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Errata: “A Note on Eringen’s Moment Balances”

1.) Beginning of sentence following Eq. (22) should read: “ The rank−m conjugate forces s(m),ν(m),
...”

2.) Phrase following Eq. (24) should read “... functional on C(0,y).”

3.) Line following Eq. (29) should read “f(t,x,y) = −f(t,y,x)”
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a b s t r a c t

The present study provides a comparison of Eringen’s [Eringen, A.C. (1970). Balance laws of
micromorphic mechanics. International Journal of Engineering Science, 8, 819–828] general
moment balances for micromorphic continua with Germain’s [Germain, P. (1973). The
method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM Journal
on Applied Mathematics, 25, 556–575] momentum balances based on virtual work princi-
ples, and with those derived in the present paper by a two-scale Fourier analysis of heter-
ogeneous media. It has not been possible to establish a clear-cut correspondence between
Eringen’s balances and either of the latter, partly because Eringen’s balances involve a mix-
ture of surface and volume averages over microdomains.

There is disagreement between the last two methods, arising from the fact that
Germain’s treatment involves spatial gradients not occurring in the elementary two-scale
Fourier analysis. A brief discussion is given of the possible extension of the latter to achieve
agreement with the former.

As a separate matter, a construction of path-moments of density fields serves to establish
a source-flux duality in continuum balances, which inter alia establishes a fairly direct con-
nection between Newton’s and Cauchy’s laws and provides an expression for stress sug-
gested by the statistical mechanics of point-particles.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Among his extensive and widely recognized works on continuum mechanics, A.C. Eringen made numerous important
contributions to the foundations and application of the theory of micromorphic continua.

We recall that, as an extension of the celebrated Cosserat theory, a micromorphic continuum is one whose material par-
ticles are endowed with additional degrees of freedom beyond those enjoyed by classical continua. In the case of mechanics,
this includes general microdeformation1 superimposed on the translational motion of the simple continuum (Truesdell & Noll,
1965).

In a long-running series of publications, well summarized by himself and others (Eringen, 1970, 1992; Germain, 1973),
Eringen develops general balance equations for the associated micromorphic continuum. His technique consists basically
of the fragmentation of a simple continuum into disjoint sub-bodies or ‘‘microdomains’’, in which variations in field quan-
tities occur on scales much shorter than that of the overlying micromorphic fields.

One merit of Eringen’s approach is the concrete physical interpretation it lends to certain fields as moments of familiar
mechanical quantities. We take this a step further in the opening paragraphs of the following section, by recalling the equiv-
alent moments for discrete point-particle systems (Goddard, 1998). As a further merit, Eringen’s basic technique anticipates,

0020-7225/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijengsci.2011.03.013
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1 Although Eringen often specializes to homogeneous deformation, he recognizes that the balances which are the subject of the present paper allow for

arbitrary microdeformation.
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in many respects, the ‘‘two-scale’’ modeling employed by numerous workers for the homogenization of heterogeneous con-
tinua (Allaire, 1992; Kevorkian & Cole, 1996; Mielke & Timofte, 2008).

On the other hand, Eringen’s results involve field variables defined by integrals over the surface of microdomains, which
would seem to imply a possibly unwanted dependence on microdomain geometry. Furthermore, as pointed out by Germain
(1973), it is not clear how Eringen’s generalized momentum balances are related to balances obtained by other means, such
as Germain’s application of the principle of virtual work,2 or other treatments of statistical mechanics and micromechanics. For
example, based on the latter, Goddard (1998, 2008) has proposed a hierarchy of momentum balances involving pairwise inter-
action of moment stresses or ‘‘hyperstresses’’. As discussed below, Germain’s analysis allows for a somewhat more general kine-
matics and conjugate hyperstress.

The present paper proceeds from a cursory review of background theory, along with certain results of Eringen (1970) and
Germain (1973), to an alternative approach based on a two-scale analysis of Fourier representations and their spatial mo-
ments. As evident from several past works on the homogenization of heterogeneous media (Allaire & Conca, 1998; Kunin,
1982; Murdoch & Bedeaux, 2001), Fourier methods provide an obvious and natural tool for multiscale analysis. It is hoped
that the present synthesis of methods may serve to provide, in slightly simpler notation, an enhanced appreciation of the
various methods of homogenization.

As a more original effort, the final section below explores the duality between generation and flux in continuum balance
equations, with results that may inter alia serve to diminish, if not banish, what the author views as a questionable dichot-
omy between Newton’s and Cauchy’s laws.

2. Background – Continuum balances

In this section we review the basic equations of balance and certain past work on these. As a word on notation, lowercase
bold Greek and Fraktur fonts are employed for general tensors, with restricted use of lowercase bold Roman for vectors and
uppercase bold Roman for second-rank tensors. The symbol ¼̂ indicates equivalence between a tensor and its components
relative to a general basis, designated by Latin indices. For the most part, we display contravariant components relative to a
general curvilinear coordinates. Lowercase Greek indices are used to designate particulate entities and other extensive quan-
tities and a colon is indicated to indicate the contraction or scalar product of tensors of rank greater than one. As a prelude to
the discussion of continuum balances, we briefly review discrete-particle systems.

2.1. Moments in discrete-particle systems

To lend insight into certain continuum balances and their Fourier analysis to follow, we recall a related work (Goddard,
1998)3 and consider a system of N point-particles having positions xa and linear momenta pa, a = 1, . . . ,N, each satisfying New-
ton’s law _pa ¼ fa, where fa is the sum of external plus interparticle forces. One may readily derive the Galilean-invariant mo-
ment balances (Goddard, 1998)

where, here as below,

zmþ1 ¼ zm � z¼̂½zi1 zi2 . . . zimþ1 �; m ¼ 0;1;2; . . . ; z0 :¼ 1; ð1Þ

and

z0a ¼ za � �z; �z ¼
X

a
waza;

X
a

wa ¼ 1:

The wa denote a set of constant scalar weights, usually assumed to be ma=
P

bmb, where ma denotes particle mass. However,
the above formulae remain valid under the alternative condition z ¼ 0; z0a ¼ za; a ¼ 1; . . . ;N, yielding non-Galilean-invari-
ant forms.

In any event, the tensors f serve as generation or source of the moments p and, when these are converted to densities, the
above multiparticle system serves as representative of a single ‘‘particle’’ in a multipolar or micromorphic continuum. This is
made more evident by the methods of Irving and Kirkwood (1950), Kunin (1982, 1984), where operator density or distribu-
tion for a particle-specific physical quantity Q and its continuous Fourier transform are given, respectively, by

.Q ðt;xÞ ¼
X

a
Qadðx� xaftgÞ; and .̂Q ðt;kÞ ¼

X
a

Qae�k�xa � e�k��x �.; with �. ¼
X

a
Qae�k�ðxa�xÞ; ð2Þ

2 In a related treatment of micromorphic electromagnetism (Eringen, 2006), one encounters the same surface integrals, but I have not made the effort to
compare with the analysis of Maugin (1980) based on virtual work.

3 Which presents a slightly different version, in which, incidentally,
P

i
_Aidðx� xÞ in Eq. (26) should read _̂A

P
imidðxi � xÞ;

P
ixi in Eq. (27) should readP

imixi;A corresponds to a of the present work, and the roles of Greek and Latin indices are reversed.
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where d is the Dirac delta. Galilean-invariant moments are then given by

.ðmÞQ ¼ ðırkÞm�.ðt;kÞ
��

k¼0; ð3Þ

which reproduces the results given in (1).
That stated, we proceed to the analogous field theory, in which a spatial (Eulerian) description is favored over the con-

ventional material (Lagrangian) description, with juxtaposition when necessary for comparison to other works.

2.2. Densities and balances

We consider a real tensor-valued extensive quantity a¼̂½ai1 ;i2 ;...;in �, of rank n, endowed with a time-dependent spatial den-
sity .aðt;xÞ¼̂½.

i1 ;i2 ;...;in
a �, which assigns a tensor-valued measure da(t,x) :¼ a(dV) = .adV to an elemental spatial volume (mea-

sure) dV(x) = V(dx).
In the following we let superscript T represent the demotion of the leading index of a tensor w¼̂½wi1 ;i2 ;...;in � to trailing posi-

tion, with lower or raising of indices permitted, so that wT¼̂½wi2 ;...;in ;i1 �. To preserve the natural order of differential operators,
we define r0 as the linear operator such that

r0w ¼ ðrwÞT ¼ ½wi1 i2 ;...;in
;inþ1
� ð4Þ

where the semicolon denotes a covariant derivative, and we take

divw ¼ r0 � w ¼ ½wi1 ;i2 ;...;in
;in
� ð5Þ

Then, in the respective spatial or material description, the local or strong form of the a-balance is

@t.a þ divua ¼ ca; or dt.a � divsa ¼ ga;

where;
dt ¼ @t þ v � r0; ga ¼ ca � ðdivvÞqa; sa ¼ .a � v �ua;

ð6Þ

where caðt;xÞ¼̂½c
i1 ;i2 ;...;in
a � denotes generation, uaðt;xÞ¼̂½u

i1 ;i2 ;...;inþ1
a � a rank-(n + 1) flux, vðt;xÞ¼̂½v iðt;xÞ� a material velocity, and s

a negative ‘‘diffusion’’, denoted by the same symbol in Eringen (1970).

2.3. Eringen’s theory

In Eringen’s microdomains, certain field variables are assumed to take on the character of generalized functions or dis-
tributions, and the appropriate global or weak form of balance, involving a test function /(t,x), is

Z
B

½/ð@t.a � caÞ �ua � r/�dV þ
Z
@B

/ua � ndA ¼ 0; ð7Þ

which is basically Eringen’s ‘‘master balance’’. By employing a Taylor-series expansion of / in a variable n representing posi-
tion in a microdomain relative to a given spatial (or material), followed by averaging over n, Eringen deduces from (7) a hier-
archy of moment balances involving both surface and volume averages over microdomains.4

As signaled above in the Introduction, Eringen’s basic theory resembles the two-scale modeling employed by others (Al-
laire, 1992; Kevorkian & Cole, 1996; Mielke & Timofte, 2008). In particular, it is tantamount to the Ansatz for distributions
w = ., u, c and test function /:

wðt;xÞ ¼ ~wðt; �x; n=�Þ;/ðt;xÞ ¼ ~/ðt; �x; nÞ; where n ¼ x� �x; ð8Þ

where 0 < �� 1 represents the characteristic ratio of microscale to macroscale, and x is the provisionally fixed location of a
fiducial spatial or material point that ultimately is to assume the role of position x in the micromorphic continuum. Thus,
jnj = O(�) represents the microdomain as an �-neighborhood of x, and for �? 0 the field w generally exhibits locally un-
bounded variation with x, whereas / is a smooth function. In particular,

r0w ¼ ðr0�x þ ��1r0gÞ~w; where g ¼ n=�; whereas r/ ¼ ðr�x þrnÞ~/; ð9Þ

and so forth for higher gradients, which serves as the the basis for various two-scale perturbation schemes (Kevorkian & Cole,
1996). While it might be interesting to employ (7)–(9) to re-derive certain of Eringen’s results, we adopt another approach
based on Fourier techniques. As one merit of the latter, we recall that generalized functions in physical space generally pos-
sess well-behaved counterparts in Fourier space (Lighthill, 1958), as is amply demonstrated by (2).

4 Although not considered here, a similar treatment of the time variable t leads to‘‘two-timing’’.
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3. Fourier transforms and moment balances

The form (9) is directly relevant to the Fourier representation of fields in unbounded bodies B, and, writing
k � x ¼ k � �xþ j � g, we employ a double Fourier transform5

ŵðt;k;jÞ ¼
Z

B

e�ık�xwðt;xÞdVðxÞ ¼
Z

B

e�ık��x �wðt; �x;jÞdVð�xÞ; ð10Þ

where

�wðt; �x;jÞ ¼
Z

~B

e�ıj�g ~wðt; �x;gÞdVðgÞ; ð11Þ

In general, ~B ¼ ~Bð�xÞ, as in Eringen’s treatment, but we shall eventually take ~B to be unbounded and independent of �x. By
analogy to the above formulae for discrete systems, we can derive local moments based on the equivalence rj = �ıg, with

ðır0jÞ
m �wðt; �x;jÞ ¼

Z
~B

e�ıj�g ~wðt; �x;gÞ � gmdVðgÞ; ð12Þ

for m = 0,1, . . ., with local (normalized) moments

wðmÞðt; �xÞ :¼ �
m

m!

Z
~B

~wðt; �x;gÞ � gmdVðgÞ ¼ 1
m!
ðı�r0jÞm �wðt; �x;jÞ

��
j¼0; ð13Þ

providing a connection to Eringen’s volume-average moments over sub-bodies ~B. As signaled above, we shall treat the latter
as unbounded in the formal limit �? 0, which of course avoids the issue of surface averages over @ ~B and the associated
shape effects.

The normalization in (13) serves to suggest a plausible dependence on a characteristic microstructural scale �. However,
all the fields ~wðt; �x;gÞmay depend on �, so that an abstract micromorphic continuum of grade m may be construed to emerge
the limit �? 0, with moments up to some arbritrary order m remaining finite.

3.1. General moment balances

With the standard Fourier transform, the balance (6) assumes the form

@t.̂a þ ıûa � k ¼ ĉa; ð14Þ

and, by repeated application of the operation ır0k, one can obtain global moment-balances. However, we can obtain analo-
gous formulae for local moments by making use of (9) and (10) to replace (14) by:

@t �.þr0 � �uþ ı��1 �u � j ¼ �c; where vðt; �xÞ ¼ @�x
@t

� �
x
; and r ¼ r�x; ð15Þ

where �.; �s; �c are functions of t; �x;j, and where, for brevity’s sake, we have suppressed subscripts a.
Generally, v can be interpreted as the velocity associated with any conserved scalar w having prescribed density and flux,

such that

@t.w þ divuw ¼ 0; v ¼ vw :¼ uw=.w; ð16Þ

where the density also assigns an abstract weight to each microdomain ~Bð�xÞ.
At any rate, repeated application of ır0j gives the hierarchy:

�dt �.ðmÞ þ �r0 �uðmÞ þ ı��1 �uðmÞ � j ¼ �cðmÞ;

where;

f�.ðmÞ; �uðmÞg ¼ ır0jf�.ðm�1Þ; �uðm�1Þg ¼ ðır0jÞmf�.; �ug;

and

�cðmÞ ¼ ır0j�cðm�1Þ þ ��1 �uðm�1Þ ¼ ðır0jÞm�cþ ��1mðır0jÞm�1�s;

9>>>>>>>>>=
>>>>>>>>>;

ð17Þ

for m = 1,2, . . ., where m = 0 refers to the initial balance (14). Then, the relations (13) and (17) give the local moment balances

@t.
ðmÞ þ r0 �uðmÞ ¼ cðmÞ þuðm�1Þ; with uð�1Þ ¼ 0; ð18Þ

for m = 0,1, . . ., provided that �uðkÞ � j! 0 for j ? 0, for k = 0,1, . . . ,m � 1.
The set (18) represents the desired hierarchy of moment-balances, the continuum analogues of discrete-particle mo-

ments proposed elsewhere (Goddard, 1998, 2008), with the standard form (6):

5 Strictly speaking, this is the transform of v ~BðgÞ~wðt; x;gÞ, where v ~B is the characteristic function of ~Bð�xÞ.
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@t.
ðmÞ
a þ divuðmÞa ¼ �cðmÞa :¼ cðmÞa þuðm�1Þ

a ;

or;

dt.
ðmÞ
a � divsðmÞa ¼ �gðmÞa :¼ gðmÞa þuðm�1Þ

a ;

ð19Þ

for m = 0,1, . . ., where g
ðmÞ
a ¼ cðmÞa � ðdivvÞ.ðmÞa , and uð�1Þ

a ¼ 0, and where we have dropped overbars and restored the subscript
a.

In order to secure agreement with Eringen (1970, Eqs. (3.4)–(3.6)), we must replace uðm�1Þ
a in the second equation of (19)

by a considerably more complicated form involving surface averages over @B of sðmÞa . At the time of this writing, it is not clear
whether this replacement can be justified, even in the limit of unbounded B considered in the present paper.

Although a primary focus of the present work is the set of momentum balances considered below, it is worth mentioning
the mass balances, with a = M, .M = q, cM � 0 in (19), and with w = M in (16) defining the barycentric velocity v. The first
member of (19), with m = 0 is the usual mass balance, whereas the term m = 1 gives a balance for mass-dipole density .ð1ÞM ,
with source term uM = qv. The term m = 2, with .ð2ÞM defining a moment of inertia, could presumably be brought into corre-
spondence with Eringen’s ‘‘balances of microinertia’’ (Eringen, 1970, Eqs. (3.10)–(3.12)), and related formulae of Germain
(1973, Eqs. (46)–(47)), but space does not permit such an effort here.

3.1.1. Momentum balances
We now consider a = p, so that, in the standard barycentric description,

.p ¼ uM ¼ qv; where sp ¼ .p � v �up; and cp ¼ .f ; ð20Þ

where sp¼̂½sij
p� is a stress tensor and .f an extrinsic body force density.

To make a connection to Germain (1973, esp. Eqs. (41) ff.), we note that his analysis is based on barycentric velocity, which
in the present two-scale format can be written as

vðt; xÞ ¼ ~vðt; �x;gÞ � ~uM=~qM ¼
X
mP0

vðmÞðt; �xÞ : gm; with vð0Þ ¼ vðt; �xÞ; ð21Þ

where the tensors v(m) are �m-times those denoted by the same symbol in Germain (1973). Germain’s kinematic variables
can be generated by retaining only linear terms in �r in the expansion of:

r0mv � ðr0 þ ��1r0gÞ
m ~v:

Then, with v(m) and r0vðmÞ as kinematically independent variables, the internal power is given by
X
mP0

sðmÞ : vðmÞ þ mðmþ1Þ : r0vðmÞ
� �

: ð22Þ

The rank-(m + 1) conjugate forces sðmþ1Þ; mðmÞ, which are denoted by the same letters in Germain (1973), are independent
elements in the dual space. Application of the principle of virtual power then yields a hierarchy of momentum balances
of the form

dtw
ðmÞ � divmðmþ1Þ ¼ gðmÞ � sðmÞ; m ¼ 0;1; . . . ; ð23Þ

where g represents external forces. Now, (23) can be brought into correspondence with (19), while preserving the character
of other terms, only if

mðmþ1Þ � �sðmþ1Þ ¼ sðmÞp ; for m ¼ 0;1 . . . ; with sð0Þ ¼ 0:

It is therefore clear that the above two-scale model produces a more restricted model of a micromorphic continuum than
that proposed by Germain. Since the latter involves higher-order terms in r, this can be visualized as the effect of macro-
scopic gradients on the relative motion of microdomains.

To extend the two-scale analysis, one can envisage a Fourier analysis of ‘‘mesodomains’’ consisting of �-neighborhoods of
microdomains, of exactly the same type as that carried out above for points within a given microdomain. Thus, proceeding
from the tensor fields w(m) appearing in the moment balances (19), one may derive a second hierarchy of fields w(m,n) rep-
resenting nth moments within mesodomains. Presumably, the first-gradient theory of Germain should involve only fields
w(m,0) � w(m) and w(m,1), with m = 0, 1 for the simplest micromorphic continuum. More formally, one may treat this a mul-
ti-scale expansion of the form

x ¼ �xþ �1g1 þ �2g2 þ � � � ; �1 � �2 � � � � ;

with �1, g1 corresponding to the variables �, g employed in the above two-scale analysis, and with multivariate Fourier trans-
forms in g1, g2, . . .. Without further pursuit of this analysis, we turn to a basic issue surrounding balance equations.

1490 J.D. Goddard / International Journal of Engineering Science 49 (2011) 1486–1493
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4. Source-flux duality

As indicated by certain statistical mechanical treatments (Goddard, 1998; Irving & Kirkwood, 1950; Noll, 1955), quanti-
ties that appear as nominal source terms in microscopic balances can, under certain circumstances, be construed as the
divergence of continuum-level flux. By a related technique, it is shown next that a similar construct holds for continuum
balances, in accordance with the Gauss law and the related existence proof of Segev and De Botton (1991).

4.1. Path-moments of densities

Given a density .a(t,x) a continuous directed curve Cða;bÞ running from a to b, the line integral

laðt; x; CÞ ¼
Z

z2Cð0;yÞ
.aðt;x� zÞ � dz; ð24Þ

defines a path-moment density la¼̂½l
i1 ;i2 ;...;inþ1
a � of rank n + 1, which obviously is a functional on Cðx; yÞ. Regarded as function

of the variable x, the corresponding field la(t,x) is readily shown to satisfy

divla ¼ .aðt;xÞ � .aðt;x� yÞ; ð25Þ

independently of the curve C. Hence, the integral around the closed curve represented by y = 0 in (24), yields a solenoidal
field la (Goddard, 1998). We note that the Fourier representation of the above is

l̂aðt;k; CÞ ¼ .̂aðt;kÞ �
Z

z2Cð0;yÞ
e�ik�zdz;

with;

ıl̂a � k ¼ .̂aðt;kÞ
Z

z2Cð0;yÞ
e�ik�zdðık � zÞ ¼ .̂aðt;kÞð1� e�ik�yÞ:

ð26Þ

4.2. Spatially restricted densities

If .a(t,x) represents a field that vanishes at points x outside a finite material body B, then we may choose jyj sufficiently
large that x � y lies outside B for all x 2 B. In that case, we may disregard the term .a(x � y, t) in (25). The same is true for an
unbounded body B, provided .a(t,x) ? 0 for jxj?1. In either case, we use the notation y =1 to define such points, with
Cð0;1Þ indicating the path in (24), and we designate the corresponding densities as ‘‘spatially restricted’’.6

In the case of spatially restricted densities, (25) reduces to the classical (Gauss-Maxwell) form

divla ¼ .aðt;xÞ; ð27Þ

This imparts a duality to certain source terms in continuum balances, as they may also be expressed as divergence of flux, as
shown for forces and stresses by Segev and De Botton (1991).

4.3. Stress and its localization

While physicists sometimes attribute continuum momentum balances to Newton, the modern continuum mechanics lit-
erature exhibits a pronounced deference to Euler and Cauchy.7 As a departure from that tradition, whose axiomatic foundation
is discussed elsewhere (Truesdell, 1991, Chapter III), we provisionally write the standard linear momentum balance in the form:

dt.p þ ðdivvÞ.p � qdtv ¼ .f ¼ .I þ .E; ð28Þ

where .Iðt; xÞ¼̂½.i
Iðt;xÞ� is internal force density, arising from material interaction, and .E is external body-force density. If the

former is spatially-restricted, then it follows immediately that we may write .I = div sp, where sp plays the role of a stress
tensor. Moreover, with a further postulate,8 we may express it in terms of interactions, generally non-local, between distinct
material points in a continuum. In particular, we assume that

.Iðt;xÞ ¼
Z

y2B
fðt; x; yÞdVðyÞ; ð29Þ

6 In a more general treatment, one could envisage spatio-temporally restricted densities, limited by various signal speeds.
7 aptly summarized by the preeminent scholar: ‘‘In continuum mechanics Euler and Cauchy always considered only resultant forces upon bodies, and the

later tradition did the same. That made reasoning on the foundation of continuum mechanics basically different from that which is used in the analytical
dynamics of mass-points, which always considers systems of forces in which each point attracts or repels other points. That difference forced Cauchy to
introduce contact forces and body forces apriori.’’ Truesdell (1992). Those of like mind may choose to designate (28) as a strong form of Cauchy’s first law.

8 A similar form is to be found in the work of Gurtin, Williams, and Ziemer (1986, 2nd eq.), who consider general conditions for the existence of Cauchy
fluxes.

J.D. Goddard / International Journal of Engineering Science 49 (2011) 1486–1493 1491
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where fðt;x; yÞ ¼ �fðt; y;xÞ; y� is a two-point force density, with

fðt;x; yÞdVðxÞdVðyÞ;

representing the vector force on, or net momentum exchange rate into, the volume element dV(x) emanating from the ele-
ment dV(y). In various molecular theories (Goddard, 1986, 1998; Irving & Kirkwood, 1950; Murdoch & Bedeaux, 1993; Noll,
1955), f can be attributed to intermolecular forces and streaming momentum exchange.

As with discrete particle systems, fðt;x; yÞ is to be derived from kinematics by appropriate constitutive equations but, in
the spirit of Newtonian mechanics, we treat it provisionally as known.

Then, by a simple changes of variables and the xy-antisymmetry of fðt;x; yÞ, it follows thatZ
y2B

fðt; x� y; yÞdVðyÞ ¼
Z

y02B0
fðt; y0;x� y0ÞdVðy0Þ ¼ �

Z
y2B0

fðt;x� y; yÞdVðyÞ; ð30Þ

where B
0 ¼ fy : x� y 2 Bg. For infinite regions B, we can take B

0 ¼ B, so that, whenever it exists, the integral (30) must
equal zero. Assuming this to be the case, we may replace lI(t,x), as defined by a = I in (24), by:

spðt;xÞ ¼
Z

y2B

Z
Cð0;yÞ

fðt;x� z; yÞ � dzdVðyÞ; ð31Þ

which has a form suggested by statistical mechanical treatments involving forces between discrete particles (Irving & Kirk-
wood, 1950; Noll, 1955; Goddard, 1998).

It is clear that (31) generally involves nonlocal material interactions, and in that respect it is germane to nonlocal field
theories.9 However, borrowing again from statistical mechanics (Goddard, 1998), we can formally obtain a localized version
of (31), suitable for expressing contact actions across arbitrarily small portions of the boundary of a body.

4.4. Localization

In numerous situations, we expect the two-point density fðt;x; yÞ to fall off rapidly with separation jy � xj, or, following
the above two-scale analysis, to have the property

fðt; x; yÞ ¼ ~fðt; x;gÞ; with g ¼ ðy � xÞ=�; 0 < �� 1;
where
~fðt; x;�gÞ ¼ �~fðt; x;gÞ and ~fðt;x;gÞ ! 0 for jgj ! 1:

ð32Þ

Hence, we can write

fðt;x� z; yÞ ¼ ~fðt;x� z; ½z� ðx� yÞ�=�Þ;

whence it is clear that the dominant contribution to the integral (31) comes from the region 0 6 jzj 6 R with
R � jy � xj = O(�). Then, it is easy to show that, with suitable smoothness of f, the integral is given up to an additive solenoidal
term as the force dipole:

spðt;xÞ �
Z

y2B�
fðt;x; yÞ � ðy � xÞdVðyÞ; ð33Þ

with relative error �, where B� ¼ B�ðxÞ is an �-neighborhood of x. The form (33), as well as higher multipoles, are suggested
by statistical mechanics [4] and embody Noll’s ‘‘principle of local action’’ (Truesdell & Noll, 1965). While space does not allow
a full elaboration on the equivalence to the standard continuum stress, the analysis suggests that statistical mechanics or
micromechanical modeling could perhaps as well seek a pairwise force density, rather than a stress tensor per se.

5. Conclusions

As major findings of the present study, we conclude that Eringen’s moment balances require some re-interpretation to
establish a direct correspondence either with the type of balance derived by Germain or with that obtained by a two-scale
analysis based on Fourier transforms. However, there is disagreement between the latter two methods, arising from the fact
that Germain’s treatment in effect includes gradient-coupling of microdomains, as reflected by spatial gradients not occur-
ring in the elementary two-scale analysis considered above. As suggested but not implemented in the present work, it should
be straightforward to extend the two-scale analysis to ‘‘mesodomains’’ and to achieve agreement with the results of
Germain.

It is conceivable that Eringen’s micromorphic continuum is more general than that proposed by Germain but, if so, it
would be desirable to reconcile it with virtual work principles.

9 Where Eringen made numerous seminal contributions (cf. Eringen, 2002). As pointed out by Maugin (1980), there is a certain matter of taste in choosing
non-local vs. gradient theories, although there are well-known issues with convergence and with boundary conditions for the latter.

1492 J.D. Goddard / International Journal of Engineering Science 49 (2011) 1486–1493



Author's personal copy

As a somewhat separate matter, we have explored the source-flux duality in continuum balances, which serves to estab-
lish a direct connection between Newton’s and Cauchy’s laws and to provide an expression for stress suggested by the sta-
tistical mechanics of Kirkwood and coworkers. It remains to verify that the localized forms involving force multipoles exhibit
the contact actions of stress and hyperstress.

Note added in proof

The ‘‘peridynamics’’ of Silling and coworkers (cf. Lehoucq & Silling, 2008), which only recently came to the author’s atten-
tion, is subsumed in the present construct, represented by (24).
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