MAE 108: Solutions HW 3

Problem 1

Ang & Tang 2.39

We have

D : Number of defective panels on a given day

A : Shipment accepted on a given day

- $P(D = 0) = 0.2$
- $P(D = 1) = 0.5$
- $P(D = 2) = 0.3$

a) The shipment is accepted if the supervisor finds at most one defected panel

so $P(A) = P(D \leq 1)$ and $P(\bar{A}) = P(D = 2)$

$$P(A) = P(D \leq 1) = P(D = 0) + P(D = 1) = 0.2 + 0.5 = 0.7$$

b) P(exactly one shipment will be rejected in 5 days)

$$= 5 \times P(D \leq 1)^4 \times P(D = 2) = 5 \times 0.7^4 \times 0.3 = 0.36$$

c) The shipment is accepted if the supervisor finds at most one defected panel, however we now take into account that not all defected panel are found. Only 80% of the them are detected and therefore rejected, $P(\bar{A}|D = 1)$. Therefore our definition of the probability of acceptance of shipment on a given day $P(A)$ changes and is dependent on the number of defective panels detected, in stead of the number of defective panels.
D_d: the number of defective panels detected.

Therefore

- $P(\bar{A}|D = 1) = 0.8$
- $P(A) = P(D_d \leq 1)$
- $P(\bar{A}) = P(D_d = 2)$

\[
P(A) = P(A|D = 0)P(D = 0) + P(A|D = 1)P(D = 1) + P(A|D = 2)P(D = 2)
\]

Keep in mind that A is now dependent on D_d when solving for the conditional probabilities and that \bar{A}: $D_d = 2$

\[
P(A|D = 0) = 1 - P(\bar{A}|D = 0) = 1 - 0 = 1
\]

\[
P(A|D = 1) = 1 - P(\bar{A}|D = 1) = 1 - 0 = 1
\]

This aligns with that there can not be a detection of two defected panels if there are not two defected panels to begin with. However when there are two defected panels we have:

\[
P(A|D = 2) = 1 - P(\bar{A}|D = 2)
\]

\[
= 1 - P(\bar{A}|D = 1)P(\bar{A}|D = 1) = 1 - 0.8 \times 0.8 = 0.36
\]

Hence, $P(A) = 0.2 + 0.5 + 0.36 \times 0.3 = 0.808$

There are different ways of approaching this. Another approach is:

\[
P(A) = P(D_d \leq 1)
\]

\[
= P(D_d \leq 1|D \leq 1) \cdot P(D \leq 1) + P(D_d \leq 1|D = 2) \cdot P(D = 2)
\]

By the implicit assumption, $D \leq 1$ implies $D_d \leq 1$. Then, this means that $(D \leq 1) \subset (D_d \leq 1)$ and that

\[
P(D_d \leq 1|D \leq 1) = P((D_d \leq 1) \cap (D \leq 1))/P(D \leq 1)
\]

\[
= P(D \leq 1)/P(D \leq 1) = 1
\]
\[P(D_d \leq 1|D = 2) = 1 - P(D_d = 2|D = 2) = 1 - (0.8)^2 = 0.36 \]

Lets put this into the above equation

\[
P(A) = P(D_d \leq 1) \\
= P(D_d \leq 1|D \leq 1) \cdot P(D \leq 1) + P(D_d \leq 1|D = 2) \cdot P(D = 2) \\
= 1 \cdot (P(D = 0) + P(D = 1)) + [1 - P(D_d = 2|D = 2)] \cdot P(D = 2) \\
= 0.2 + 0.5 + 0.36 \cdot 0.3 = 0.808
\]

Problem 2

Ang & Tang 2.45

Let \(A, D, \) and \(I \) denote the respective events that a driver encountering the amber light will accelerate, decelerate, or be indecisive. Let \(R \) denote the event that s/he will run the red light.

The given probabilities and conditional probabilities are:

- \(P(A) = 0.10 \)
- \(P(D) = 0.85 \)
- \(P(I) = 0.05 \)
- \(P(R|A) = 0.05 \)
- \(P(R|D) = 0 \)
- \(P(R|I) = 0.02 \)

a) By the theorem of total probability,

\[
P(R) = P(R|A)P(A) + P(R|D)P(D) + P(R|I)P(I) \\
= 0.05 \cdot 0.10 + 0 + 0.02 \cdot 0.05 \\
= 0.005 + 0.001 \\
= 0.006
\]
b) The desired probability is \(P(A|R) \), which can be found by Bayes’ Theorem as
\[
P(A|R) = \frac{P(R|A)P(A)}{P(R)} = \frac{0.05 \times 0.10}{0.006} = 0.833
\]

c) Let \(V \) mean there exists a vehicle waiting on the other street,
- \(P(V) = 0.6 \)
- \(P(\bar{V}) = 0.40 \)

Let \(C \) denote that the driver in the other vehicle is cautious,
- \(P(C) = 0.8 \)
- \(P(\bar{C}) = 0.20 \)

The probability of collision is:
\[
P(\text{collision}) = P(\text{collision}|V)P(V) + P(\text{collision}|\bar{V})P(\bar{V})
\]
\[
P(\text{collision}|V) = P(\text{collision}|C)P(C) + P(\text{collision}|\bar{C})P(\bar{C})
\]
\[
= (1 - 0.95) \times 0.80 + (1 - 0.80) \times 0.20
\]
\[
= 0.05 \times 0.80 + 0.20 \times 0.20
\]
\[
= 0.08
\]
\[
P(\text{collision}|\bar{V}) = 0
\]

Hence,
\[
P(\text{collision}) = 0.08 \times 0.60 + 0
\]
\[
= 0.048
\]
d) 100,000 vehicles * 5% = 5000 vehicles are expected to encounter the yellow light annually. Out of these 5000 vehicles, 0.6% (i.e. 0.006) are expected to run a red light, i.e. 5000 * 0.006 = 30 vehicles. These 30 dangerous vehicles have 0.048 chance of getting into a collision (i.e. accident), hence 30 * 0.048 = \textbf{1.44} accidents caused by dangerous vehicles can be expected at the intersection per year.

Problem 3

Ang & Tang 2.47

Let D denote difficult foundation problem, F denote that the project is in Ford County, I denote that the project in Iroquois County, and C denote a project in Champaign County.

\[
P(D) = \frac{2}{3} \\
P(F) = \frac{1}{3} = 0.333 \\
P(I) = \frac{2}{5} = 0.4 \\
P(D|I) = 1.0 \\
P(D|F) = 0.5
\]

a)

\[
P(F \bar{D}) = P(\bar{D}|F)P(F) \\
= 0.5 \times 0.333 = 0.167
\]

b)

We are asked to find the following:

\[
P(C \bar{D}) = P(\bar{D}|C)P(C)
\]

Therefore we need:

\[
P(\bar{D}|C) = P(\bar{D}) = 1 - P(D) = \frac{1}{3} \\
P(C) = 1 - P(F) - P(I) \\
= 1 - 0.333 - 0.4 = 0.267
\]
Hence,

\[P(C \bar{D}) = P(\bar{D}|C)P(C) = \frac{1}{3} \times 0.267 = 0.089 \]

c)

\[P(I|\bar{D}) = \frac{P(\bar{D}|I)P(I)}{P(D)} = \frac{0 \times 0.4}{0.667} = 0 \]

Problem 4

Ang & Tang 2.51

Let \(C, S \) denote shortage of cement and steel bars respectively. The probabilities and condition probability are:

- \(P(C) = 0.1 \)
- \(P(S) = 0.05 \)
- \(P(S|\bar{C}) = 0.5 \times 0.05 = 0.025 \)

a)

\[
\begin{align*}
P(S \cup C) &= P(S) + P(C) - P(C|S)P(S) \\
P(\bar{C}|S) &= \frac{P(S|\bar{C})P(\bar{C})}{P(S)} = \frac{0.025 \times 0.9}{0.05} = 0.45 \\
P(C|S) &= 1 - P(\bar{C}|S) = 0.55 \\
P(S \cup C) &= 0.05 + 0.1 - 0.55 \times 0.05 = 0.1225
\end{align*}
\]

b)

\[
\begin{align*}
P(C \bar{S} \cup \bar{C}S) &= P(C \bar{S}) + P(\bar{C}S) \\
&= P(C \cup S) - P(CS) \text{ from Venn diagram} \\
&= 0.1225 - P(C|S)P(S) \\
&= 0.1225 - 0.55 \times 0.05 \\
&= 0.095
\end{align*}
\]
c)

\[
P(S | S \cup C) = \frac{P(S(S \cup C))}{P(S \cup C)} = \frac{P(S)}{P(S \cup C)} = \frac{0.05}{0.1225} = 0.408
\]

For part d) and e) we have additional information.
Let \(U \) denote that the material was transported by truck, \(A \) denote that the material is transported by air, and \(T \) denote that the delivery was on time.

- \(P(U) = 0.6 \)
- \(P(A) = 0.4 \)
- \(P(T | U) = 0.75 \)
- \(P(T | A) = 0.9 \)

d)

\[
P(T) = P(T | U)P(U) + P(T | A)P(A) \\
= 0.75 * 0.6 + 0.9 * 0.4 \\
= 0.81
\]

e)

\[
P(U | \bar{T}) = \frac{P(\bar{T} | U)P(U)}{P(\bar{T})} \\
= \frac{[1 - P(T | U)] * P(U)}{[1 - P(T)]} \\
= \frac{0.25 * 0.6}{[1 - 0.81]} \\
= 0.7895
\]

Problem 5

Ang & Tang 3.1

Total time \(T = T_A + T_B \) its range is \(3+4=7 \) to \(5+6=11 \) Divide the
sample space into $A=3$, $A=4$ and $A=5$.

$$P(T = 7) = \sum_{n=3,4,5} P(T = 7|A = n) \cdot P(A = n)$$

$$= \sum_{n=3,4,5} P(B = 7 - n) \cdot P(A)$$

$$= P(B = 4) \cdot P(A = 3)$$

$$= 0.2 \cdot 0.3 = 0.06$$

Similarly

$$P(T = 8) = P(B = 5) \cdot P(A = 3) + P(B = 4) \cdot P(A = 4)$$

$$= 0.6 \cdot 0.3 + 0.2 \cdot 0.5 = 0.28$$

$$P(T = 9) = P(B = 6) \cdot P(A = 3) + P(B = 5) \cdot P(A = 4) + P(B = 4) \cdot P(A = 5)$$

$$= 0.2 \cdot 0.3 + 0.6 \cdot 0.5 + 0.2 \cdot 0.2 = 0.4$$

$$P(T = 10) = P(B = 6) \cdot P(A = 4) + P(B = 5) \cdot P(A = 5)$$

$$= 0.2 \cdot 0.5 + 0.6 \cdot 0.2 = 0.22$$

$$P(T = 11) = P(B = 6) \cdot P(A = 5)$$

$$= 0.2 \cdot 0.2 = 0.04$$

Lets check if it adds up:

$$0.06 + 0.28 + 0.4 + 0.22 + 0.04 = 1$$
Problem 6

Ang & Tang 3.3

a) Applying the normalization condition we get:

\[
\int_{-\infty}^{\infty} f_X(x) \, dx = 1 \\
\int_{0}^{6} c \left(x - \frac{x^2}{6} \right) \, dx = 1 \\
c \left[\frac{x^2}{2} - \frac{x^3}{18} \right]_{0}^{6} = 1 \\
c = \frac{18}{9 \times 36 - 6^3} = \frac{1}{6}
\]

b) To avoid repeating integration, let’s work with the Cumulative Distribution Function of X, which is

\[
F_X(x) = \begin{cases}
0 & \text{for } s \leq 0 \\
\frac{1}{6} \left[\frac{x^2}{2} - \frac{x^3}{18} \right] = \frac{9x^2-x^3}{108} & \text{for } 0 < x \leq 6 \\
0 & \text{for } s > 12
\end{cases}
\]
Since overflow already occurred, the given event is $X > 4$ (cm), hence the conditional probability

$$P(X < 5 | X > 4) = \frac{P(X < 5 \text{ and } X > 4)}{P(X > 4)} = \frac{P(4 < X < 5)}{1 - P(X \leq 4)}$$

$$= \frac{F_X(5) - F_X(4)}{1 - F_X(4)} = \frac{(9 \times 5^2 - 5^3) - (9 \times 4^2 - 4^3)}{108 - (9 \times 4^2 - 4^3)}$$

$$= \frac{100 - 80}{108 - 80} = \frac{5}{7} = 0.714$$

c) Let C denote completion of pipe replacement by the next storm, where $P(C) = 0.06$. If C indeed occurs, overflow means $X > 5$, whereas if C did not occur then overflow would correspond to $X > 4$. Hence the total probability of overflow is

$$P(\text{overflow}) = P(\text{overflow} | C)P(C) + P(\text{overflow} | \bar{C})P(\bar{C})$$

$$= P(X > 5) \times 0.6 + P(X > 4) \times (1 - 0.6)$$

$$= [1 - F_X(5)] \times 0.6 + [1 - F_X(4)] \times 0.4$$

$$= (1 - 100/108) \times 0.6 + (1 - 80/108) \times 0.4 = 0.148$$

Problem 7
Ang & Tang 3.5

Let F be the final cost (a random variable), and C be the estimated cost (a constant), hence

$$X = F/C$$

is a random variable.

a) To satisfy the normalization condition,

$$\int_{1}^{a} \frac{3}{x^2} \, dx = \left[-\frac{3}{x} \right]_{1}^{a} = 3 - \frac{3}{a} = 1$$

$$a = 3/2 = 1.5$$
b) The given event asked for is F exceeds C by more than 25%. That can be written as:

$$F > 1.25 * C$$

or

$$F/C > 1.25$$

It follows that its probability is:

$$P(X > 1.25) = \int_{1.25}^{\infty} f_X(x) \, dx$$

$$= \int_{1.25}^{1.5} \frac{3}{x^2} \, dx = \left[-\frac{3}{x}\right]_{1.25}^{1.5}$$

$$= -2 - (-2.4) = 0.4$$

c) The mean

$$E(X) = \int_{1}^{1.5} x^3 \, dx = [3 \ln x]_{1}^{1.5} = 1.216$$

while

$$E(X^2) = \int_{1}^{1.5} x^2 \, dx = 3(1.5 - 1) = 1.5$$

with these, we can determine the variance

$$\text{Var}(X) = E(X^2) - [E(X)]^2$$

$$= 1.5 - 1.216395324^2 = 0.020382415$$

$$\sigma_X = \sqrt{0.020382415} = 0.143$$

Problem 8

Ang & Tang 3.7
a) The event roof failure in a given year means that the annual maximum
snow load exceeds the design value, i.e. $X > 30$, whose probability is

\[
P(X > 30) = 1 - P(X \leq 30) = 1 - F_X(30)
\]
\[
= 1 - [1 - (10/30)^4]
\]
\[
= (1/3)^4 = 1/81 = 0.0123 = p
\]

Now for the first failure to occur in the 5th year, there must be four years of
non-failure followed by one failure. We already found the value of failure, p,
and therefore have the value of non-failure, $1 - p$. The probability of such
an event is:

\[
(1 - p)^4p = [1 - (1/81)]^4 * (1/81) = 0.0117
\]

b) Among the next 10 years, let Y count the number of years in which
failure occurs. Y follows a binomial distribution with $n= 10$ and $p =1/81$,
hence

\[
P(Y < 2) = P(Y = 0) + P(Y = 1)
\]
\[
= (1 - p)^n + n(1 - p)^{n-1}p
\]
\[
= (80/81)^{10} + 10 * (80/81)^9 * (1/81)
\]
\[
= 0.994
\]