H8.1 A converging nozzle is connected to a large supply tank containing air at 450K and 150 kPa. The nozzle exit area is 30 cm2. The air flows isentropically through the nozzle and discharges into a chamber with pressure of 100 kPa.

a. Determine the mass flow rate of the air [kg/s]
b. If the chamber pressure could be lowered, determine the maximum possible mass flow rate for the air. What chamber pressure(s) will achieve this flow rate?

H8.2 Gas entering a rocket nozzle has a stagnation pressure of 1500 kPa and a stagnation temperature of 3000$^\circ$C. The gas ($k = 1.35, R = 287.0 \text{ Nm/kgK}$) expands isentropically to the ambient pressure. The rocket travels in standard atmosphere at 30,000 m. Determine:

a. Mach number at nozzle exit
b. throat and exit area [m2] for a flow rate of 10 kg/s

c. entropy change across the shock, $s_2 - s_1$ [Btu/lbm$^\circ$R]
d. show static and stagnation states and process on $T-s$ diagram

H8.3 A hypersonic vehicle cruises at an altitude of 100,000 ft. A normal shock stands in front of the stagnation pressure and temperature probes located on the nose of the vehicle. The temperature probe indicates $T_{02} = 8000^\circ R$ behind the shock. Determine:

a. Mach number and speed [mph] of the aircraft
b. static and stagnation pressures behind the shock [psia]
c. entropy change across the shock, $s_2 - s_1$ [Btu/lbm$^\circ$R]
d. show static and stagnation states and process on $T-s$ diagram

H8.4 As discussed in lecture, the behavior of the flow in a converging-diverging nozzle depends on the value of the back pressure, p_b. As indicated in attached Fig. H8.4 the behavior can be classified into four Regions (1-4), which are demarcated by three back pressure, p_b, values labeled (1), (2), (3) (which also correspond to flow conditions (1), (2), (3)).

Consider a converging-diverging nozzle with $A_e/A_t = 5.0$ that is attached to a reservoir in which air is maintained at 600 kPa and 300 K.

a. For the given nozzle, evaluate p_b (kPa) and Ma_e for the 3 flow conditions (1), (2), (3).

b. Prepare a table summarizing the following for each Region for the given nozzle:
 i. if throat Mach number Ma_t is $<, =, >$ unity
 ii. if Ma_e is $<, =, >$ unity
 iii. if p_e is $<, =, > p_b$
 iv. the range of p_b values associated with each Region
 v. basic description, e.g., isentropic flow, shock in nozzle, underexpanded nozzle, overexpanded nozzle

On "Figure 6-17" (p/p_o vs x), sketch a representative pressure distribution for each of the four Regions.
H8.5* Air is supplied to a converging-diverging nozzle from a large tank where the pressure is 790 kPa and the temperature is 150°C. A normal shock wave occurs in the diverging section of the nozzle where the area is 600 mm2 and the Mach number is 1.7. The nozzle exit area is 750 mm2. Assume isentropic flow except across the shock. Consider states (1) and (2), as the states upstream and downstream of the shock, respectively, state (e) as the nozzle exit state. Hint: consider A_e/A_2^* and note A^* is not constant across a shock. Determine:

a. mass flow rate [kg/s]
b. throat area [mm2]
c. nozzle exit pressure [kPa]

H8.6* Measurements are made of compressible flow in a long smooth 7.16 mm i.d. tube. Air is drawn from the surroundings (20°C, 101 kPa) by a vacuum pump downstream. When the downstream pressure is reduced to 626 mm Hg (vacuum) or below, pressure readings along the tube stop changing and become steady. For these conditions, determine:

a. the maximum flow rate possible through the tube [kg/s]
b. stagnation pressure of the air leaving the tube [kPa]
c. entropy change of the air in the tube [kJ/kg K]
d. show static and stagnation states and process on $T–s$ diagram

H8.7* We wish to build a supersonic wind tunnel using an insulated nozzle and constant area duct assembly. Shock free operation is desired, with $Ma_1 = 2.1$ at the test section inlet and $Ma_2 = 1.1$ at the test section outlet. Stagnation conditions are $T_0 = 295$ K and $p_0 = 101$ kPa (abs). Determine:

a. temperature at outlet [K]
b. pressure at outlet [kPa]
c. entropy change through the test section [kJ/kg K]
d. show static and stagnation states and process on $T–s$ diagram