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Abstract
This paper is a continuation with certain modifications of a previous work by this author involving a new theory for
the continuum-mechanical entropy in non-equilibrium states. Treating internal energy as an essential coordinate in the
thermomechanical state space, the theory provides a nominal calorimetric theory of materials with memory as an
alternative to the widely accepted thermometric theory of Coleman which treats both entropy and temperature as
”primitives” without a compelling connection to experimental measurement. Following a brief review of the previous
work, involving a generally defined topology of state space for higher-gradient continua, a revision of Coleman’s theory
is proposed that specifies non-equilibrium entropy as the variational extremum of a functional of the forces that define
the relevant cotangent bundle of the underlying state space. As a conjecture, the optimal cycle in state space is assumed
to be a non-equilibrium generalization of the classical Carnot cycle.

Keywords
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1. Introduction

The goal of this work is to provide an extension to thermomechanics of the standard geometry of con-
tinuum mechanics, the subject of impressive expositions by Segev and Epstein [5,6]. Among the benefits
of such an extension is the possibility of an enhanced treatment of the thermodynamics of defects. As a
rough outline, we begin with a brief review of a previous work by Goddard [1], denoted by JG in the fol-
lowing, where a definition was given of the non-equilibrium entropy for continuum thermomechanics as
an extension of the equilibrium entropy and temperature defined by the landmark work of Carathéodory
[2], hereinafter denoted by CC.
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We then consider the differential geometry of the relevant finite-dimensional thermomechanical state
space and the application to graded (higher-gradient) materials. Following this, we lay down what we shall
call a calorimetric theory for the thermomechanics of materials with memory to be contrasted with what
may be called the thermometric theory of Coleman [15] hereinafter denoted by BC.

After a brief recapitulation of the definition of nonequilibrium entropy given previously by JG, a brief
treatment is give of the special case of linear viscoelasticity which has received considerable attention by
others.

2. Review and extension of prior work

2.1. Generalization of CC
As generalization of the equilibrium situation where entropy is constructed from calorimetry and the
equilibrium equations of state for the configurational forces that define work, the non-equilibrium
entropy is derived from the history of the same configurational forces and an appropriate equilibrium
temperature. Following CC, we focus on what he calls simple systems involving a finite set of configu-
rational variables. This suffices to provide a pointwise description of graded or higher-gradient continua
defined by a finite set of higher-spatial gradients of configurational variables. Following a recapitulation
of JG with elaboration on the geometric underpinnings, a revision is proposed of Coleman’s thermome-
chanics of materials with memory given in BC. The treatise of Day [4] provides a thorough mathematical
exposition.
As synopsis of JG in a somewhat different notation, we extend Carathéodory’s ”simple” system at
equilibrium to non-equilibrium systems determined by the past history of a finite set of variables:

z= {z0, z1, . . . , zn}= {ε, ζ}, with z0 = ε,

and ζ= {z1, z2, . . . , zn}
(1)

which, with notation for dependence on time t suppressed, represents the thermodynamic state space
T as an n+1 dimensional t-dependent manifold. In lieu of the overworked term simple, we henceforth
employ discrete for systems defined by equation (1).

As in JG, we identify Carathéodory’s abstract z0 with specific internal energy ε on the grounds that
this is the primary measurable quantity or observable that serves to set thermomechanics apart from
classical mechanics, thereby providing the foundation for the first law of thermodynamics. Then, the
remaining quantities ζ represent configurational variables that serve to define configurational working.

2.2. Differential geometry

The standard continuum-mechanical map or ”placement” of material points X∈R3 into spatial points
x∈R3, with kinematics devoid of energetics, may be regarded as thermodynamically incomplete. A more
complete picture is provided by the augmented map in Figure 1 and the characterizaion geometric ther-
modynamics of Carathéodory’s theory by Frankel [9]. Under the transformation from internal energy to
equilibrium temperature θ one may if desired replace {ε, E} by {θ,Θ} in the figure and the discussion
immediately following.

It seems plausible to interpret time-dependent ξ and φ, respectively, as the thermomechanical states
and processes of Coleman and Owen [15] and Coleman et al. [16] with certain functionals of φ defining
their actions. We recall that these concepts provide the foundation for their mathematical proof of the
existence of non-equilibrium entropy. While mathematically rigorous, their treatment does not explicitly
relate the non-equilibrium entropy to non-equilibrium forces as advocated by the present author. How-
ever, their analysis does consider the possibility of materials having only approximate cycles, which may
place a restriction on certain of the present results.

As for the first law of thermodynamics, the incremental heat d̄q received by the system on any infinites-
imal trajectory is given by the Pfaffian differential form, i.e., one-form, involving configurational forces
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Figure 1. Thermomechanical map.

fi(z), i= 1, 2, . . . , n, and providing the first law (or energy balance (usually taken as axiomatic):

d̄q= dε+ d̄w=h· dz=
n∑

i=0
hi(z) dzi,

with d̄w= f· dζ=
n∑

i=1
fi(z) dzi, and h= {1, f},

(2)

where we adopt the conventional active definition of incremental work d̄w and where the notation of
exterior calculus is obtained by omitting the symbol d̄ for infinitesimals. As done for internal energy ε in
equation (2), we adopt lower case Greek for various specific (per unit mass) extensive thermodynamic
properties.
Thus, the first law of thermodynamics is tantamount to the definition of incremental heat in terms of the
cotangent vector h representing the differential form dε+ d̄w. This determines the equivalence of heat
and work in the case of constant ε or of heat and internal energy in the case of constant ζ.

We recall that CC interprets the condition d̄q= 0 in terms of adiabatic inaccessibility, which serves
to define a foliation (of co-dimension 1) [7–9] of equilibrium state space into hypersurfaces of constant
entropy η(z). As pointed out in JG, these represent local holonomic constraints on the energy balance,
with scalar temperature θ representing Lagrange multiplier as force of constraint (which seems to be
anticipated by the ”force of heat” of Clausius [10] and Delphenich [11]). Thus, the inaccessibility of CC
is simply a restriction to local hyper-surfaces of constant entropy, reflecting the time-worn mantra that
adiabatic and reversible implies isentropic.

Taking θ to be the empirical absolute temperature of thermodynamics, with (as axiom) θ> 0, ensures
the positivity of (∂η/∂ε)ζ = 1/θ and the invertibility of η(ε, ζ), with inverse function ε̂(η, ζ). Following
the contemporary literature [12,13], we refer to these as caloric equations of state. Then, with independent
variables ẑ= {η, ζ} the first law of thermodynamics reduces to the general Gibbsian [14] relation

dε̂=θ dη−f̂· dζ, θ= ∂η ε̂, f̂=−∂ζ ε̂ (3)

Here as in the following, we employ the common notation ∂X= ∂/∂X for independent variables X.
Referring the reader to JG for a discussion of the various extremum principles that serve to establish

equilibrium and the associated stability for discrete thermomechanical systems, we turn next to the case
of continuous systems. We note in passing that the above relations give the equilibrium temperature θ as
function of energy and configuration, say, θeq(ε, ζ) which is essential to the revision considered below
of Coleman’s [3] thermomechanics in order to achieve what is proposed here as a more acceptable form.

3. Graded continua

The adjective graded1 is employed here as alternative to ”higher-gradient” often used to denote thermo-
mechanical continua in which the constitutive equations involve a finite number n of spatial gradients.
This representation which involves a finite set of state variables may be regarded as a weakly emergent
form of fully non-local effects. For the purposes of the present discussion, we set aside gradients ∂k

E ,
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so that the relevant tangent and cotangent spaces now become, respectively, elements of the spatial jet
bundle [5,6,17] Jn and its cotangent J∗n ,with J1 =Tφ, the tangent space representing simple materials.

3.1. The simple continuum
With reference to Figure 1, the infinitesimal generalised displacement field dξ= dφ= { dε, dx} defines
the tangent space Tφ, to the configuration space at the configuration φ and the internal energy balance
for the standard (Coleman-Noll) simple continuum is derived from an element f of the cotangent space
T∗φ, such that

ρε̇=−divq− f·ζ̇, where ζ= ∂Xx, ˙( )= (∂t)X, (4)
where ∂Xx is the deformation gradient, (˙)= ∂t( )X is the standard material time derivative, q is heat flux2,
and -f is Piola stress. Thus, we have that

d̄q :=−divq dt/ρ= dε+ d̄w, with d̄w= f· dζ/ρ (5)

at each spatial point x. Hence, a simple continuum is but a pointwise realization of Carathéodory’s discrete
system, while the entire body B, an infinite collection of discrete systems, evidently does not represent a
discrete system unless homogeneous. A more general treatment including fully non-local effects would
require an analysis in function space, taking us well beyond the scope of the present article.

Generalizing the simple material, the full 16-dimensional tangent space is represented by abstract
vector

{∂Eε, ∂Xε, ∂Ex, ∂Xx} (6)
Roughly speaking, the terms ∂Eε and ∂Xx serve to represent, respectively, energy input at a fixed

material point, involving change ε−E , and deformation at fixed initial energy; whereas ∂Xε and ∂Ex can
capture, respectively, spatial energy gradients and thermally driven spatial displacements.

The corresponding element h of the cotangent space T∗φ, a generalized force (JG) represented by
the last member of equation (2), defines the associated energetics by means of constitutive relations that
generally involve coupling between variables.

We focus here on effects associated with spatial gradients arising from material gradients ∂X and
assume that gradients of ε represent heating effects and not mechanical power. Then, the abstract state
vector

z= {ϵ, ζ}, where ϵ= {ε, ∂Xε} & ζ= {x, ∂Xx} (7)
represents the energetics of the conventional (Coleman-Noll) simple continuum. We assume translation
invariance, neglecting external body forces, so that the leading component x of ζ can be ignored.

3.2. Higher gradients
Here, the relevant independent coordinates are obtained by replacing ∂X in equation (7) by a series of
terms ∂k

X, k= 1, 2, . . . , n with the state vector now being

z= {ϵ, ζ}, with, ϵ= {ε, ∂Xε, . . . , ∂n
Xε, },

and ζ= {∂Xx, . . . , ∂n
Xx},

(8)

and this presumably covers higher-gradient effects in heat flux and stress.
The configurational power or working is once more given by equation (4) with

f·ζ̇=
n∑

k=1
fk·ż(k), with z(k)= ∂k

Xφ, ˙( )= (∂t)X, (9)

where q again denotes heat flux, and -fk a generalized Piola stress, all depending generally on the history
z(k)(t′) for −∞< t′≤ t, k= 1 : n. This corresponds to the local differential form equation (5). It is once
more evident that the entire body B does not represent Carathéodory’s discrete system.
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3.3. Remark on approximation
While the graded material may be regarded as arising from a local polynomial approximation to a smooth
map φ, one can obtain a more general approximation in terms of a given finite functional basis φ(m)(Ξ)
with, e.g.

φ(Ξ)≈
∑

m
pmφ

(m)(Ξ), and z=
∑

m
pmz(m),

with z(m)= ∂Xφ
(m)(Ξ),

(10)

where the finite set of coefficients pm depend on the history of the z(m). This could prove useful for
variational methods relevant to the following discussion devoted to non-equilibrium states.

4. Non-equilibrium entropy

We recall that the postulate of JG, based on the notion of extremal recoverable work, takes on the general
form for a system of given mass:

For a given energy and configuration, the difference between equilibrium entropy ηeq and the non-equilibrium entropy η is given
by ηeq−η=wmax/θ where wmax is the maximum work that could be obtained by heat exchange with a reservoir at the equilibrium
temperature θ.

This leads to a variational principle for the determination of η.

4.1. Discrete systems
As a simplified and amended version of that in JG, η is determined from the extremum given by the
variation of a functional of z= {ϵ, ζ} defined in equation (8):

wmax(t)= (ηeq − η)θ=ψ−ψeq =W{z(
t
t′

−∞
)}

= max
z(s),s>t

∫ ∞

t
f(s)· dζ(s), with ψ= ε−θη

f(s)=F{z(
s
t′

−∞
)}, and lim

s→∞
z(s)= z(t)

, (11)

where the last relation corresponds to the closed connection of Day [4], whose definition of non-
equilibrium entropy of the standare simple material with memory is presumably subsumed by the
present treatment.

As pointed out in JG equation (11) provides a constructive definition of entropy and dissipation, which
as pointed out above we denote as calorimetric, to distinguish it from the celebrated thermometric version
of BC in which θ replaces ε and entropy is regarded as a primitive. Although Coleman’s theory might be
enhanced by taking θ to be the equilibrium temperature at given energy and configuration, it would still
fail to connect entropy explicitly to the history of forces, regarded here as a natural generalization of the
equilibrium construct, in which entropy is inferred from equilibrium equations of state.

5. Thermometric theory

We recall that Coleman recognizes in BC the possibility of theories involving various independent vari-
ables based on certain assumptions as to the invertibility of transformations between histories. Thus,
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unburdened by the present concerns for observability, he proposes in §12 of BC our z= {ε, ∂Xx} as inde-
pendent variables for simple materials, appealing to the transformation from the history of his empirical
temperature to the history of ε (cf. §5.5 of Day [4]). While ostensibly more general it is in our view less
defensible than the proposal above to set the empirical temperature equal to the equilibrium temperature
θ and employ the invertible equilibrium relation between θ and ε.

Hence, with the above in mind for a discrete system representing a material point in a graded
continuum, we take:

z= {ϵ, ζ}⇒ z̃= {ϑ, ζ}, with f(s) :=F{z(
s
t′

−∞
)}

= F̃{̃z(
s
t′

−∞
)}=: f̃(s), & ϑ= {θ, ∂Xθ, . . . , ∂n

Xθ},
(12)

such that the variational problem for determination of nonequilibrium entropy becomes

(ηeq − η)θ=ψ−ψeq =W̃{̃z(
t
t′

−∞
)}

= max
z̃(s),s>t

∫ ∞

t
f̃(s)· dζ(s), with lim

s→∞
z̃(s)= z̃(t)

(13)

6. Linear viscoelasticity

We consider a general version of the classical Boltzmann–Volterra form employed in modern treatments
of linear viscoelasticity [4,18–21], for which Del Piero and Deseri [20] offer a comprehensive analysis
of various free energies. For easier interpretation, and in order to connect to the existing literature, we
restrict ourselves to energetically simple materials, i.e., materials without dependence of force on gradients
of energy. Thus, we take ϵ= ε in the linear force-displacement relation:

f(s)=
∫ s

−∞
M(ε′, s− s′)υ(s′) ds′, ,

i.e. fi(s)=
∫ s

−∞
Mij(ϵ

′
k, s− s′)υj(s′) ds′,

with ε′= ε(s′) and υ := ζ̇,

(14)

where M(ε,σ)= 0 for σ< 0, is a tensorial modulus depending smoothly on its arguments for σ> 0. Also,
the integral is to be interpreted as Riemann-Stieltjes, with υ(u) du= dζ(u) for discontinuous changes
in ζ(u).

Hence, the work to be maximized is given by the quadratic form

wt =

∫ ∞

t

∫ s

−∞
υi(s)Mij(ϵ

′
k, s− s′)υj(s′) ds′ ds

=

∫ ∞

t

∫ s

−∞
υ(s)·M(ε′, s− s′)υ(s′) ds′ ds

=

∫ ∞

−∞

∫ ∞

−∞
υ(s)·Lt(s, s′)υ(s′) ds′ ds, where

Lt(s, s′)= 1
2 [Kt(s, s′)+K∗

t (s
′, s)]=L∗

t (s
′, s),

with Kt(s, s′)=H(s− t)H(s− s′)M(ε′, |s− s′|)

, (15)
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where asterisk denotes the adjoint or matrix transpose and H denotes the Heaviside step function,
employed here to achieve a certain symmetry.

Noting that δt{ε(u),υ(u)} :=H(u− t)δ{ε(u),υ(u)} represents the restriction of a variation to the
domain u> t, the stationarity of equation (15) with respect to δt{ε(u),υ(u)} implies that∫ ∞

t

∫ ∞

−∞
δυ(s)·Lt(s, s′)υ(s′) ds′ ds= 0, (16)

and that ∫ ∞

t

∫ s

t
υ(s)·

[
δε(s′)·Nt(s, s′)

]
υ(s′) ds′ ds= 0,

where

Nt(s, s′)= ∂εM(ε′, s− s′) := ∂εM(ε, s− s′)|ε=ε′

(17)

These relations lead to the further conditions for s> t∫ ∞

−∞
[H(s− s′)M(ε(s′), s− s′)

+H(s′− s)M∗(ε(s), s′− s)]υ(s′) ds′= 0,
(18)

and
∂ε

∫ s

t
υ(s)·M(ε(s′), s− s′)υ(s′) ds′= 0 (19)

The relations (18) and (19) can be cast into forms involving the null space of linear differential
operators in D= ∂s involving translations exp(±Dσ). Thus, equation (18) becomes

S(s, D)υ(s)= 0,
where

S(s, D)=

∫ ∞

0
[e−DσM(ε(s),σ)+M∗(ε(s),σ)eDσ] dσ

. . .

(20)

while equation (19) can be written as

υ(s)·Pt(s, D)υ(s)= 0

where Pt(s, D)=

∫ s−t

0
e−Dσ∂εM(ε(s),σ) dσ

(21)

6.1. Constant energy or temperature
Whenever internal energy is constant, such that heating is balanced by working, the relation (20) with
ε= const. is the sole restriction on ζ. If we further impose the symmetry (self-adjointness) M=M∗

deemed essential by previous works [20] this relation reduces to the form{∫ ∞

0
M(σ) cosh(σD) dσ

}
υ(s)= 0, (22)
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where we suppress notation for dependence on the constant ε. Note that when υ is a sum of exponentials
D is replaced by a constant for each term in sum and the integral equation (22) reduces to an algebraic
form. In particular, the Fourier-space version of equation (22) is∫ ∞

−∞
M̂(ω)υ̂(ω) dω= 0,

where

υ̂(ω)=

∫ ∞

−∞
eıωσυ(σ) dσ

and

M̂(ω)=

∫ ∞

0
cos(ωσ)M(σ) dσ

(23)

Under rather mild restrictions on M(σ) this implies that υ(s)≡ 0 and, hence, that the nominal non-
equilibrium entropy and free energy are identical with their equilibrium counterparts. This result,
perhaps surprising at first glance, rules out adiabatic paths where work involves change in internal
energy, paths whose equilibrium counterparts are essential to Carnot cycles.

A similar result applies to isothermal processes in the thermometric theory, since the restriction to
constant temperature generally implies that work must be compensated by heating, once again ruling out
adiabatic paths.

It is worth noting that the above findings are compatible with various phenomenological models of
rubber-like ”entropic” viscoelasticity based on equilibrium entropy. By the same token the free ener-
gies associated with various mathematical theories [18–20,22,23], should be regarded as equilibrium
quantities based on equilibrium entropy.

The present treatment suggests that the extremum of recoverable work defining non-equilibrium
entropy is achieved by a sort of non-equilibrium Carnot cycle or approximate cycle involving both dia-
batic and adiabatic paths. At the time of this writing, the author is unable to provide a more conclusive
argument.
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1. Distinct from the contemporary “functionally graded” denoting materials with spatial property gradients.
2. In contrast to the usual representation as heat source, we attribute radiant heating to the divergence of the radiant portion

of the total heat flux q.
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