
MAE291 - Spring 2005

discrete-time system & servo control

short overview of contents of this lecture

• definition of dynamic input/output system

• analysis of dynamic systems

– discrete & continuous time systems

– transfer functions

– example: HDD actuator model

– stability

• control systems

– feedforward architecture

– feedback design

– loopgain and Nyquist stability criterion

– loopshaping using a lead/lag controller

– example: control of inertial system
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Input/output system

System with an input (signal) and an output (signal).

system
input output

block diagram

Shorthand notation that we use: y = Gu

G
u y

input u, control output y

Distinction between input and output in the block diagram is

based on causality principle.
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Input/output system

Causality in input/output system: change in output at current
time is a reaction to the input in the past.

Notation: y(t) = output at time t, u(t) = input at time t

then: y(t2) = G(u(t1)), t2 > 0, t1 ∈ [0, . . . , t2]

or: y(t) = G(u(t), u(t − 1), y(t − 1), u(t − 2), y(t − 2), . . .)

G denotes an operator (or function) that relates past inputs and
outputs to the output y(t) at time instant t

G can be a differential operator (from a differential equation) or
a difference operator (from a difference equation)

In short: G is a model that describes the dynamics of our system
to be controlled
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Input/output system

Important properties on input/output systems:

• Causality (as defined before)

• Stability ↔ instability

Let y = Gu then G is stable if ‖y‖ < ∞ for all possible inputs
u with ‖u‖ < ∞

• Linearity ↔ non-linearity

Let u = α1u1 + α2u2 then G is linear if G(α1u1 + α2u2) =
α1Gu1 + α2Gu2

• Time invariant ↔ time variant

Let u(t+T) = u(t), then G is time invariant if G(u(t+T)) =
G(u(t))

• Discrete time ↔ continuous time

Let y(t) = G(u(t)) then G is a discrete system if t ∈ Z
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Dynamical systems: discrete time

In many dynamical systems, only discrete measurements of the
input/output values are available (computer controlled systems,
a HDD with servo sectors).

To describe linear time invariant causal discrete time system, we
can use an ordinary linear difference equation:

n∑
k=1

ckqky(t) =
n∑

k=1

dkqku(t)

with qy(t) := y(t + 1), t ∈ Z, and appropriate initial conditions.

Example
Money y(t) in a simplified account at 5% interest, subjected to
withdrawals or deposits u(t) and compounded annually:

y(t + 1) = 1.05y(t) + u(t)

with y(0)=0
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Dynamical systems: discrete time

Similarly as Laplace transform for continuous time signals, we
introduce the z-transform for discrete time signals:

y(z) := Z{y(t)} =
∞∑

t=0

y(t)z−t

that converts linear difference equations into algebraic expres-
sions, as

Z{
n∑

k=1

ckqky(t)} = y(z)
n∑

k=1

ckzk

rewriting
n∑

k=1

ckqky(t) =
n∑

k=1

dkqku(t)

into

y(z) = G(z)u(z), with G(z) =

∑n
k=1 dkzk∑n
k=1 ckzk
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Dynamical systems: continuous & discrete time

Discrete time system often due to sampling or approximation of
continuous time system.

Consider the first order differential equation

∂

∂t
y(t) − ay(t) = bu(t), y(0) = 0

or

y(s) = G(s)u(s), with G(s) =
b

s − a

How to obtain a discrete time model from a continuous time
model?

Difference between discrete time models is due to assumptions
made to approximate input behavior, differentiation operator or
integration operator.
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Dynamical systems: continuous & discrete time

Consider again first order model

∂

∂t
y(t) = ay(t) + bu(t) or y(s) = G(s)u(s) with G(s) =

b

s − a

One possibility: approximation of the derivative
This is know as the Euler approximation, where

∂

∂t
y(t) ≈ y(t + ∆t) − y(t)

∆t

With ∆t := 1 and t ∈ Z and the Euler approximation we find

y(t + 1) = y(t) + ay(t) + bu(t)

or

y(z) = G(z)u(z) with G(z) =
b

(z − 1) − a

a discrete time model by substitution of s = z − 1.
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Dynamical systems: continuous & discrete time

Alternative approach: approximation of the integral.

By rewriting

∂

∂t
y(t) − ay(t) = bu(t), y(0) = 0

into

y(t) =
∫ ∞
τ=0

[ay(τ) + bu(τ)]dτ

we see that the value of y(t) at the k’th sampling time k∆T :

y(k∆T) = y((k − 1)∆T) +
∫ k∆T

τ=(k−1)∆T
[ay(τ) + bu(τ)]dτ

⇒ approximate the integral from τ = (k − 1)∆T to τ = k∆T to

obtain a discrete time model equivalent of the continuous time

model
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Dynamical systems: continuous & discrete time

One choice: trapezoidal approximation of integral
Also know as Tustin approximation

(k − 1)∆T k∆T τ →

ay(τ) + bu(τ)

�

�

�

�

Trapezoidal area:

[ay(k∆T) + bu(k∆T)]∆T+

([ay((k − 1)∆T) + bu((k − 1)∆T)]−

[ay(k∆T) + bu(k∆T)])∆T/2

MAE291, Spring 2005 – F.E. Talke & R.A. de Callafon, slide 10



Dynamical systems: continuous & discrete time

With the size of this Trapezoidal area we get:

y(k∆T) ≈ y((k − 1)∆T)+

([ay(k∆T) + bu(k∆T)] + [ay((k − 1)∆T) + bu((k − 1)∆T)])∆T/2

and by rewriting we recognize

y(k∆T) = 1+a∆T/2
1−a∆T/2y((k − 1)∆T)+

b∆T/2
1−a∆T/2u((k − 1)∆T)+

b∆T/2
1−a∆T/2u((k)∆T)

a discrete time model!
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Dynamical systems: continuous & discrete time

This discrete time model can be written in a transfer function

with the z-transform:

y(z) = G(z)u(z), with G(z) =
b

2
∆T

(z−1)
(z+1) − a

Compare with original continuous time model G(s):

G(s) =
b

s − a

Substitution s = 2
∆T

(z−1)
(z+1) and z = (2/∆T+s)

(2/∆T−s) are also called bilin-

ear transformation or Tustin’s formulae.

Implemented in Matlab in the function c2d:

SYSD = C2D(SYSC,TS,’TUSTIN’)
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Dynamical systems: transfer function representations

The transfer functions G(s) and G(z) represent models respec-
tively of a continuous time system and a discrete time system

The notation y = Gu (compare with our block diagrams) denotes
a transfer function representation of the system with G given by

G(s) =

∑n
k=1 bksk∑n
k=1 aksk

or G(z) =

∑n
k=1 ckzk∑n
k=1 dkzk

Notes

• the coefficients ak and bk or ck and dk completely determine
the dynamic behavior of the model!

• the response y(t) can be computed by G(s) or G(z) together
with the additional initial conditions

• Difference between continuous time and discrete time lies in
transformation (Laplace or z-transform)
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Dynamical systems: transfer function representations

Important information deducted from a transfer function G (con-

tinuous or discrete time):

• Frequency response of the model.

Let u(t) = cos(ωt) then for t >> 1,

y(t) = |G(ω)|cos(ωt + � G(ω)) where

G(ω) = G(s), s = jω, ω ∈ [0,∞)
G(ω) = G(z), z = ejω, ω ∈ [0, π]

Difference lies in the transformation being used. Matlab

functions: tf, bode, dbode

• Stability of the models

Location of the roots of the denominator of the transfer

function determine the stability of the model G
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Dynamical systems: example - HDD model

Standard Transfer Function (STF) model of a second order sys-
tem:

G(s) =
ω2

n

s2 + 2βωns + ω2
n

ωn = undamped frequency in rad/s and β = damping coefficient

• Low frequency mode due to free body motion of actuator
with fn = 25Hz, β = 0.15

• E-block sway mode at fn = 5KHz, β = 0.0125

• Suspension torsion mode at fn = 5.93KHz, β = 0.0105 (de-
nominator) and fn = 6KHz, β = 0.0105

• Suspension sway mode at fn = 9KHz, β = 0.0045

Combination of STF’s yields G(s) of simple HDD model:

7.6 · 1022(s2 + 791.7s + 1.4 · 109)

s8 + 2127s7 + 5.5 · 109s6 + 8.3 · 1012s5 + 9 · 1018s4 + 7.1 · 1021 + 4.4 · 1027s2 + 2 · 1029s + 1 · 1032
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Dynamical systems: example - HDD model

Bode plot of TF model
7.6 · 1022(s2 + 791.7s + 1.4 · 109)

s8 + 2127s7 + 5.5 · 109s6 + 8.3 · 1012s5 + 9 · 1018s4 + 7.1 · 1021 + 4.4 · 1027s2 + 2 · 1029s + 1 · 1032
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Note: observe bad numerical conditioning of TF model!
Improvement possible by formulation in State Space form.
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Dynamical systems: stability of continuous time models

Consider again continuous time first order model

∂

∂t
y(t) = ay(t) + bu(t) or y(s) = G(s)u(s) with G(s) =

b

s − a

A homogeneous solution to difference equation:

y(t) = eat

satisfies ‖y‖ < ∞ iff a < 0. Equivalent to condition that the root
s1 of (s − a) = 0 satisfies s1 < 0.

Stability statement can be generalized to higher order differential
equations (degree n denominator).

For continuous time systems, the roots sk of denom-

inator of G(s) should satisfy Re{sk} < 0, k = 1, . . . , n.

Alternatively: poles of G(s) should lie in the open-left

half of the complex plane.

MAE291, Spring 2005 – F.E. Talke & R.A. de Callafon, slide 17

Dynamical systems: stability of discrete time models

Consider discrete time first order model

y(t + 1) = cy(t) + du(t) or y(z) = G(z)u(z) with G(z) =
d

z − c

A homogeneous solution to difference equation:

y(t) = ct t ∈ Z
satisfies ‖y‖ < ∞ iff c < 1. Equivalent to condition that the root
z1 of (z − a) = 0 satisfies z1 < 1.

Stability statement can be generalized to higher order difference
equations (degree n denominator).

For discrete time systems, the roots zk of the denomi-

nator of G(z) should satisfy |zk| < 1, k = 1, . . . , n. Al-

ternatively: poles of G(z) should lie inside the unit disk

centered around the origin.
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Dynamical systems: stability and oscillations

Examining frequency domain plot of G and accompanying pole/zero
plot will give information on poorly damped poles (and zeros)
that will play an important role in control system design.
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Continuous time model of a hard disk drive rotary actuator:
Bode plot (left) and pole/zero plot (right)
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Dynamical systems: stability and oscillations

Comparison between continuous time model and discrete time

model of hard disk drive rotary actuator
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Control systems

General form of feedforward control

system

Cff

r u y

n

block diagram of feed forward

Signals:
• reference signal = r
• input = u

• output = y
• perturbation or noise = n

Design considerations:
• measure perturbation or noise n
• implements ways to change input u

• reduce effect of disturbance n on output y
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Control systems

General form of feedback control:

system

Cfb

u

n

y

r−

block diagram of feedback

Design considerations:
• measure output y

• implements ways to change input u

• reduce effect of disturbance n on output y

• modify open-loop to closed-loop dynamic properties
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Control systems: feedforward

Feedforward control can be described by:

y = Gu + n
u = r + Cffn

which yields

y = Gr + (1 + GCff)n

Note:
– r is new input signal (reference)
– perturbation or noise n acts on output y via (1 + GCff).

Hence:
– dynamic properties of n → y change
– dynamic properties of r → y do not change
– influence of noise n can be altered by design Cff :

Cff = −1

G
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Control systems: feedforward

Design considerations and trade-offs in feedforward control

system

Cff

r u y

n

y = Gr + (1 + GCff)n, Cff = −1

G

If indeed Cff = −1/G and n = actual track on hard disk, then y
= PES would be zero (perfect track following). However:

• Cff = −1/G might be non-causal or unstable

• G is just a model of the system! What if a small error is
made while modeling the system?

• What if disturbances n cannot be measured or cannot be
measured completely?

• The control signal u = −1/G n might be very large.
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Control systems: feedback

Feedback control can be described by:

y = Gu + n
u = Cfb(r − y)

}
⇒ y = GCfbr − GCfby + n

which yields

y =
GCfb

1 + GCfb
r +

1

1 + GCfb
n

Note:
– r is new input signal (reference)

– noise n act on output in a dynamic way via
1

1 + GCfb
.

Hence:
– dynamic properties of n → y change
– dynamic properties of r → y also change
– noise influence can be altered by design Cfb >> 1
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Control systems: feedback

system

Cfb

u

n

y

r−

y =
GCfb

1 + GCfb
r +

1

1 + GCfb
n, Cfb >> 1

If indeed Cfb >> 1 and r = actual track on hard disk, then y = r
(PES would be zero) and effect of noise n is eliminated, but:

• For Cfb >> 1, the control signal u = Cfb(r−y) might be very
large.

• For Cfb >> 1, the feedback control system might exhibit
oscillations or (even stronger) instabilities

Design considerations are less restricting than in feedforward! A
model G is needed to study stability and control energy of the
feedback control system.
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Control systems: feedforward & feedback

In modern harddisk drives (or any mechanical data storage sys-

tem for that matter), the control system is usually a combination

of feedforward and feedback.

• track seeking: feedforward control u = Cffn, where n =

servo track measurement and Cff = −1/G based on a rela-

tively simple model G of the servo actuator.

• track following: feedback control u = Cfb(r − y) where (r −
y) is a PES measurement and Cfb is designed on a more

complicated model of the servo actuator to include stability

analysis.

In the remaining part of this lecture:

• focus on the design of servo feedback controllers

• illustration via lead/lag based control
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Loopshaping: definition of loopgain

G

C

u

n

y

r−

Loopgain L is series connection of model G and controller C:

L(s) = G(s)C(s) or L(z) = G(z)C(z)

and is found by ‘cutting the feedback loop open’

Loopgain plays crucial role in feedback:

• transfer function from n to y: 1
1+L (sensitivity function)

• transfer function from r to y: L
1+L (complementary sensitivity

function)

• stability of the feedback loop: Nyquist criterion
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Loopshaping: Nyquist stability criterion

Lu

n

y

r−

Suppose n or r is a sinusoidal function cos(ωt)

Obviously, the signals in the feedback loop grow if a signal
|L| cos(ωt+ � L) is both amplified in the loop and is provide with
the right phase shift.

Amplification means: |L(ω)| > 1, right phase shift means: � L(ω) =
−180 − k360, k = 0,1, . . ..

Nyquist stability criterion checks possibility of the encirclement
of the singularity point L(s) = −1. In that case |S| =

∣∣∣ 1
(1+L)

∣∣∣ = ∞
and closed-loop system is unstable.
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Loopshaping: Nyquist stability criterion

Check of Nyquist stability criterion is done, by plotting the com-
plex function L(jω) or L(ejω) in the complex plane

Example:
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Stable or unstable?
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Loopshaping: Nyquist stability criterion

Instead of plotting real value of L against imaginary value of L,

one can also simply plot the Bode plot:

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

−350

−300

−250

−200

−150

−100

Bode plot gives good indication of stability margins!
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Loopshaping: crossover frequency, amplitude and phase margin
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crossover frequency: smallest frequency where |L| = 1
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Loopshaping: lead/lag compensation

Important question: how to ‘shape the loopgain’?

As L = GC, obviously, the dominant behavior of L is dictated

by our system (or our model) G. With the controller C we can

perform additional shaping.

In general, C is a nth order transfer function (continuous time

or discrete time) and is quite hard to design (2n parameters)

For servo systems, typical (minimal) controller is:

C(s) = K
τ1s + 1

τ2s + 1
or C(z) = K

(1 − a)

(1 − b)
· (z − b)

(z − a)

and called a lead/lag compensator with three design parameters
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Loopshaping: lead/lag compensation

C(s) = K
τ1s + 1

τ2s + 1

Typical Bode plot of C(s) for τ1 > τ2 and K > 0:
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Bode plot for lead/lag compensator with parameters
τ1 = 10, τ2 = 1, K = 1
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Loopshaping: lead/lag compensation

from transfer function of lead/lag compensator

C(s) = K
τ1s + 1

τ2s + 1

we have

τ1s + 1 = 0 ⇒ s = −1/τ1 zero!
τ2s + 1 = 0 ⇒ s = −1/τ2 pole!

C(0) = C(jω), ω = 0 ⇒ C(0) = K

Hence:

• static gain is K

• Amplitude Bode plot increases at cut-off frequency ω = 1/τ1

• Amplitude Bode plot decreases at cut-off frequency ω = 1/τ2

• Maximum phase shift at approximately (1/τ1 + 1/τ2)/2
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Loopshaping: lead/lag compensation

This is confirmed in the Bode plot for lead/lag compensator

C(s) = K
τ1s + 1

τ2s + 1

with parameters τ1 = 10, τ2 = 1, K = 1
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Loopshaping: lead/lag compensation

In general τ1 = 10τ2, so that

C(s) = K
10τs + 1

τs + 1
and design freedom is just two parameters: τ and K

How to design of lead/lag compensator? Choose K and τ to
put the phase advance where you need it! Usually around the
cross over frequency where you need � L > −180 for stability
requirements.

Design can be done in continuous time and converted to discrete
time or directly in discrete time using K, a and b parameters.

For illustration purposes: design simple lead/lag feedback con-
troller to control the position y of a mass m with a force u

(inertial system).
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Loopshaping: lead/lag compensation (example)

Model: m ∂2

∂t2
y(t) = u(t) or y(s) = G(s)u(s) with G(s) = 1/(ms2)

(let’s choose m = 1)

Start with C(s) = 1 → L(s) = G(s), Bode/Nyquist plot:
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Matlab commands: G=tf(1,[1 0 0]);L=1*G;margin(L) and

[re,im]=nyquist(L);plot(re(:),im(:),-1,0,’*’);axis([-2 2 -2 2])
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Loopshaping: lead/lag compensation (example)

Lead/lag compensator will increase phase in specified area. Choos-
ing K = 1 and τ = 1

C(s) = K
10τs + 1

τs + 1

Resulting Bode plot of lead/lag controller C(s)
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Matlab commands: C=tf(1*[10 1],[1 1]);bode(C)
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Loopshaping: lead/lag compensation (example)

Loopgain now L(s) = C(s)G(s) with the resulting Bode/Nyquist:
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Matlab commands: L=C*G;margin(L) and

[re,im]=nyquist(L);plot(re(:),im(:),-1,0,’*’);axis([-2 2 -2 2])

We can still optimize gain K of lead/lag compensator to put
maximum phase advancement at frequency where |L| = 1
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Loopshaping: lead/lag compensation (example)

With choice τ = 1 and K = 0.03 we find loopgain L(s) =
C(s)G(s) with the resulting Bode/Nyquist:
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Matlab commands: C=tf(0.03*[10 1],[1 1]);L=C*G;margin(L) and

[re,im]=nyquist(L);plot(re(:),im(:),-1,0,’*’);axis([-2 2 -2 2])

Stability: O.K., cross-over frequency ≈ 0.2 rad/s
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Loopshaping: lead/lag compensation (example)

Other important function to look at: sensitivity function 1
1+CG

that tells us how much disturbances attenuation we have achieved.
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Matlab commands: S=inv(1+C*G);bode(S)

Disturbances attenuation until approx. the cross-over frequency!
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Final remarks

• Linear I/O dynamical systems can be represented by transfer

function models (be careful w.r.t. numerical conditioning)

• Linear Time Invariant Discrete Time (LTIDT) models are

modeled by difference equations - a linear relationship be-

tween past outputs and past inputs

• Stability of LTIDT models: poles inside unit disk

• Illustration of control design for servo systems: typically

lead/lag controllers needed to enable closed-loop stability

• Closed-loop stability can be checked with frequency domain

tools such as Nyquist Stability criterion, which can be used

for both discrete- and continuous-time systems!

• More complicated control design methods: state-space meth-

ods with observer/state feedback and optimal control design

methods (H2- or H∞- optimization) can also be done on the

models presented in this lecture
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