicated above in § 4.1, we employ as a measure of stability of us the
mean of ε = |u(tmax) − us|

2, as given by the MATLABr function ‘std.m’. For total
number of nodes ≈1000 on the y interval (0, 1), we find a nearly negligible effect of
the number M of ghost nodes, with M ranging from 10 to 50.
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