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1 We recall that attempts have been made to attri
a b s t r a c t

Following is a discussion of several issues surrounding the continuum modeling of discrete
particulate systems, particularly the uncertainty in the definition of continuum-level mate-
rial particles and velocities. The work is motivated in part by various proposals for the
introduction of supplemental velocity fields into the thermo-mechanics of single-compo-
nent fluids. A review and modification are given of the relevant continuum field equations,
based on the Eulerian rather than the conventional Lagrangian description, and a connec-
tion is made to the well-known statistical mechanics of Kirkwood and coworkers for point-
particles.

The Noetherian technique of Green and Naghdi is employed to derive the momentum
balance directly from the particle-level energy balance, and it is shown that non-barycen-
tric effects in particle motion engender stress asymmetry. It is conjectured that this and
related effects are generally bound up with higher-gradient effects and the breakdown
of the simple-material model for continuum thermo-mechanics. To illustrate this, a theory
of non-local linear viscoelasticity is presented and compared with Brenner’s ‘‘bi-velocity
hydrodynamics” and Müller’s ‘‘extended thermodynamics” for heat flux and stress. These
models are shown to represent expansions in spatial wave vector, representing a Knudsen
number, and temporal frequency, representing a Deborah number. Suggestions are made
for further work to explore the associated effects of couple-stress and the consequences
of departures of entropy flux from heat flux.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction – Field theoretic background

The Lagrangian point of view and the underlying notion of a material particle (or point) is firmly imbedded in rational con-
tinuum mechanics and the associated virtual-work principles [38,36,11,6,37], although the precise physical meaning of such
particles is sometimes ambiguous. More often than not, they are barycentric points, associated with mass and the conser-
vation of mass, although mass plays no role in fields such as elastostatics.

The issue is relevant to statistical mechanics, where the ‘‘homogenization” or ‘‘coarse-graining” [24,13,15] of a system of
discrete bodies or subparticles, is employed to define an hypothetical overlying continuum. As reflected by the earliest works
on solid elasticity [3], the identification of a definite material particle with a definite collection of subparticles (in a ‘‘repre-
sentative material volume element”) is relatively straight-forward in the absence of significant thermal motion. By contrast,
in fluid-like states of matter, large-scale thermal (or Brownian) motion leads to uncertainty1 in this identification, and one
may plausibly argue that the continuum-level ‘‘material particle” exists only on time scales defined by thermal diffusion.
. All rights reserved.

bute quantum–mechanical uncertainty to analogous effects [32].
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Relevant to this issue is a series of papers by Brenner [1,2, and references therein], indicating that the conventional bary-
centric velocity is insufficient to describe certain departures from Navier–Stokes theory in non-homogeneous fluids. As a
remedy, he proposes a supplementary velocity field, qualified variously by terms such as volume velocity or work velocity,
which is subsequently employed in various constitutive equations for diffusive energy flux and stress.

Stimulated in part by Brenner’s work, several investigators attempt to identify other relevant velocities based on statis-
tical mechanics. For example, Eu [9], making use of the Irving–Kirkwood [18] formulae discussed below, defines a velocity
based on collective modes of molecular motion, but the mechanical consequences and physical measurability are not clear to
this author. The position taken here is that physical measurability or observability is an eminently desirable property of con-
stitutive variables and that such measurability is ultimately dependent on some appeal to conservation laws.2 For example,
the measurability of barycentric velocity, defined as the ratio of local mass flux3 to mass density, is guaranteed, at least concep-
tually, by the conservation of mass. In the absence of some similar principle for non-barycentric ‘‘particles” and ‘‘velocities”,
they should be regarded as mathematical artifice, however convenient.

One goal of this article is to show how the uncertain status of various material points and velocities is tied up with higher-
gradient effects and the breakdown of the (Coleman–Noll) model of thermo-mechanically simple materials. Hence, a proper
treatment of such effects requires modificaton of the latter, such as the thermodynamics of Müller [26,24, and references
therein]. In the two following sections, we review the relevant continuum field equations and their statistical mechanical
counterparts, indicating a certain arbitrariness in the concept of material velocity and its consequences for constitutive the-
ories. In the final section, we consider a non-local form of linear viscoelasticity, in order to illustrate the breakdown of the
simple-material model and the relevance to the issues discussed above.

2. Continuum fields and balances

In contrast to the conventional continuum mechanics, and in the spirit of [26], we employ spatial (Eulerian) forms, rather
than integrals on a manifold of material particles. As made evident below, this formulation makes for easier comparison to
the standard versions of statistical mechanics.

Thus, the local balance of an extensive tensor-valued quantity A, endowed with spatial density field4

.Aðx; tÞ ¼ .i1 ;...;ın
A ðx; tÞ

h i
, flux uAðx; tÞ ¼ ui1 ;...;inþ1

A ðx; tÞ
h i

and production rate cAðx; tÞb ¼ ci1 ;...;in
A ðx; tÞ

h i
, is given by:
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@t.A þr �uA ¼ cA; ð1Þ
such that5
AðV ; tÞ ¼
Z

V
.Aðx; tÞdVðxÞ ð2Þ
is the amount of A contained in the spatial region V. The notation conveys the point that tensor densities such as . = .A in-
herit their tensorial rank from the superscripted quantity A, whereas spatial fluxes u are one rank higher.

The balance (1) with cW = 0 applies to an arbitrary conserved scalar A = W, which defines a tracer-velocity field
u(x,t) = uW/.W and the associated tracer-particle field xW(x, t) satisfying the partial differential equation6
@txWðx; tÞ þ u � rxWðx; tÞ ¼ 0; ð3Þ
whose characteristic curves dxW/dt = u(xW, t) define tracer-particle paths.
The extended thermodynamics of Müller and coworkers [26], which provides a useful conceptual backdrop to the present

work, involves a hierarchy of balances of the form (1) based loosely on the kinetic theory of gases. The kinetic theory also
dictates the form of their constitutive closures,7 which involve weakly non-local forms of the type discussed below in Section 4.
As indicated by the following analysis, the balances in their hierarchy cannot be regarded as completely independent.

We focus on thermo-mechanical quantities A whose spatial dependence is inherited from the generalized kinematics v, h
of a material body occupying V, including a barycentric velocity field v(x, t) and an additional set of variables h(x, t), provi-
sionally interpreted as one or more frame-indifferent scalar ‘‘temperatures”. We denote the corresponding functionals by:
wðx; tÞ ¼ w½v; h�ðx; tÞ; where w ¼ .;u; or c; ð4Þ
tortuous history of Newton’s ‘‘force” in classical mechanics is a prime example, providing much of the motivation for Lagrangian mechanics and related
work principles. By means of the latter, one defines force in terms of an exchange of (conserved) energy accompanying changes in configuration, which
ly defers the problem to one of defining configuration.
s runs counter to numerous textbook definitions of mass flux in terms of a previously undefined velocity. It also points up a fundamental difficulty with
served entities such as entropy, which we generally cannot collect and store in a given volume of space and, conversely, cannot completely capture

given material flow.
e and in the following, components of a tensor are specified in square brackets, along with the defining equal sign.
the sake of brevity, we denote a quantity and its measure by the same symbol.
b [23, Chapter 1], noting that these equations apply to the labeling of any ‘‘particle”, traces them through Stokes to Lagrange.

ich are simply algebraic connections between various fields and their partial derivatives, to which one cannot readily assign rôles of ‘‘dependent” vs.
ndent” variables; e.g. [26, Eq. (2.13)] gives various components of stress and heat flux in terms of the derivatives of these quantities.



J.D. Goddard / International Journal of Engineering Science 48 (2010) 1279–1288 1281
and these are assumed to depend on v(x0, t0), h(x0t0) for x 0 2 V, t0 < t. While mass density q(x, t) might also be included in the
list of field variables, we prefer to treat it as derivable from v(x, t) via the mass balance, which as shown below follows from
the energy balance. The rôle of mass density will be taken up again in Section 4, where we specialize to a weakly non-local
theory in which the above functionals depend on a limited number of spatial gradients v, h, rv, rh, rrv, rrh, etc.

By means of the Noetherian technique of Green and Naghdi [16] all the standard balances of continuum mechanics follow
from the form invariance of the energy balance under change of frame.8 Whereas their treatment is based on integral balances
over bodies, the same results follow from the stronger local form (1) employed here, whenever the fields are sufficiently smooth
or, otherwise, whenever appropriate discontinuity conditions are provided.

2.1. Key balances and fluxes

To motivate the following treatment, we note that, within the present framework and with the provisional assumption of
simple materials, the energy balance (with A ¼def E) can be written as
8 The
here.

9 Thi
uE ¼ .Ev þ q� Tv ¼ .Ev þ jE � Tu; cE ¼ .b � v þ r; with

jE ¼ qþ Tðu� vÞ; .E ¼ q
1
2

v2 þ e
� �

; q ¼ .M :
ð5Þ
Here, e denotes specific internal energy, q conventional heat flux, T Cauchy stress, b barycentric body force, and r the radiant
energy input. Also, we distinguish the barycentric velocity v from a dynacentric velocity u, playing the same role in the en-
ergy balance as Brenner’s work velocity [2] which he occasionally associates with a ‘‘diffuse volume flux” jW = u � v, about
which more will be said later.

Since u � v is by definition Galilean invariant, so is the diffuse energy flux jE defined in (5).9 Nothing is gained at this junc-
ture by the introduction of distinct conjugate stresses, say, Tv, Tu, since the associated power flux can be written as
Tvv þ Tuu ¼ Tvþ Tuðu� vÞ; where T ¼ Tv þ Tu; ð6Þ
which merely changes the definition of jE.
Since T is assumed to be Galilean-invariant, a Galilean transformation of (5), i.e. a shift of v by a constant velocity t, adds

terms to .E that are both linear and quadratic in t. According to Green and Naghdi [16], these lead, respectively, to the energy
and mass balances, and their treatment is now adapted to the present formulation.

2.1.1. Changes of frame
As a variant on the standard representation of a change of frame
xþ ¼ Q ðtÞxþ nðtÞ; Q�1 ¼ Q T ; ð7Þ
by the finite Euclidean group, we express it here in terms of the infinitesimal generators, dH = � dHT = (dQ)Q�1 and dt, with
dx ¼ ðdHÞxþ dn; dv ¼ ðdHÞv þ ðdXÞxþ dt; dh ¼ 0;
d@t ¼ �½ðdXÞxþ dt� � r; dr ¼ ðdHÞ � r; where
dt ¼ d@tn; and dX ¼ d@tH;

ð8Þ
Then, with
dð�Þ ¼ d ð�Þ;rð�Þ;r�rð�Þ; . . .f g ð9Þ
denoting variation of the underlying vector space, we define an objective nth-rank tensor field w ¼ wi1 ;...;in

h i
¼ w½v; h�ðx; tÞ as

one that transforms according to
dw ¼ LðdHÞwþ dvw½v; hjdv� þ dhw½v; hjdh� with

LðBÞw½ �i1 ;...;in ¼
Xn

m¼1

Bim
jm

wi1 ;...;im�1 ;jm ;imþ1 ...;in
ð10Þ
L denotes the Lie derivative with respect to an arbitrary second-rank tensor B, which is bilinear in B and w and vanishes
whenever the latter is a scalar (n = 0). Also, dv[(�)j*] and dh[(�)j*], linear in *, represent suitable functional (e.g. Fréchet) deriv-
atives with respect to the arguments (�). Whenever these functional derivatives vanish, the tensor field is frame-indifferent
according to the standard definition.

Suppressing notation for the quantity A, we can write the balance (1) as
Dt.þr �u
� ¼ c

� ð11Þ
ir derivation of the entropy balance appears to involve a physically unacceptable shift in the origin of absolute temperature and will not be employed

s term ‘‘diffuse” is employed in deference to other literature on the subject, whereas ‘‘relative” would be a better terminology.
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u
� ¼ u� v � .; c

� ¼ c� .r � v �LðWÞ.; ð12Þ
where
Dt. ¼ dt.�LðWÞ.; dt ¼ ð@t þ v � rÞ; W ¼ 1
2
rvT �rv
� �

ð13Þ
denote, respectively, the co-rotational derivative, material time derivative, and vorticity. The relation (11) represents one
possible invariant form for frame-indifferent tensor fields, an important subclass of which are called Galilean by Müller [26].

2.1.2. Linear momentum and mass from energy
In the special case A = E, (11) reduces to
dt.E þr �u
�

E ¼ c�E; where

u
�

E ¼ uE � .Ev; c�E ¼ cE � .Er � v;
ð14Þ
and the various terms are defined in (5) for simple materials.
Specializing to Galilean transformations, dX = 0, dv � dt, independent of t, the variational derivative of (14) gives the lin-

ear momentum balance:
dt.p þr �up ¼ cp; where .p;up; cp

n o
¼ @v .E;uE; cp

n o
; ð15Þ
with u
�
p ¼ @vu

�
E ¼ �T defining the stress tensor.

A further derivative @v of (15) gives a balance for a second-rank mass tensor M with density .M = @v.p. However, the fur-
ther requirement that .E be an isotropic function of v, assumed in (5), gives .M = q1.

By considering the more general Euclidean group (8) one can derive a standard angular momentum balance [16],
although the derivation involves well-known assumptions as to the way in which e is allowed to depend on acceleration rel-
ative to an inertial frame [26,28]. Setting aside this issue, we consider now the connection to the statistical mechanics of
discrete particulate systems.

3. Connection to statistical mechanics

Homogenization associates a continuous medium with a discrete mechanical system B consisting of N distinct bodies or
particles and described by a discrete set of phase-space coordinates z ¼ fxa;va; . . .g 2 Z defining configuration and veloci-
ties.10 Although not pursued here, the number N should be connected to the representative volume element, which is in turn
related to the coarse-graining discussed below.

As a variant on a method that goes back at least as far as Kirkwood and coworkers [18,33,34,27,12,29,13,31,15],11 one
‘‘smears out” each particle a = 1,2, . . . ,N, in physical space by means of a weighting or coarse-graining density na(x), where x
is spatial position. In general, the na(x) are assumed to be continuous and differentiable in x, up to an order dictated by the
continuum model, and to satisfy
Z

V
naðxÞdVðxÞ ¼ 1; ð16Þ
where V is the spatial region occupied by the model continuum. Given then any extensive quantity defined by a space tensor
A of rank n and having assigned Aa(z) with
AS ¼
X
a2S

Aa ð17Þ
for any subset of particles S#B, the associated spatial density is
.Aðx; tÞ ¼
X

a
Aana; where

X
a

:¼
X
a2B

; ð18Þ
whose t dependence arises solely through dependence on z.
The abstract distributions na take on a concrete significance in the conventional statistical mechanics of discrete particles,

where Kirkwood and coworkers [18,13] replace them by the Dirac delta d(xa � x) to yield a density operator
PAðx; tÞ ¼
X

a
Aadðxa � xÞ; ð19Þ
the obverse of the notational convention of [13], we employ Roman indices for tensor components and Greek for particle enumeration.
he works [12,13], the present author overlooks several important contemporaneous works of Murdoch and Murdoch and Bedeaux cited in [31], which
much of the same terrain from a different perspective.
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where the xa represent suitably defined particle positions. As singular realizations of the discrete system, such a linear oper-
ator is dual to the N-particle distributions in phase-space Z, say f(z,x, t), defining phase-space averages:
12 Up
y = sxa +

13 Thi
.Aðx; tÞ ¼ hPAi :¼
Z
Z

PAf ðz; x; tÞdVðzÞ; ð20Þ
where dV(z) represents an appropriate volume measure in Z.
The Dirac delta is a special case of the more general Galilean-invariant homogenization,
naðxÞ ¼ nðjxa � xjÞ; ð21Þ
where n is independent of a. In this sense, (20) represents a natural homogenization of the form
naðxÞ ¼
Z
Z

nðjxa � xjÞf ðz; xÞdVðzÞ: ð22Þ
We set aside questions related to homogenization and averaging in the time domain addressed recently by Murdoch and
coworkers [29,31], although these are highly relevant to the issue of thermal fluctuations.

As a departure from previous works [18,27,13], the particle positions xa are not regarded ab initio as mass centroids. Start-
ing from a more general definition of velocity, the Appendix indicates how (19) leads to the balance:
@tPA þr �UA ¼ CA; ð23Þ
with flux and production operators defined, respectively, by
UA ¼
X

a
ha � _Aa þ ua � Aada

n o
with;

ha ¼
1
W

X
b

wb

Z xa

xb

dðy � xÞdy; _Aa ¼ _z � @zAa; ua ¼ _xa;
ð24Þ
and
CA ¼ _APW ; with PW ¼
X

a
wada;

ð Þ ¼ 1
W

X
a
ðÞa; W ¼

X
a

wa; and da ¼ dðxa � xÞ:
ð25Þ
The wa represent arbitrary non-negative weights, which are also subject to a balance, with A �W in (23)–(25). If the weights
represent a conserved tracer, with _wa � 0, then they are fit to define a supplemental ‘‘material velocity” u(x, t). For systems of
identical particles with wa = w independent of a, we also may take w = 1 and W = N in the above formulae, but xa may be
distinct from barycentroids, so that ua – va.

The first term in (24), with ha involving a path integral of a delta function,12 represents one contribution to a diffusive flux
relative to a convective flux associated with the second term in (24).

In keeping with (11), it is also convenient to define the supplemental quantities based on barycentric velocity v
U
�

A ¼ UA � v � PA; C
�

A ¼ CA � PAr � v �LðWÞPA;

where v ¼ uM=q:
ð26Þ
Owing to the introduction of continuum-level averages, these quantities represent non-linear operators on the relevant
distributions.

With appropriate choices of Aa and with wa = ma the standard barycentric balances follow from (23)–(25) [18,33,29,13].
However, as suggested by the continuum balances given above, the mass and momentum balances follow from the Galilean
invariance of the energy balance.13 In particular, one obtains the momentum-operator balance from the Lagrangian forms:
Pp ¼ @vPE ¼ UM; U
�

p ¼ @vU
�

E; C
�

p ¼ @vC
�

E; with

pa ¼ @vEa; _pa ¼ @v
_Ea

ð27Þ
As one of the main points of the present work, we note that for a system of identical particles subject to an external body
force field ba = b(xa), the energy balance is given by (23)–(25), with:
Aa ¼ Ea ¼ m v2
a=2þ ea

� �
; with _Ea ¼ fa � va þmba � va þm _ea; ð28Þ
where va denotes barycentric velocity, with va = jvaj, and ea represents specific internal energy, including all forms of internal
kinetic energy (rotational, vibrational, etc), as well as internal potential energy. Also, fa ¼

P
bfab denotes the resultant of
to an additive solenoidal term
H
d(y � x)dy, this integral can be reduced to Noll’s form [33,13,31] by integration along the straight-line path

(1 � s)xb, 0 6 s 6 1.
s runs counter to the chain of reasoning in the works just cited, which derive the energy balance from the mass and momentum balances.
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pairwise inter-particle forces [18,33,13], while _ea includes all other forms of energy exchange, including work due to inter-
particle couples.

If xa, ua denote non-barycentric quantities, e.g. position and instantaneous velocity of any center of fa, (any point without
moment), then its instantaneous power is given by:
fa � ua � fa � va þ fa � ðua � vaÞ; ð29Þ
where the second term, representing particle rotation and deformation, has the same Galilean-invariant form as other terms
included in _ea in (28). At any rate, by making use of (23)–(27) one finds after a bit of algebra the operator version of (5):
U
�

E ¼ Pv þ Q ¼ Puþ JE; JE ¼ Q �Pðu� vÞ; ð30Þ
where
Q ¼
X

a
ha fa � v0a þ _ea
� �

þ u0aE0ada
� �

; u ¼ uW=.W ;

P ¼
X

a
ha � fa þ u0a � p0ada
� �

¼ @vU
�

E ð31Þ
with
p0a ¼ mv0a; v0a ¼ va � v; u0a ¼ ua � u; E0a ¼ m v 0a2=2þ ea
� �

:

Whenever ua � va, the relation (31) reduces to the Irving–Kirkwood form [18,33,13] but, otherwise, involves asymmetric
contributions u0a � p0a to the stress tensor in (5), which we recall is given by T = � hPi. Although not discussed here, an angu-
lar momentum balance would no doubt reveal similar asymmetries associated with (29).

With no attempt to derive it from the foregoing statistical mechanics, we consider a linear continuum model that illus-
trates some of the key issues.

4. Non-local linear viscoelasticity

Fourier methods have been proposed by several workers as a route to homogenization [21,22,30], and the Coleman–Noll
theory of simple materials is tantamount to the physicist’s ‘‘long-wavelength” limit. In non-local linear theories, which rep-
resent a variant on the Coleman–Noll theory [5], Fourier representations embody the notion of ‘‘wave-number dependent”
transport coefficients [19,9], capturing the dispersive effects associated with higher-gradients. When extended to the time
domain by means of the Laplace transform, one obtains a similar description of frequency effects in materials with memory.
Hence, the transform
ŵðk; sÞ ¼ ŵtðk; sÞ ¼
Z

V

Z 1

0
e�ık�x�st0wðx; t � t0ÞdVðxÞdt0; ð32Þ
provides a localized description in Fourier space (k,s) of a spatio-temporally delocalized field wt(x0, t0) = w(x0, t � t0), x0 2 V,
t0 P 0. Accordingly, a causal, non-local and linear constitutive equation between two sets of tensor fields
Uðx; tÞ ¼ uð1Þ; . . . ;uðmÞ
� �

ðx; tÞ and Wðx; tÞ ¼ wð1Þ; . . . ;wðmÞ
� �

ðx; t � t0Þ; ð33Þ
for t0 P 0, of the type studied extensively by Eringen [7,8], can be represented by the linear form:
bUðk; sÞ ¼ bLðk; sÞ bWðk; sÞ; ð34Þ
where bLðk; sÞ represents a matrix of tensor moduli. When U(x, t) in (33) consists of stress and heat flux, one obtains a linear
theory of thermo-viscoelasticity.

If we adopt a scaling in which k and s are replaced by nondimensional forms kk and ss, with k and s denoting appropriate
material length and time scales, then k :¼ jkj and s represent, respectively, a Knudsen and a Deborah number. Hence, one ob-
tain a weakly non-local spatio-temporal model from a Taylor series expansion of bLðk; sÞ about the spatially uniform rest-state
k = 0, s = 0.

Loosely speaking, the expansion in k is tantamount to the Burnett expansion of kinetic theory [26,1,2], whereas the
expansion in s represents the ‘‘retarded-motions” of Coleman and Noll [5,4]. In particular, the theory of simple fluids emerges
at O(k), while dissipative response arises at O(s) for s ? 0; and, taken together, these approximations represent the Navier–
Stokes–Fourier régime for fluids.

4.1. Fluids

To make the above points clearer, we consider a linear viscoelastic fluid in which stress relative to an equilibrium pres-
sure T0 = T + peq1 and heat flux q, are represented by bT0½¼ ŝij� and q̂½¼ q̂i� as functions of velocity v̂½¼ v̂ i� and absolute tem-
perature ĥ. Here as below the Cartesian-tensor conventions are employed for clarity, and (34) becomes:
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q̂i ¼ bLð11Þ
i ĥþ bLð12Þ

ij v̂ j;

ŝij ¼ bLð21Þ
ij ĥþ bLð22Þ

ijl v̂ l;
ð35Þ
where the coefficients bL depend on the complex frequency s and wave vector ki. For isotropic materials, these coefficients
must be isotropic functions of the wave vector and, for the case of symmetric stress, can be written down explicitly as:
bLð11Þ
i ¼ Aki; bLð12Þ

ij ¼ Bdij þ Ckikj; bLð21Þ
ij ¼ Ddij þ Ekikj;bLð22Þ

ijl ¼ Fdijkl þ Gðdilkj þ djlkiÞ þ Hkikjkl;
ð36Þ
where the scalar coefficients A,B, . . . ,H are assumed to be analytic functions of s and k2 = kiki. The assumption of Onsager
symmetry would dictate that B = D*, C = E*, where asterisks denote complex conjugates.

Note that if ŝij is strictly dissipative, then the total dissipation is given (by Parseval’s theorem) as the imaginary part of the
integral over Fourier space of
�q̂ikiĥ
� þ ŝijkiv̂�j ¼ �bLð11Þ

i kijĥj2 � bLð12Þ
ij kiv̂ jĥ

� þ bLð21Þ
ij kiv̂�j ĥþ bLð22Þ

ijl kiv̂�j v̂ l: ð37Þ
It is further worth noting that Onsager symmetry eliminates the energetic coupling of temperature and velocity gradients
represented by the terms in bLðabÞ

ij ; a – b.
A weakly non-local theory in space is obtained from (36) by wave-number expansions of K = A,B, . . . ,H of the form
K ¼ K0ðsÞ þ K1ðsÞk2 þ K2ðsÞk4
. . . ; ð38Þ
where Km(s) are independent of ki.
To compare with models proposed elsewhere [26,2], we retain of terms O(k3) in (36), to give
bLð11Þ
i ¼ A0 þ A1k2

� 	
ki; bLð12Þ

ij ¼ B0 þ B1k2
� 	

dij þ C0kikj;

bLð21Þ
ij ¼ D0 þ D1k2

� 	
dij þ E0kikj;

bLð22Þ
ijl ¼ F0 þ F1k2

� 	
kldij þ G0 þ G1k2

� 	
ðdilkj þ djlkiÞ þ H0kikjkl;

ð39Þ
Galilean invariance implies that B0 = 0, and Onsager symmetry further requires that D0 = 0.

4.2. Comparison to specific models

On replacing kl by ırl and k2 by �r2 one obtains the corresponding spatial representation, with the coefficients
A0(s),A(s), . . . ,H0(s) now representing Laplace transforms of hereditary kernels. Thus, at this level, one captures (Maxwell–
Cattaneo) relaxation of stress and heat conduction [24], in a form like that proposed by Müller [26].

It is worth noting that retention of terms of O(k2) in (39), together with imposition of Onsager symmetry, leads to eight
coefficients
A0; B1; C0; D1; E0; F0; G0; H0; ð40Þ
the same number as in the extension of kinetic theory proposed by Müller [26, Eq. (2.13)] (namely, his a, b, c, K, L, j, k, l),
although the two formulae can be compared precisely only by a retarded-motion expansion to terms O(s), with velocity v̂
and displacement û connected by v̂ ¼ sû.

By contrast, Brenner’s [1,2] models, discussed further below, are restricted to O(s) in s for s ? 0, and appear to be sub-
sumed in the above-cited model of Müller. At this order, one obtains Maxwell’s [25] theory of thermal stress from:
ŝij ¼ F0ð0Þdijklv̂ l þ G0ð0Þðkiv̂ j þ v̂ ikjÞ þ D1ð0Þk2dij þ E0ð0Þkikj

h i
ĥ; ð41Þ
with the terms in F and G representing viscous stress. We recall that Maxwell’s theory gives the ratio E0(0)/G0(0) as 3m/heq,
where m is kinematic viscosity. While no length scale is immediately apparent in this interpretation of (41), one sees that, by
writing v̂ i ¼ sûi, the relevant terms in (41) become
ss kiûj þ ûikj
� �

þ k2kikjĥ=heq;
where we have identified the kinematic viscosity with the kinetic theory form k2/3s, in which k represents mean-free path
and s collisional relaxation time. Hence, with the (Maxwellian) view of viscosity as elastic relaxation, and with Newtonian
viscosity given by the product of s and a relevant elastic modulus (for gases, essentially the pressure), viscous effects of O(s)
(Deborah number) must be compared to thermal stresses of O(k2) (Knudsen number squared).14
axwell [25] indicates, the two are of comparable magnitude only for rarefied gases.
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The preceding result is also captured by the bi-velocity hydrodynamics of Brenner [2], a recent form of which involves
constitutive equations for entropy flux, relative velocity and stress15:
15 Bre
16 In n
jS ¼ �jr ln hþ 1
h

K12r � T0;
u� v ¼ �K21r ln hþK22r � T0;
T0 ¼ 2l ruþ ðruÞ T

h i
þ kðr � uÞ1; ð42Þ
with
T0 ¼ Tþ peq1; and jðSÞ ¼ 1
h
½qþ peqðu� vÞ�;
where peq is an equilibrium pressure, and T0 is the stress represented in (35). Hence, Brenner’s theory substitutes an alter-
native velocity u (not to be confused with the displacement introduced above) for barycentric velocity v in the standard
expression for viscous stress. Transforming (42) to Fourier space, it is a simple algebraic matter to show that it is a special
case of (35). Without pursuing the issue further, the smaller number of coefficients in (42) than in (40) suggests that (42)
may not capture all gradient effects at (‘‘Burnett”) order k2.
4.3. Other variables and effects

The velocity and temperature fields are treated as primary independent variables in (35), in keeping with the standard
continuum thermo-mechanics [4]. On the other hand, theories such as Eu’s [9], involve gradients of mass density q(x, t),
which in the formulation (35) translates to kq̂ðk; sÞ. However, the standard continuum mechanics gives density and the con-
tinuity equation in terms of (the Jacobian of) the material map between states, which in the above linear theory takes the
form
bq0 ¼ �1
s
qeqk � v̂; where q0 ¼ q� qeq; ð43Þ
Hence, density gradients can be eliminated in favor of velocity gradients, introducing a simple pole at s = 0 (with retarded
motion given by Laurent rather than Taylor series). However, such singularities generally represent differential equations
in @t that are common to the Maxwell–Cattaneo forms [26] of extended thermodynamics.16

Entropy has not been considered as a variable in the present discussion, which has largely avoided issues relating to the
entropy balance and the associated thermodynamic restrictions on constitutive equations. It is clear that the higher-gradient
effects discussed above involve departures of entropy flux jS from the conventional form, which is evident in the bi-velocity
model of Brenner and the extended thermodynamics of Müller. To the extent that this difference has implications for con-
stitutive modeling, it is worthy of further investigation, including a consideration of Onsager symmetry and the restrictions
on the non-local form (37).

A somewhat more compelling question is the stress asymmetry and couple-stress associated with non-barycentric forces
and velocities, which was touched on in the above discussion of statistical mechanics. We recall that asymmetry T – TT goes
hand-in-hand with a couple-stress M[=lij] transmitting contact couple Mda across areas da = ndA. Because of the small
length scales, such effects are expected to be relatively weak in the molecular system, other than in liquid crystals or in
experiments involving high-frequency (large k,s) response. The situation is different at larger particle scales in fields such
as granular mechanics and rotational seismology [20,35,17,14], where gradient effects can be much more important.

Setting aside non-linear (amplitude) effects, the non-local model of viscoelasticity (34), which is also applicable to aniso-
tropic materials, is readily modified to incorporate couple-stress effects. The isotropic versions (35) and (36) are readily mod-
ified by replacing G(dilkj + djlki) by the asymmetric form Gdilkj + Jdjlki, involving two coefficients and then adding a third row to
(35) to specify lij by means of new set of coefficients F0, G0, H0, J0.

It is worth noting that Cosserat models, endowed with independent micro-rotations x[=xi], provide an interesting alter-
native for the representation of micro-rotational inertia and couple-stress. A recently proposed complex-variable represen-
tation [14], with complex stress T + ıM and complex velocity v + ıx giving a single balance for linear and angular momentum,
is readily implemented in (35) and (36) on replacing ŝij by ŝij þ ıl̂ij; v̂k by v̂k þ ıx̂k and A,B, . . . , J by complex coefficients. The
resulting model also applies to couple-stress models without Cosserat rotation, obtained by taking x � 0. This general sub-
ject is worthy of further investigation by means of an appropriate modification of the statistical mechanics discussed above,
for which simpler versions have been applied to granular media [20, and references therein].
nner denotes peq, T0 , q, u � v, jS, respectively, by p, � jM, ju, jw, q, and employs a slightly different notation for constitutive coefficients.
on-linear theories, we recall that the corresponding retarded-motion expansion can exhibit rest-state instability [10,26].
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5. Conclusions

The main findings and conclusions are summarized in the Abstract. It is worth re-iterating that the physical ambiguity of
material points or material velocities in continuum mechanics is related to the breakdown of the simple-continuum model
and the effects of higher spatial gradients in continuum fields. Several of the works cited above also address the effect of
temporal fluctuations, and further investigations should be carried out to clarify the relative importance and relation be-
tween these effects. The present work shows that Galilean invariance allows for a rather direct derivation of continuum
stress and heat flux from the statistical mechanical energy balance.
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Appendix A. Flux relations

A restricted form of relations (24) and (25) has been given previously [13], and a more general form, with corrections,17 is
given here. Starting from (19), one finds that
17 In [
@tPA ¼
X

a

_Aadðxa � xÞ � Aaua � rdðxa � xÞ
n o

¼
X

a

_Aadðxa � xÞ � r �
X

a
ua � Aadðxa � xÞ ðA-1Þ
the second term of which is shown in (24). To reduce the first term to the desired form, note that, given a set of tensors and
scalar weights {Ba, wa}, we may write the former as
Ba ¼
X

b

Bab þwaB; where Bab ¼
1
W

Bawb � Bbwa
� �

¼ �Bba;

B ¼ 1
W

X
a

Ba; and W ¼
X

a
wa: ðA-2Þ
Therefore,
X
a

Badðxa � xÞ ¼
X

a

X
b

Babdðxa � xÞ þ B
X
a

wadðxa � xÞ: ðA-3Þ
However, the first term can be written as
X
a

X
b

Babdðxa � xÞ ¼
X

a

X
b<a

Bab dðxa � xÞ � dðxb � xÞ

 �

¼ �r �
X

a

X
b<a

Z xb

xa

dðy � xÞdy � Bab

¼ �r �
X

a

X
b

wb

Z xb

xa

dðy � xÞdy � Ba: ðA-4Þ
The first term of (24) follows on taking Ba ¼ _Aa.
The above derivation is somewhat easier in Fourier space [13,30,9], where
dðy � xÞ ! e�ık�y;r! ık: ðA-5Þ
Moreover, in this representation
Z xb

xa

dðy � xÞdy!
Z xb

xa

e�ık�ydy ¼ ðxa � xbÞ � ık �
Z xb

xa

y � dy þ Oðjkj2Þ ðA-6Þ
the first term of which leads to the localization [13] that defines simple materials and associated fluxes, such as Cauchy
stress, with successively higher terms in k leading to higher-gradient theories of the type considered in Section 4.
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