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Abstract Following a brief review of the technology and
previous analyses of vibratory conveying of granular mate-
rials, a general solution is derived for a well-known rigid-
slab model of slide-conveying in open and closed conduits,
with Coulomb friction at the walls. The solution is applied
to periodic rectangular-wave and sinusoidal forcing, and it is
shown that the rectangular-wave forcing admits ideal cycles
in which the kinematically optimal transport is also thermo-
dynamically optimal, in the sense that no energy is dissipated
by sliding friction.

Keywords Slide conveying · Optimal cycle · Granular
materials · Coulomb friction · Vibrated granular layers

1 Introduction

Vibratory conveyors, routinely employed in industry for
transport of granular materials, generally consist of an oscil-
lating continuous conduit or trough which induces axial
movement of a granular material along its surface. The main
advantages of such conveyors are their simple construction,
their suitability for handling hot or abrasive materials and
their applicability as “dosing” equipment. Since the conduit
can be totally enclosed, this type of conveying is also well
suited to environmentally benign transport of dusty or haz-
ardous materials. In “flight” or “throw” conveyors the trans-
ported material often loses contact with the trough, which
generally leads to higher transport rates. Given the many
parameters characterizing a vibratory conveyor and the trans-
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ported material, the complete theoretical prediction of perfor-
mance is a daunting task. At the present juncture, designers
must rely heavily on empirical data, unfortunately scarce in
the published literature.

Figure 1 presents a schematic cross-sectional views of
a vibratory conveyor, with open-channel throw-conveyor
shown in Fig. 1a and closed-channel slide-conveyor shown
in Fig. 1b. The channel is tilted at angle α relative to the
horizontal and undergoes a cyclic displacement xc(t) with
velocity

vc ≡ ẋc(t) = uc(t)ex + vc(t)ey, (1)

relative to a fixed system of Cartesian coordinates x, y, with
basis ex , ey affixed to the channel walls representing down-
channel and cross-channel directions, respectively. The con-
stant gravitational acceleration is given by

g0 = −g0(sin αex + cos αey) (2)

The elliptical cycles illustrated schematically in Fig. 1
represent one of the more common modes of cyclic displace-
ment, with

xc(t) = A[cos β sin ωt ex + sin β sin ω(t + ϕ)ey], (3)

where A is the amplitude, ω, the frequency, β, ϕ are con-
stants ∈ [0, 2π), with tan β representing amplitude ratio and
ϕ phase lag. We recall that Nedderman and Harding [4,6]
consider the linear cycle ϕ = 0, and Sloot and Kruyt [7] the
elliptical cycle ϕ = π/2, for open-channel conveying. The
nondimensional “throw number”

Γ = Aω2 sin β/g0 cos α (4)

serves to distinguishes the two distinct modes of operation,
slide-conveying and throw-conveying, accordingly as Γ is
less than or greater than unity. The same parameter, with α =
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Fig. 1 a Open-channel throw-conveying versus. b Closed-channel
slide-conveying

0, β = π/2, arises in various studies of vertically vibrated
granular layers reviewed in [3,5].

The general objective in the optimal design of vibratory
conveyors is maximization of the material transport rate sub-
ject to various operational constraints, such as the dynamical
stability of the granular layer. This motivates the definition of
a kinematic (“velocity”) efficiency η, the ratio of the average
velocity of the material to the maximum tangential conduit
velocity. Much of past modeling as well as typical manu-
facturer’s design charts are concerned with the functional
relations of the form

η = f (Γ, β, α, ϕ) (5)

for different vibratory conveying equipment [4,6,7]. Certain
investigations also consider the dependence on μ, the sliding
friction coefficient between the conduit wall and the mate-
rial. As suggested by the present work, energy-based defi-
nitions of conveyor efficiency are possible, serving to place
conveyors on the same thermodynamic foundation as vari-
ous pumps. Depending on technological circumstances, this
type of efficiency could be more relevant than the typical
kinematic efficiency.

Erdesz and coworkers [1,2] have performed experimen-
tal and theoretical studies of slide- and throw-conveyors.
Sloot and Kruyt [7] review this later work, and they offer
an improved analysis of vibratory conveying based on the
rigid-slab (or in their terminology “point-mass”) model. In
this model, the granular mass is treated as a non-rotating flat
slab that interacts with the conduit walls via Coulomb friction
and inelastic impact.

Nedderman and Harding [4,6] present numerical optimi-
zation studies for slide-conveyors with unequal coefficients
of static and sliding friction.

Several investigations of throw-conveying indicate that
the flight phase is terminated by a completely inelastic colli-
sion with the conduit walls [7]. A thorough analysis, includ-
ing the in-flight stability of throw-conveying, would neces-
sitate a deformable continuum model of the granular mass,
with accounting for the collisional rebound at a solid wall of

the type recently studied for the case of vertically-vibrated
layers [3]. We recall that this model trivially yields the flat-
layer states described by the rigid-slab model solutions in
the throw phase and furthermore, exhibits certain surface pat-
terns observed on vertically vibrated layers. Since the present
work is focused on slide conveying, the rigid-slab model is
considered adequate.

2 Analysis

In the present analysis we consider the situations depicted in
Fig. 1, namely, open conveyors, bounded by a single rigid
conveying surface or wall at y = 0, and closed conveyors,
bounded by both upper and lower rigid walls at y = 0, h,
respectively. In either case, the granular material is assumed
to move as a rigid slab subject to Coulomb friction on the
channel walls, so that Newton’s equations of motion for the
velocity of the granular mass relative to the bottom wall
become

v(t) = u(t)ex + v(t)ey (6)

is

dv
dt

= f(t) + g(t), with f(t) = T (t)ex + N (t)ey (7)

where T and N denote, respectively, tangential and normal
force per unit mass (i.e. acceleration) exerted by the bounding
surface(s), and the effective gravity is given by

g(t) = g0 − v̇c(t), (8)

representing a periodic function of t , assumed to be piece-
wise continuous with mean equal to the normal gravity g0 =
constant.

In the present setting, the force N represents a reaction
against the rigid constraint v(t) ≡ 0 imposed by the (non-
cohesive) bounding surfaces and is given by the y-component
of (7)

dv

dt
= N (t) + gy(t) ≡ 0,

as

N (t) ≡ Nc(t) := −gy(t) = g0 cos α + v̇c(t) (9)

In the case of an open conveyor, the force N ≥ 0 arises
solely from the bottom wall, whereas in the case of a closed
conveyor it can arise either from the bottom (N ≥ 0) or the
top (N ≤ 0).

In the absence of sliding, the tangential force T also rep-
resents a reaction, given by the x-component of (7) as

T (t)=Tc(t) :=−gx (t)=g0 sin α+u̇c, for u(t)≡0 (10)
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According to the Coulomb criterion, sliding occurs whenever
|T | > μ|N |, in which case T becomes an active force, with

T (t) = −μ|N (t)|sgn{u(t)}, (11)

where sgn denotes the set-valued signum function, with
sgn(0) ∈ [−1, 1]. In what follows we assume a constant
coefficient of friction μ, the same for active and incipient
sliding, i.e. for slipping and sticking, respectively. With non-
dimensional forms based on the scaling

u → Aωu, t → ω−1t, gx (t) → Aω2G1(t),

μgy(t) → −Aω2G2(t), (12)

where A and ω are, respectively, a representative amplitude
and circular frequency (= 2π/period) of the cyclic channel
displacement, the x-component of (7) becomes

du

dt
=G1(t)−|G2(t)|sgn(u), for |G1(t)| > |G2(t)|,

u = 0, otherwise
(13)

In the present setting, G1(t) and G2(t) are 2π -periodic
functions of t , and the above restriction on the mean of g(t)
can be expressed as

2π∫

0

G1(t)dt = −2πG sin α, and

2π∫

0

G2(t)dt =2πμG cos α, where G :=g0/Aω2 ≥ 0

(14)

In the case of an open conveyor, we have the additional
restriction G2 ≥ 0.

Subject to the above restrictions on G1, G2, we seek 2π -
periodic, piecewise-continuous solutions u(t) of (13). To this
end, the ODE (13) can be put in the more compact form

dU

dτ
= −sgn(U + u1), where U = u − u1, (15)

with

u1(t) =
t∫

0

G1(s)ds, and τ(t) =
t∫

0

|G2(s)|ds (16)

The relations (16) provide a parametric description, with
t as parameter, of u1 and U as functions of τ , the latter being
a positive monotone function of t . Since G1 and G2 are peri-
odic functions of t , the function u1(τ ) ranges over the interval
[ mU (T ), (m + 1)U (T )] as τ ranges over [mT, (m + 1)T ],
for m = 0,±1,±2, . . . , where T = τ(ω/2π). Hence, we
may restrict attention to the interval defined by m = 0 as
representative of a typical cycle.

The obvious solution to (15) consists of three phases:

u − u1 = U =
{−τ, for τ < u1,

+τ, for τ < −u1,

and

U = −u1, with

∣∣∣∣du1

dτ

∣∣∣∣ ≡ |G1|
|G2| ≤ 1,

(17)

representing, respectively, forward or positive sliding u > 0,
backward or negative sliding u < 0, and sticking u = 0. We
recall that these are sometimes referred to, respectively, as
“P” (positive), “N” (negative), and “R” (rest) phases, with
“F” referring to the flight-phase in throw-conveying.

3 Optimal transport

The mathematical problem of optimal transport consists gen-
erally of extremalization of a suitable functional of the solu-
tion u to (13) with respect to the forcing functions G1, G2.
While the non-differentiability of (13) with respect to u
appears to rule out standard variational methods, this state
of affairs is mitigated by the availability of the exact solution
(17).

We consider one of the most basic optimization problems,
the maximization of net displacement over a cycle, viz.:

max
F

X , where X{F} =
2π∫

0

u(t)dt, and

F = {G1, G2 ∈ C}, (18)

with u subject to (13). Here C denotes the class of bounded
piecewise-continuous and 2π -periodic functions satisfying
(14) together the further restriction G2 ≤ 0 for the open
conveyor. In view of the first members of (14) and (16), we
may substitute U for u in the definition of the objective func-
tion X in (18). We now consider certain globally-optimal or
“ideal” cycles restricted only by bounds on channel acceler-
ation followed by some brief remarks on the simply-periodic
elliptical cycle illustrated in Fig. 1.

3.1 Ideal cycles

We assume the channel acceleration is bounded, such that

|G2|, |G1| ≤ Gmax, (19)

In the case of open conveyors, a bound on Gmax is determined
by a bound on G2 necessary to avoid throw-conveying.

Now it is evident from (17) and the non-negativity of τ ,
that the maximal contribution to X from the above three
phases is obtained by taking

1. τ ≡ 0, hence, G2 ≡ 0, for sustained forward sliding,
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2. τ ≡ −u1 ≡ 0, with no sustained backward sliding, and
3. u1 = u1,min, with |G2| ≥ |G1| and sustained sticking,

where u1,min denotes the minimal value of u1, obtained by
taking G1 = −Gmax in (16).

Starting from the initial state u(0) = 0, the maximum
growth of U or u in the forward-sliding phase is attained by
taking

G1(t) ≡ Gmax, and G2 ≡ 0, (20)

Because of (14), the state (20) can be maintained during part
of the period, say 0 ≤ t ≤ θ < 2π so that

u(t) = Gmaxt, for 0 ≤ t ≤ θ (21)

Since, in the sticking phase, we have

|G2(t)| ≡ |G1(t)|, and u(t) ≡ 0, for θ ≤ t ≤ 2π, (22)

the total displacement in a cycle is given by

X = Gmax
θ2

2
(23)

At this juncture, we must distinguish between open and
closed conveyors.

For closed conveyors, G2 is unrestricted, and the quantity
in (23) is maximized by choosing θ to be maximal subject to
the constraint (14) on G1, which implies that

G1(t) ≡ −Gmax for θ ≤ t ≤ 2π, with

θ =
(

1 − G

Gmax
sin α

)
π (24)

The first identity in (22) and the constraint (14) on G2 are then
satisfied by taking G2(t) ≡ ±Gmax for respective fractions
λ, 1 − λ of the interval (θ, 2π), where

λ = 1

2
R

(
1 − 2μG cos α

Gmax + G sin α

)
(25)

with R denoting the ramp function:

R(u) =
{

u, for u ≥ 0
0, otherwise

(26)

Figure 2 provides a qualitative sketch of a representative
cycle of the optimal G1, G2, for the simplest case where G2

undergoes a single change of sign.
The acceleration cycle in Fig. 2 corresponds to a conveyor

displacement consisting of a triangular loop in space, one side
of which represents retraction of the conveyor in the −x-
direction, with frictionless (N ≡ 0) sliding of the stationary
granular mass. The other two sides represent advancement of
the conveyor at ± the static angle of repose arctan μ, involv-
ing a switching of the normal-force from top to bottom wall
and forward transfer of the granular mass without relative
sliding. Hence, the cycle involves either sliding without fric-
tion or friction without sliding, so that frictional dissipation

Fig. 2 Representative ideal cycle for the closed conveyor. Solid curve:
G1. Dashed curve (slightly shifted to avoid overlap): G2

is zero. In that respect, our kinematically ideal cycle is also
ideal in a thermodynamic sense, since we achieve the titular
frictionless conveying.

A further bit of reflection shows that the non-dimensional
displacement (23) also corresponds to the magnitude of the
x-displacement of the conveyor during the above retraction
or advancement phases. Thus, if one identifies the amplitude
A in (12) with this displacement, then X := 1, and (23)–(24)
give

θ =
√

1 + 2π2G sin α − 1

πG sin α
, with Gmax = 2/θ2 (27)

The second equation serves to define the frequency ω in (12)
in terms of a prescribed upper bound on |gx |, and vice versa.
In the zero-gravity limit G → 0, the relation (27) gives θ =
π , along with antisymmetric form of G1 in Fig. 2, whereas
the limit G → ∞ involves an impulsive conveyor accelera-
tion, with θ → 0 and Gmax → G sin α.

For open conveyors, G2 ≥ 0, and the relations (14), (21)
and (22) are readily found to give the same expression as that
in (24) for θ together with the further relations

Gmax = G(2μ cos α − sin α), and

X = 2π2G
(μ cos α − sin α)2

(2μ cos α − sin α)
(28)

With μ and α as parameters, the first relation gives the ratio
|gx |max/g0 of maximum channel acceleration to ambient
gravity, whereas the second gives the ratio of optimal dis-
placement to g0/ω

2, irrespective of A and ω. The situation
is depicted schematically in Fig. 3.

Once again, the ideal cycle involves transport without
frictional dissipation. It is further evident from (28) that slide-
conveying in an open conveyor is not possible in a zero-
gravity environment.

123



Frictionless conveying of frictional materials 149

Fig. 3 Ideal cycle for the open conveyor, with Gmax given by (28)

3.2 Elliptical cycles

For the cycle (3), one finds readily that

G1 = −G sin α + cos β sin t,

G2 = G cos α − sin β sin(t + ϕ),

hence

u1 = −Gt sin α − cos β cos t,

τ =
t∫

0

|G cos α − sin β sin(t + ϕ)|dt

(29)

Then, by means of the general solution (17), one interesting
optimization problem can be concisely stated as:

max
β,ϕ

⎧⎨
⎩

∫

P

(u1 − τ)dt +
∫

N

(u1 + τ)dt

⎫⎬
⎭ , (30)

where N and P refer, respectively, to the union of t-intervals
in which τ < ∓u1, corresponding to positive or negative
sliding.

For open conveyors, it understood that β is restricted to
angles such that G2 is non-negative, which for G cos α < 1
is the interval [0, sin−1(G cos α)]. In that case, the absolute
value signs can be removed from the integrand defining τ

in (29), to yield an elementary function of t . Otherwise, the
integral can be integrated piecewise, as suggested by previ-
ous works [7], leading to rather complex analytical forms. In
any event, the solution to the optimization problem should
be amenable to an easy numerical analysis, which will not
be pursued here.

4 Conclusions

For the relative simple mode of slide conveying, the forego-
ing analysis provides closed-form solutions for certain ele-
mentary vibrational cycles, in which wall slip is assumed
to represent the only relative motion between conveyor and
transported material. This allows one to identify ideal cycles
in which there is no dissipation due to sliding, a possibility
that is not too surprising, given the alternative possibility of
transport without slip between counter-rotating cylinders, as
in calendering devices, or between parallel moving belts with
sufficient normal pressure. At any rate, it is hoped that the
present work will stimulate further investigation of optimal
cycles for throw-conveying, which may involve collisional
dissipation at conduit walls as well as in-flight instability of
granular layers.
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