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si should be replaced by −si in Eqs. (10) and (11) and in the phrase imme-
diately following Eq. (11).
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ABSTRACT: This work considers strongly dissipative reaction−diffusion systems with constitutive equations given by Edelen’s
dissipation potentials, whose existence is tantamount to nonlinear Onsager symmetry. As the main goal of this work, it is shown
that the associated extremum principle yields the relevant steady-state species balances and concentration fields for well-mixed
reactors as well as for spatially inhomogeneous reactions accompanied by diffusion. The above principle is contrasted briefly with
the popular notion of maximum entropy production. Potential applications of the theory to a wide range of reaction−diffusion
systems are discussed, and questions are raised as to the possible breakdown of strong dissipation and nonlinear Onsager
symmetry arising from reversible chemical or chemomechanical couplings.

■ INTRODUCTION

In a remarkable but much neglected series of papers, Edelen5−7

shows that any strictly dissipative system with finite degrees of
freedom is endowed with a dissipation potential. Such a system
is defined by a finite set (“vector”) of generalized “fluxes” J =
[Jα], α = 1, 2, ..., n, given as functions J(X) of conjugate
generalized “forces” X = [Xα], whose power X·J defines a non-
negative definite dissipation (rate):

= = · = · = = * ≥α
αD J X DX X J J X J( ) ( ) 0

def
(1)

where equality occurs only for J = X = 0. Here, as below,
brackets [ ] are employed to denote abstract-vector and matrix
components, and sums are taken over pairs of identical
superscripts and subscripts (the tensor summation convention
although not essential to the understanding of this article, the
vector space * of fluxes J represents the dual of the vector
space  of forces X, and the above dot product defines the
associated “pairing” or linear function * × →  , i.e. the
map into real numbers representing power.14) Then, super-
scripts and subscripts serve conveniently to distinguish nominal
forces from fluxes.
Following Edelen, we assume that the dissipation rate is a

convex function, which implies invertibility with X = X(J), so
that the can be regarded as a function of either X or J as
indicated in eq 1, either of which defines a dissipation function.
We recall that the classical Rayleigh−Onsager dissipation
function for linear systems is quadratic in X or J, whereas the
present theory applies to arbitrary nonlinear processes.
For the systems defined above, Edelen shows that there exist

dual dissipation potentials, with
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U,V are nondissipative (“powerless” or “gyroscopic”) terms,
such that

· = · =X U J V0 and 0 (3)

and Edelen shows how the potentials and the terms U,V can be
derived from the functions J(X) or X(J) by means of exterior
calculus. His book8 treats this in more mathematical detail, and
in a recent article devoted to other applications, the present
author14 shows that Edelen’s formulas can be derived by means
of ordinary vector calculus. The interested reader is referred to
these sources for more detail.
The gyroscopic terms in eq 2 represent the breakdown of

nonlinear Onsager symmetry, and when they are are absent, we
call the system strongly dissipative (or hyperdissipative in analogy
to hyperelastic in solid mechanics). Such a system represents the
dissipative counterpart of reversible thermodynamic systems,
with force potential φ and f lux potential ψ corresponding,
respectively, up to algebraic sign, to Gibbs and Helmhotz free
energies. As with equilibrium thermodynamics, the constitutive
theory connecting fluxes and forces in strongly dissipative
systems is completely determined by a single scalar potential.
Table 1 displays examples of electrical, chemical, and

mechanical systems which can exhibit strictly dissipative
behavior (with sij = vi;j + ϵijkω

k, where semicolons denote
gradients). Applications to the mechanics of viscoplastic bodies
are discussed elsewhere,14,19 and the focus here is on chemical
reactions and mass diffusion. As suggested by the table, the
abstract enumerative index κ is to be replaced by the indices or
collections of indices appropriate to the application at hand.
We recall that chemical reactions represent one of the earliest

application of Edelen’s potentials by Bataille et al.,1 who do not
pursue all the consequences and do not cite the contempora-
neous body of cognate studies by others,3,9,21,24,25 studies which
do not consider Edelen’s work. In the present article, we
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consider the implications of the associated extremum principle,
which could have far reaching implications for reaction−
diffusion and analogous systems. The main goal of the present
papers is to present a sketch of general principles, without
attempting a rigorous mathematical treatment and without
detailed application to specific mathematical problems,
although certain possibilities for the latter are mentioned
below in the concluding section.

■ DISSIPATIVE REACTION−DIFFUSION SYSTEMS
Before formulating the reaction−diffusion problems, we recall
that the potentials in eq 2 are (Legendre−Fenchel) convex
conjugates, as noted elsewhere14 (where it is also pointed out
that for nondifferentiable potentials “max” is to be replaced by
“sup” and partial derivatives by set-valued “sub-gradients”), with

φ ψ ψ φ

ξ φ ξ ψ

= · − = · −

∴ = * = ∂ = = ∂

X X J J J X J X

J X X X J J

( ) max{ ( )} or ( ) max{ ( )}

and ( ) ( ), ( ) ( )

J X

X J

(4)

This leads to the pseudolinear relations with positive symmetric
matrices = = −T 1:
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= = = = ∂ = =

= = ∂
α αβ
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J X X J[ ] [ ] and [ ]

[ ]

X
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where the positive definite “Onsager conductance” now
depends on X and its reciprocal resistance depends on J.
Their derivation is presented elsewhere,14 and it is shown that
the presence of gyroscopic terms in eq 2 lead to asymmetric
matrices and , representing a breakdown of hyper-
dissipativity and the associated (nonlinear) Onsager symmetry.
As pointed out previously,14 the above structure leads to a

variational principle in which the dissipation potential is
extremalized (mischaracterized as “maximized” in ref 14, since
it depends on the potential being considered), an idea which is
generally at odds with the “principle of maximum dissipation”
(or maximum rate of entropy production) embraced by
numerous investigators, particularly by Ziegler and contempo-
rary adherents.22,29,30 This divergence of principle was pointed
out previously1 for the case of chemical kinetics.
The present work is predicated on the principle of stationary

or extremal dissipation potential and the implications for
steady-state reaction-diffusion systems. Such systems, which
represent the “stationary non-equilibrium state” of irreversible
thermodynamics, are assumed to be strongly dissipative, with
reservations to be discussed below in the conclusions. With this
in mind, we consider first the case of homogeneous or “well-
mixed states” such as are achieved ideally in the classical

CSTR,11 and then we consider nonuniform states involving
reaction in the presence of mass diffusion.
We shall have occasion to employ Edelen’s formulas for

dissipation potentials in terms of dissipation, given e.g. in ref 14
as

∫ ∫φ ψ= = *D s
s

s
D s

s
s

X X J J( ) ( )
d

or ( ) ( )
d

0

1

0

1

(6)

from which it follows that a dissipation function that is a
homogeneous function gives rise to a dissipation potential that
is simply proportional to the dissipation rate.14 In the present
article, we focus mainly on force potentials of the type φ.

Homogeneous Systems. We consider a chemical reaction
involving n chemical species =i n, 1, ...,i with spatially
uniform molar concentrations ci [mol/vol], volumetric rates of
reaction ri [mol/vol-time] (production), and rate of external
supply si [mol/vol-time]. Equating the abstract fluxes to the
reaction rates, with J = [Ji] = [−ri], we tentatively identify the
conjugate forces with the chemical potentials (partial molar
Gibbs free energies) μi, which we distinguish with superscripts.
Whenever the quantity D = −μiri is non-negative definite, it
represents the dissipation in the entropy balance (Clausius−
Duhem) inequality. See, e.g., the classical treatment in ref 17,
pp 702−703, and the more recent treatments,9,13,15,21 each
involving some nonessential differences in the thermodynamics.
While many of the papers just cited assume that chemical
kinetics are strictly dissipative, they do not avail themselves of
Edelen’s potentials. We note that Krambeck’s assumption of the
symmetry of the matrix [∂ri/∂μj] is tantamount to nonlinear
Onsager symmetry and to the current definition of strong
dissipation, with rates given by Edelen’s potential.
For the purposes of this analysis, we assume isothermal

conditions with the μi given as invertible functions of μi(cj) =
μi(c1, c2,..., cn). The latter representation, previously adopted by
others,9,21 follows from the equation of state a ̆ = a ̆(c1, c2, ..., cn,
T) for the volumetric density of Helmholtz free energy, with

μ̆ = − ̆da c s Td di
i (7)

where T is temperature and s ̆ is volumetric entropy density.
The invertibility of μi(cj) follows then from assumed
convexity21 of a ̆, which presumably rules out phase transitions.
To obtain the usual description for isothermal and isobaric
systems in terms of specific Gibbs free energy and n additional
independent variables, we could adopt the stratagem proposed
in eq 15, introducing an additional chemical species +n 1, e.g.
an inert “solvent,” along with the reduced chemical potentials
given by μi − μn+1 in lieu of the μi.
We recall that Edelen’s theory requires that J = 0 for X = 0,

which requires a shift of the origin of forces, with

μ μ μ μ= ̂ = − = =X r i n, where ( ) 0; 0, 1, ...,i i i i
i

j
0 0 (8)

with the μ0
i, which may depend on the μi, denoting a referential

state of chemical equilibrium, which is subject to stoichiometric
and other constraints to be specified as needed. We may then
take μ0

iri = 0 for any set of rates compatible with stoichiometry.
Thus, the μ0

i represent one special case of Edelen’s “powerless”
forces, associated here with stoichiometrically constrained
equilibrium.
Then, with the assumption that the system of nonequilibrium

reactions is strongly dissipative in its progress to equilibrium,
the force−potential is given by the first member of eq 6 as

Table 1. Examples of Dissipative Systems

system force Xκ
flux Jκ

dissipation
= ·X J

networks
electrical resistors, κ = 1n voltage Vκ current Iκ −VκIκ
chemical reactions, κ = 1n affinity Aκ rate ωκ −Aκωκ

continuum mechanics (hyper)stress kinematics stress-power
nonpolar continua, n = 6 σij = σji vi;j σijvi;j
cosserat continua, n = 18 τij ⊕ mij sij ⊕ ωi;j τijsij + mijωi;j

graded continua, n = 27 τij ⊕ τijk vi;j ⊕ vi;jk τijvi;j + τijkvi;jk
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∫φ μ μ μ φ
μ

= − ̂ ̂ = − ∂
∂
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i

j
i i0

1

(9)

where a sum over i is implied. We consider below the
dissipation potentials for some special kinetics, where we adopt
reaction affinities as driving forces. First, however, we enunciate
the following extremum principle in which δ denotes the usual
symbol for variation arising from variation of variables or
parameters: The steady-state reaction system satisf ies

δ φ μ+ =s( ) 0j
j (10)

subject to constant supply rates si. As proof, note that the
vanishing of the variation

δ φ μ φ
μ

δμ μ δ+ = ∂
∂

+ = − ∂
∂

⎛
⎝⎜

⎞
⎠⎟s s s r

c
c( ) ( )j

j i i
i

i i

i

j
j

(11)

gives the steady-state species balance ri = si since the Jacobian
matrix [∂μi/∂cj] is nonsingular.

21 That is to say, the stationarity
of φ subject to a given external supply of the chemical species
determines the mass balance and hence the state of the system
through the constitutive equations ri(μ

j) and μj(ck).
The above results are rendered more evident by means of the

standard decomposition of the reaction rates into r stoichio-
metrically independent reaction pathways with rates ωj, j = 1:r
≤ n:

ω ω= = =r vr N[ ] [ ]i i
j

j (12)

where N is the rank-r, n×r matrix of stoichiometric coefficients
νi

j (representing the number of moles of species i produced by
reaction j, with negative values distinguishing reactants from
products11). With this decomposition, the dissipation takes on
a standard form:1,24

α ω αμ ω ν μ

μ

= − = − = − · = =

=

r A A

N

, where [ ] [ ]i
i

j
j

i
j
i j

T (13)

corresponding to the form listed in Table 1, with vector α
denoting the vector of reaction af f inities (i.e., the chemical
potential decrement along reaction path j). Thus, we should
now employ reaction-path rates ωi and conjugate affinities Ai

instead of species rates and chemical potentials as respective
flux and force, such that, provisionally,

ω ω φ φ= = −∂ = − ∂
∂α

⎡
⎣⎢

⎤
⎦⎥A

[ ]i i (14)

While numerous past works9,24 have discussed reaction rate
as a function of affinity, Bataille et al.1 are ostensibly the first to
employ Edelen’s potentials. Note that the condition μ0

iri = 0 for
all ri compatible with stoichiometry can now be expressed as
A0

iωi = 0 for all ωi, where A0
i = vj

iμ0
j. This implies of course that

A0
i = 0 for all j, i.e. all equilibrium affinities must vanish.
Note further that eq 13 represents a special case of a more

general force-flux transformation that preserves dissipation:

= ′ ′ = * = · = ′· ′JX X J J X J X, , with (15)

where the * represents the dual or transpose. In the present
case, the transformation matrix = N has rank less than n,
which means that straightforward variation of φ in terms of the
affinities Ai would result in fewer than the n equations necessary
to specify the species concentrations. Hence, there is a
restriction of the degrees of freedom arising from stoichio-

metric constraints, and the problem must be reformulated to
allow for the specification of a set of concentration variables
that includes reaction invariants or “generalized inerts.” The
underlying mathematical techniques are subsumed in numerous
previous analyses.9,12,21,24

In particular, one may express the vector of chemical
potentials μ = [μi] as μ̂ = N−Tα + λ, where N−T = N(NTN)−1

denotes the pseudoinverse of NT which, like the vector of
reaction affinities α = [Ai] = [μ̂jνj

i] = NTμ̂, with i = 1,...,r, lies in
the r-dimensional range of NT, whereas the vector λ = [Λi] lies
in the (n − r)-dimensional null space of NT and, hence, is
orthogonal (in the sense of linear functions) to the range of N,
i.e. λN = 0. (Certain other works9,21 assume that the forces
denoted here by α,λ lie in the same Euclidean space as the
fluxes, whereas technically they should be regarded as dual
spaces, distinguished here by superscripts and subscripts.) The
vector λ = [λi] is in essence the set of Lagrange multipliers or
“reactive” forces associated with the conservation of atoms or,
more precisely, any independent set of n − r reaction
invariants.12 Accordingly, it seems proper to replace eq 9 by

∫ ∫α ω λ αφ μ ω

φ
α

φ

= − · = − Λ

= = − ∂
∂

= − ∂
∂

⎡
⎣⎢

⎤
⎦⎥

s s A sA s

r
A

r

( ) ( , ) d ( , ) d ,

with [ ]

i i
i

j j

i i

0

1

0

1

(16)

This is perhaps made more evident by a simple mechanical
analog involving dissipative (Coulomb) sliding between solid
surfaces with dependence on slip velocity and normal force,
where λ represents the powerless normal force, α the active
tangential force, and ω the slip velocity. Thus, in the variation
δμ, we must treat λ as constant, with δλ = 0.

Reaction−Diffusion Systems. We are concerned here
with spatial region (the“reactor”), in which spatially
distributed reactions and diffusion occur with 4n local fluxes
and 4n local forces given respectively by

μ

μ

= − =

= −∇

rJ x x j x X x x g x

g x

( ) [ ( ), ( )] and ( ) [ ( ), ( )],

with ( )

i i
i i

i i
(17)

at spatial position ∈x , where ji [mol/area-time] is the space-
vector representing diffusional flux of species i and ∇ denotes
spatial gradient. In essence, we are now dealing with an inf inite-
dimensional function space (e.g., a Banach space), such that the
dissipation rate for a strictly dissipative system is a functional on
the spatial fields, with

∫μ μ= · −D r V[ ] j g x( ) d ( )i
i

i i
i (18)

with bold-face brackets [ ] denoting the arguments of
functionals as spatial fields. We assume smooth fields that
possess gradients, such that specification of μi(x) also specifies
∇μi(x). Given strong dissipation at all points ∈x , it is
plausible if not certain that eq 18 can be expressed as the
functional derivative of a global dissipation potential given by
the functional

∫μ φ μ φ μ

φ φ μ

Φ =

= +

x g x V g

g

[ ] { ( ), ( )} d , with ( , )

( ) ( )

i i i i i

D
i

R
i

(19)

involving local reaction and diffusion potentials as
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φ μ φ φ φ= −∂ = ∂μr g j( ), with and ( ) withR
i

i i R D i D
i

g i

(20)

The latter is not restricted to classical linear diffusion laws
(the analog of linear Darcy flow in porous media, which can
also be extended to nonlinear flow19) and the associated
quadratic form for φD. Although by no means necessary, we
have assumed an “uncoupled” form of φ(μi, gi) via the last
equation in eq 19.
Substituting the Edelen formulas 6−9 into eq 19 gives

formally

∫ ∫

∫

μ μ μ

μ

Φ = · − ̂

= ̂

s r s

V s

D s
s

s
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[ ]
d

i i
i j

i
i

j

i

0

1

0

1

(21)

the analog of a result given elsewhere.19 That is, the functional
specifying the global dissipation potential is given by the
functional for the global dissipation, which represents the
infinite-dimensional analog of the finite-dimensional Edelen
relation 6.
Of interest here is the variation of the functional

∫ ∫μ μ μ= Φ − ·
∂

F Sj n x[ ] [ ] d ( )i i i
i (22)

involving an integral over the boundary ∂ of , whose unit
outer normal is denoted by n. With ji·n fixed at all points

∈ ∂x , this variation is found to be

∫
∫

δ μ φ δ φ δμ

δμ

= ∂ − ∂

= ∇· −

μF V

r V

g x x

j x

[ ] ( ( ) ( )}) d

( ) d ( )

i
D

i
R

i

i i
i

g i i

(23)

where we employ the relation δgi = −δ(∇μi) = −∇(δμi) and
the (Gauss) divergence theorem. Hence, the stationarity of Φ
requires that the right-hand side of eq 23 vanishes for all
admissible variations δμi.
Note that in the case of a homogeneous reactor where all

fields in are independent of x, this reduces to eq 11, provided
we identify the volumetric supply rates as

∫= − ·
∂

s
V

Sj n x
1

d ( )i i (24)

Otherwise, for the nonhomogeneous case, we obtain the
steady-state species mass balance ∇·ji = ri. That is, stationarity
of the dissipation functional Φ subject to fixed species input at
all points of ∂ yields the steady-state mass balances and
presumably also the concentration fields from the constitutive
equation for φ(μi, gi). The converse seems obvious.
In closing here, we note that the issue of stoichiometric

constraints raised above is now resolved in principle by
appropriate specification of boundary conditions on ∂ for ci
and/or ji.

■ APPLICATIONS, EXTENSIONS, AND CONCLUSION
As a concrete illustration of the above theory, we derive the
dissipation potential for a simplified version of mass-action
kinetics. In particular, we consider the case of a single reaction
among reactants with νi ≤ 0 for i ∈ R = {1, 2, ..., R} and
products with νi ≥ 0 for i ∈ P = {R + 1, 2, ..., n}, and with rate

∏νω ω= = Π − Π Π =

=

ν| |⎜ ⎟
⎛
⎝

⎞
⎠r k

K
c

Q R P

, where
1

, ,

for ,

i i P R Q
Q

i
i

(25)

where ∏ denotes a product and k and k/K are the respective
kinetic coefficients for forward and reverse reactions.
We consider the case of ideal solutions for which we may set

ci/c = exp{β(μi − gi)} where β = 1/RT and gi is the molar free
energy of the pure species. Evaluating the equilibrium constant
K at the equilibrium state ω = 0, μi = μ0

i, we can reduce eq 25
to the form
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(26)

where c0 is the value of total molar density c at the equilibrium
state and the ÂQ represent “partial” reaction affinities. Here and
in the passages immediately following, we suspend our
summation convention on repeated indices.
It is easy to show that the expression for Aω (eq 26) will be

positive, hence dissipative, only if k0 > 0 and c = c0. The last
condition implies that the hypothetical equilibrium state must
be subject to the constraint of constant c. For an ideal gas, this
implies that this equilibrium state is achieved under isobaric and
isothermal conditions. The condition is also is also realized in
the important special case of a nominally incompressible
solution in a solvent +n 1.
We note that the kinetics of an irreversible reaction with K→

∞ is formally represented by ci = 0 or μ0
i → −∞ for some i ∈

P. On the other hand, the limit k → ∞ leads generally to a
condition of chemical equilibrium A = μiνi = 0 representing a
(linear) constraint on the μi. Accordingly, this engenders an
additional nondissipative flux proportional to νi. We note that
the prefactor k0 involves quantities that depend on μ̂i, and in
order to achieve an explicit form of the integral 16, we shall
assume that further restrictions on the kinetic coefficient k and
the hypothetical equilibrium state μ0

i can render this quantity
dependent only on the n − 1 constraint variables λ = [Λi]
appearing in eq 16. Then, eq 16 gives

φ
β

β= −
k

A4 [cosh( /2) 1]0

(27)

In the case of small affinities, one recovers the well-known
(Rayleigh−Onsager) quadratic form φ = k0βA

2/2.
Having derived eq 27 by a thermodynamic route, we can now

recast it in terms of concentration variables ci. This restores the
latter as primary variables, with φ(c1, c2,..., cn) being the proper
object of the extremum principle. Without further detailed
analysis, it seems plausible that one should be able to handle
the above diffusion laws by the same artifice, providing a direct
variational principle for concentration fields. Certain special
cases are apparent for diffusion described by Fick’s law.
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It is a straightforward matter to apply the above formulas to a
system of multiple simultaneous reactions with rates ri = νi

jωj
and partial affinities ÂQ

j = ∑Qμ̂
i|vi

j|, allowing one to treat
reaction networks of reactions governed by mass-action
kinetics. Moreover, the above theory is readily extended to
nonisothermal systems involving nonuniform temperature field
T(x), heat of reaction, and diffusive heat flux q [energy/area-
time]. To this end, it suffices to enlarge the set of generalized
forces to include g0 = −∇T and the set of fluxes to include j0 =
q/T. The diffusion potential φD depends now on all the forces
gi and allows for the coupled heat and mass diffusion envisaged
in linear irreversible thermodynamics (LIT), but without the
restriction to linear processes.
The theory can also be extended to heterogeneous reactions

by simply replacing the three-dimensional domain by a two-
dimensional reactive surface, with

in eq 23, where denotes a discontinuity across determined
by external mass transfer from the surrounding bulk phases,
which may also be subject to strongly dissipative mass-transfer
relations. The flux [ri, ji] now refers to surface quantities, i.e.
surface reaction rate and surface diffusion. Clearly, one can also
treat the case of coupled homogeneous and heterogeneous
reactions with a dissipative transfer of mass and heat, including
diffusion and reaction in porous media and catalysts.
Finally, we note that the nominal reaction rates in the above

model can be identified with irreversible dissolution processes
of the type studied for asphaltenes and zeolites by Fogler and
co-workers.16,18,26 Although these involve phase change
associated with nonconvexity of thermodynamic potentials,
this does not rule out convex dissipation potentials.
In sum, the above theory reduces the problem of determining

concentration fields in steady-state systems involving complex
chemical reaction networks to a variational problem. This is the
dissipative analog of the determination of equilibrium
concentrations by extremalization of the appropriate thermody-
namic potential.
As other possible applications, we recall that variational

methods have found extensive use in numerical analysis, e.g. in
finite-element methods, and in approximate solutions based on
Galerkin techniques. Moreover, such methods have already
been applied to the homogenization (derivation of continuum
from discrete models) of dissipative mechanical and chemical
systems,4,19,20 not to mention a large amount of literature on
elastic composites endowed with elastic potentials.
A superficial survey of the vast and ever expanding field of

biochemical and metabolic reaction networks reveals early
studies23−25 that appeal to the idea of maximum dissipation and
contemporary investigations2,27,28 that are based heavily on
stoichiometric considerations. One is therefore led to wonder if
extremum principles based on Edelen potentials might not be
more relevant to the overall kinetics of such systems.
To close with a major reservation, we note that the above

analysis is restricted to strongly dissipative systems, whereas
one cannot generally rule out gyroscopic forces of the kind
displayed in eq 2. The present analysis indicates that
stoichiometric constraints may be viewed formally as a special
case, for which one can effectively eliminate such forces by
change of variables. More generally, and as conjectured
elsewhere,14 gyroscopic effects may arise from reversible
couplings between fluxes or forces. In the case of chemical

reaction networks, this might be realized by the coupling of
reversible or nearly reversible reactions, with possible
implications for biosynthetic processes. Similar questions arise
for otherwise dissipative biochemo-mechanical processes, a
matter which warrants further investigation that would go
beyond the scope of the present paper.
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