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Some Definitions and Derivations for AMES 101A, AMES 103A

Definition of a vector:

A three component object V is a vector if its components (v1V2,v3) in coordinates X =
(X1,%2,%3) transform to components (vjljz'Vjlj2vlj3) in new coordinates x', summing repested
indices, where ljj isthe cosine of the angle between the x; axis and the X’ axis. An example is the
pressure gradient Np = (Tp/91x1,1p/Tx2.01p/Mx3). Thisis easily proved using the chain rule. If the
coordinates are changed to x', then fp/xi = (p/1x;)(11x;/1xi+), summing over j indices. But
xj/fxi* = lji, so the pressure gradient satisfies the definition of avector.

Definition of a second order tensor:

IT is defined to be a second order tensor if its components Pj; transform according to the equation

Pij = Pmn lmiln:

Higher order tensors are defined in asimilar way.

An obvious example is the inertia stress tensor -r vv, with components -r viy;. The
componentsin X' coordinates are -1 Vi'Vj* = - Vimlmi'Vnlnj', which satisfies the definition.

Leibnitz' rule for differentiating integrals:

C?J fav = ﬂfdv+f f vexdS
oV cvﬂt cs

where f is some function of space and time, CV is an enclosed control volume, CS is its surface
with outward pointing surface vector dS, and the velocity of the surface at dS is vs.

If f =rb,whereb isthe concentration of some conserved quantity per unit mass, then the
total quantity B in a system (specified quantity of matter) is given by the integral over the control
volume CV enclosing the system

B= rbdv
cVv )

By Leibnitz Rule, the rate of change of B with time for the system is found by setting the
velocity of the surface vs equal to the fluid velocity v, since then, and only then, the control volume
always encloses the system. For ageneral CV, we thus have the Reynolds transport theorem

B =§'J bav +f rb(v-vgxds ; or 1ot = Bey +f b vxdS
cv (O (O

1t It

wherevy = v - vgisthereative velocity of the fluid with respect to the CV surface.



Carl H. Gibson AMES 101A / AMES 103 A 6/28/99

Derivation of energy conservation differential equations:

The first law of thermodynamics for a system is Q- W = E, where C is the rate of heat
addition to the system through its surface by thermal conduction down atemperaturegradient, W is
the work being done on the surroundings by the system, and E is the rate of increase of the total
energy of the system, including internal, kinetic, and potential energy. This "conservation of
energy" law may be applied to a control volume surrounding a system of fluid, recognizing that the
surface velocity of such acontrol volume moves with the velocity of thefluid v. For the system, C
istheintegral over the system control surface in the first integral

D= KNTxdS = Nx(KNT)dV
Q fcs fcv (kNT)

and the conversion is made to avolume integral using the divergence theorem in the secondintegral,
on the right.

The work rate on the surroundings is composed of shaft work We, the pressure work rate
W, and the viscous work rate Wy,. We will neglect the shaft work. The pressure and viscous work
rates are found by integrating the corresponding surface forces on the surroundings, equal and
opposite to the forces on the surface, dotted with the fluid velocity. The pressure force on the
surface element dS is-pdS, and the viscous force ist-dS, by Cauchy'srule. Therefore

Wp:fCSpVXdS :fCVNX(pv)dV

and

Wy=| -vxTxds = f Nix (vt )dV
s cv

Therate of change of the total energy is given by

e e)dV +f revxdsS = P(r °
It cs It

Ccv Ccv

E= +Nx(r ev) | dV

Collecting al termsin the energy equation into asingle volumeintegral gives

+Rix(r ev) - Nix(vxt) + Nx(pv) - Kix(kNT) dv =0

P(r e)
it

Ccv

The control volume was chosen arbitrarily and can be very small surrounding any point in
thefluid. All thetermsin the bracket become constant within the control volume when CV is small
enough by the continuum hypothesis. Therefore bracketed quantities must be zero everywhere;that
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is, identically zero, because the constant can be factored out of the integral giving [3CV=0. The
differential equation expressing the conservation of energy isthus

MJ,Nx(r ev) - Nix(vxt) + Rix(pv) - Nix(kNT) =0

It

Expanding the first two terms and using the continuity equation and the definition of the substantive
derivative (following the fluid particle) gives

De

ot Nx(vxt) + Nx(pv) - Nx(kNT) =0

Conservation of momentum:

Newton's law for afluid system applied to the same fluid system gives

f (-pé)XdS+f ?xds+f rgav = ﬂ(”’)olv+f F v xdS
cS cS cv it cS

Ccv

Converting the surface integrals to volume integrals and collecting terms, we find

+Rx(rw) - Nxt+Rp-rg/dv=0

P(r V)
Tt

Ccv

where the bracketed term givesthe differential equations of motion, expressing the conservation of
linear momentum for afluid

i(rv)
qit

+Nx(rvw)- Nxt+Np-rg=0

which can aso be written

Dv

bt -

Nxt+Np-rg=0

Taking the scalar product of this equation with v gives

r DKEE) iy + vxNp=0
Dt
which isthe mechanical energy equation. Subtracting this from the first law energy equation above
yields
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This shows that the internal energy of a fluid particle u changes by therma conduction,
compression work, and viscous dissipation, taking the last three terms from right to | eft.

Vorticity:

Define the vorticity field m = curl v = N” v. Notethat thei component of the cross product

C = A’ B of two vectors A and B can be written
Ci = jkAjBk
where gjk isthe alternating tensor, defined such that gjk = 0if any two indicesare equal, gjk = 1
ifijk=123,231 or 312, and gjk =-1if ijk =132, 321 or 132. Thus
Wi = &k /11X
isthe i component of the vorticity vector. Animportant identity relating gjk and the identity tensor
dij, wheredijj =0fori?® janddjj=1fori=j,is
8jke&Im = dildjm - dimdii .

Note that the curl of the gradient of any scalar field, such as a velocity potential f or the
pressure p, iszero. Thisisbecause curl grad f = - curl gradf asfollows:

(curl gradf )i = gjk (T2 111X Txk) = -6ikj (T2f /11%{ TxK) = -&kj (T2F 11Xk T1%}) = -&iji (T2 1% Txk)

where the dummy indices jk arefirst reversed in gjk to change the sign, then the order of the partial
derivative 112f /11 Ik is reversed, and finally the indices are relabeled so k® j and j® k.

Assumingr = constant, the equations of motion can be written
i/t + v TvilTix; = -S(p/r )Mxi + gi + nN2y;
Taking the curl of this equation, the first term gives the time derivative of the vorticity and the
pressure term vanishes. The gravity term also drops out since it can be expressed as the gradient of
the gravitationa potential -gx3. The nonlinear term v;vi/1xj is rewritten as
Vi Ivi/fIxj = TI(v22) M1 - (v w)i

so the gradient term can be eliminated under the curl operation. This important vector identity is
proved by expanding the "vortex force" term (V" w);j using gjk&im = dijdjm - dimdj|

(V" w)i = &jkVieimTVm/TX| = (diidjm - dimdji)vi Tvm/Tx| = T(v2/2)/1xi - vj Tvi/T1x;
and the index substitution property of djj; that is, v; = vjdi for example.
Taking the curl of the equations of motion then gives
i/t - &jkT(adamviwm)/Mx = nN2w;

which further reduces to
o Twi/ft + viTwi/fx; = wiTvi/x; + nN2wy; , e
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the conservation of vorticity equation for constant density fluid. The left hand side is the
substantivederivativeDw;/Dt, the first term on the right is the vorticity production by vortex line
stretching, and the last term isthe diffusion of vorticity by viscosity.

Gauss' Theorem:

Integrals may be converted by the expression (Gauss' Theorem)

Ccv i CS

where Ajy... isatensor and n is the outward pointing unit vector at elementary area dS of the
control surface CS surrounding the control volume CV.

Animportant specia case of Gauss Theorem is the divergence theorem

ﬁ dv = NiA; ds
CcVv T Cs
A

: : . TA; :
where A isavector and its gradient tensor —X’ has been contracted to form the dlvergence? .
| |

If A isthevelocity v, then we can interpret the divergence of the velocity field NxVv as the volume
flow rate per unit volume Q/V emerging from asmall control volume surrounding a point,

f NxvdV:(Nxv)V:f vxdS =Q;\ Nxv=QV
cv cs

Therefore, Nxv = 0 for an incompressible fluid.

The net force of a uniform pressure p; on a control volume may be found from Gauss
theorem asfollows,

Fp= _f panxdS = -f NpadVv =0

because the gradient of a constant is zero.
Derivation of Bernoulli's Equation:

Apply the conservation of mechanical energy equation

<

r Dkerpe) | vxNxt+vxNp=0

Dt

to the steady flow of fluid through a stream tube. Rewriting the equation
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ke

it = -rvxNke - vxNp - rvxRgxs +vxRxt

where keisv2/2. Assuming constant density and rearranging gives

‘ﬂrﬂl:e_ -Nxrv(ke + p/r + gxs) +N><(v><r) T K

which can be used to evaluate the rate of change of the total kinetic energy KE in the stream tube

dKE :df rkedV:f ﬂkedv f
o OIcv cv Tt cv

= f rv(ke + p/r + gxs)xdS +f vx T xdS f
cs Ccs Y,

:-f rvBXdS-WV-f reldv
cs cv

using the divergence theorem to convert to surface integrals and defining B and e as indicated. For
steady state flow through the stream tube the left hand sideis zero. Thefirst surface integral on the
right is the convection rate into the stream tube of the Bernoulli energy/mass B, and equals the mass
flow rate m times (B1 - B2). The second surface integral is the rate of viscous working on the
streamtube -Wy,, and the third integral is the total rate of viscous dissipation within the volume.
This can be written as

-Nxrv(ke + p/r + gx3) +NX(V><‘E) T

— v

‘HV}
X

B Wy  rVe
By =By + WV 4
1=Ba+"

=By + Wy + WE

where the overbar indicates the volume average of the local viscous dissipation rate per unit mass g,
where

. v
roqx-

o

If viscous forces are negligible, we find the ssimplest form of the Bernoulli equation

B1=By; ? +plr +gX3) —(LZZ +plr +9X32

Extended forms of the Bernoulli equation take into account frictional losses, viscous working, and
even time dependence.



