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Abstract: This paper presents theoretical and experimental results of a newly developed automatic
controller tuning algorithm called Robust Estimation for Automatic Controller Tuning (REACT) to tune
a linear feedback controller to the unknown spectrum of disturbances present in a feedback loop. With
model uncertainty and controller perturbations described in (dual) Youla parametrizations, the REACT
algorithm allows recursive least squares based tuning of a feedback controller in the presence of model
uncertainty to minimize the variance of control performance related signal. It is shown how stability of
the feedback can be maintained during adaptive regulation, while simulation and experimental results
on a mechanical test bed of an active suspension system illustrate the effectiveness of the algorithm for
vibration isolation of periodic disturbances with unknown and varying frequencies.

Keywords: Adaptive Regulation; Model Uncertainty; Vibration Control.

1. INTRODUCTION

Active Vibration Control (AVC) can be powerful tool to sup-
press undesirable mechanically induced disturbances via feed-
back control and applications can be found in structural, me-
chanical and acoustic control, see e.g. R. Fuller et al. (1997);
Preumont (2002); Crocker (2007); Du and Xie (2010). AVC
relies on the controlled emission of vibrational energy via out-
of-phase actuation forces to compensate for external vibrations
and is often a combination of feedforward and feedback com-
pensation of acoustic, accelerometer or motion sensor data. The
exact out-of-phase and amplitude of the actuation forces as a
function of the frequency is crucial for the effectiveness of an
active vibration control solution and often relies on the accurate
formulation of a dynamic model of either the (mechanical or
structural) system or the disturbances.

The use of feedback can alleviate the need to accurately model
the exact phase and amplitude of the actuation forces as a
function of the frequency. A good example is the internal model
principle (Francis and Wonham, 1976) or the more general form
of repetitive control (Tomizuka et al., 1989; Steinbuch, 2002)
that only requires a (finite memory) resonator to compensate
for general periodic disturbances. Feedback compensation of
periodic disturbances can be shown to be equivalent to (adap-
tive) feedforward compensation (Bodson, 2005) under certain
conditions. However, the requirements on maintaining closed-
loop stability in feedback control of periodic disturbances re-
quire model knowledge (Pipeleers et al., 2009) or limitations

on the frequency contents of the feedback compensation (Ahn
et al., 2007).

A further challenge arises when the spectral contents of the
disturbance may change over time. Adaptive solutions for this
problem have been proposed using feedforward control (Du
and Xie, 2010) that rely on linearly parametrized filters with
recursive estimation techniques (de Callafon and Zeng, 2006),
but require additional sensors for disturbance monitoring and
estimation. Adaptive feedback solutions implementations that
use the same estimation principles often separate model estima-
tion from controller tuning (Tokhi and Veres, 2002) to address
closed-loop stability. Unfortunately, additional excitation sig-
nals during adaptation are needed for accurate model estimation
results, while time separation between adaptation and real-time
feedback control is required to guarantee closed-loop stability.

Although subsequent model estimation and controller tuning
can address adaptive vibration control, often the dynamics of
the plant to be controlled is partially known and only the spec-
tral contents of the disturbance changes over time. Such a situa-
tion can be characterized by adaptive regulation (Landau et al.,
2009) and can be addressed by either estimating and scheduling
for the disturbance dynamics (Bohn et al., 2004; Kinney et al.,
2007) or tune the feedback controller directly based on time
domain observations and the partially known dynamics of the
plant to be controlled. The latter approach is the main focus of
this paper and it is shown how our REACT algorithm (Kinney
and de Callafon, 2009) for Robust Estimation for Automatic
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Controller Tuning can be applied to a mechanical test bed of an
active suspension system that requires adaptation of a feedback
controller for multiple periodic disturbances with unknown and
varying frequencies. Using model uncertainty to describe the
(partially) know plant dynamics and controller tuning pertur-
bations described in (dual) Youla parametrizations, the REACT
algorithm allows minimization of the variance of control perfor-
mance related signal while maintaining closed-loop stability.

2. AUTOMATIC CONTROLLER TUNING

To set up the REACT algorithm, we first quantify the limited
knowledge of the plant in the feedback loop via a controller
dependent uncertainty model and then we define the allowable
controller perturbations for adaptive regulation. We start out
with an initial and fixed feedback controller C that is known
to stabilize the (unknown) plant Go. The initial controller C
may be chosen to be zero in case Go is stable, but the initial
controller information is used to describe the uncertainty model
of the plant Go. The initial controller C is a discrete-time
transfer function that admits a (right) coprime factorization
(Zhou et al., 1996) given by C = NcD−1

c and a trivial choice for
a stable controller C is Nc = C, Dc = I. Although the distinction
between left and right coprime factorizations is irrelevant for
single input single output (SISO) applications, we maintain
this distinction throughout the paper as adaptation can also be
formulated for multivariable controllers.

The limited knowledge on the dynamics of the plant G o is
modeled as a nominal model Gx with allowable perturbation
or uncertainty ∆G. The nominal model Gx is a SISO, discrete-
time transfer function that is also (internally) stabilized by the
initial controller C and has a right coprime factorization given
by Gx = NxD−1

x . The right coprime factors (Nc,Dc) of the
controller C and (Nx,Dx) of the nominal model Gx and the
uncertainty ∆G are now used to describe the following set of
plants

Π =
{

G∆ : G∆ = (Nx + Dc∆G)(Dx −Nc∆G)−1, where
∆G ∈ RH∞, ‖∆G‖∞ < 1/γ} (1)

that models limited knowledge on the dynamics of the plant G o.
The uncertainty ∆G is chosen such that Go ∈Π by overbounding
the frequency response of ∆G. The set in (1) now constitutes the
limited knowledge of our plant Go to be controlled. Knowledge
of frequency dependency of ∆G can easily be incorporated in

this set Π by ‖WG∆G‖∞ < 1, where WG,W−1
G ∈ RH∞, but to

simplify notation we simply assume ‖∆G‖∞ < 1/γ.

From (1) it can be observed that we are considering a model
uncertainty that follows dual-Youla parameterization (Douma
et al., 2003) of the plant. As the initial controller C stabilizes
the unknown plant Go, it is easy to verify from the dual-Youla
parametrization that ∆G ∈ RH∞. Notice that if we have no
model uncertainty (∆G = 0), the knowledge on the plant Go is
equal to the nominal model Gx = NxD−1

x .

We consider a disturbance signal d that is modeled as an
additive disturbance on the plant output y via

y(t) = Go(q)u(t)+ d(t) (2)

For adaptive regulation purposes we consider d as a sum of
sinusoids with unknown frequency, magnitude and phase and
the frequency may change abruptly (step wise) with time. It
should be noted that when ω i, i = 1, ...,nd are known constants,
this problem is can be solved with the servocompensator the-
ory developed by Francis and Wonham (1976) or the work by

de Roover et al. (2000). However, in this paper we are con-
sidering the case where the frequencies ω i, i = 1, ...,nd are not
known a priori and will develop a control algorithm to cancel
them automatically via adaptive regulation.

For adaptation of the controller, we consider a perturbed or
tuned controller C∆ given by a standard Youla parametrization

C∆ = NC∆ D−1
C∆

= (Nc + Dx∆C)(Dc −Nx∆C)−1 (3)

where NC∆ and DC∆ indicate the right coprime factors of the
tuned controller. In (3) we use again the right coprime factors
(Nx,Dx) of the nominal model Gx and the right coprime factors
(Nc,Dc) of the initial controller in C, similarly as in (1). The
controller perturbation ∆C is used to improve controller per-
formance using adaptive regulation while maintaining robust
stability in the presence of ∆G. Notice that if ∆C = 0, then the
perturbed controller is equal to the initial fixed C = NcD−1

c .

The reason we resort to the Youla parametrization in (3) is to
guarantee internal stability of the feedback connection of the
nominal model Gx and the perturbed controller C∆ by requiring
the Youla parameter ∆C ∈ RH∞ (to be stable). In presence
of model uncertainty ∆G ∈ RH∞ and thus limited knowledge
of the plant Go dynamic with Go ∈ Π, ∆C ∈ RH∞ does not
suffice to guarantee stability of the feedback connection of the
plant Go and the perturbed controller C∆. However, by using
the small gain theorem (Van der Schaft, 1996; Zhou et al.,
1996) and ‖∆G‖∞ < 1/γ it is easily shown that if ‖∆C‖∞ ≤ γ
then the closed loop system of Go and C∆ is internally stable
(Douma et al., 2003; Kinney, 2009). Using a frequency weight-
ing WG to bound the model uncertainty ‖WG∆G‖∞ < 1 leads to

‖W−1
G ∆C‖∞ < 1. Thus, any method that is used to determine

the controller perturbation ∆C should uphold a frequency de-
pendent bound to ensure closed-loop internal stability during
adaptive regulation.

3. ADAPTIVE ALGORITHM

As mentioned in the previous section, the controller is tuned by
finding a Youla parameter ∆C to improve performance while
maintaining closed-loop stability. For simplicity and easy of
implementation the perturbation ∆C is chosen to be a discrete-
time Finite Impulse Response (FIR) filter given by

∆C(q,ψ) =
Nθ

∑
k=1

ψ(k)q−k, ψ(k) ∈ R (4)

where q is the time-shift operator. The choice for the parametriza-
tion (4) ensures ∆C(q,ψ) ∈ RH∞ ∀ψ(k) ∈ R. It should be noted

that the choice of an FIR filter parametrization using q−k as
a basis function can be generalized to a parametrization with
rational orthogonal basis functions (Heuberger et al., 2005)
while still ∆C(q,ψ) ∈ RH∞. For notational brevity we will use
∆C(ψ) and drop the time-shift argument q in the following.

To estimate the real-valued parameters ψ in (4) one can use
Recursive Least Squares (RLS) or Least Mean Squares (LMS)
estimation techniques that also allow the minimization of the
variance of control performance related error signal e(t). The
equation that relates this error e, the additive output disturbance
d and a reference signal r on the output y is given by

e(t,ψ) = DC∆(ψ)(DC∆(ψ)+ G∆NC∆(ψ))−1(G∆d(t)+ r(t))

where we used the coprime factors NC∆(ψ) and DC∆(ψ) of
C∆(ψ) similar to (3) and G∆ as defined by the model set Π in
(1).
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Using a (left) coprime factorization C = D̃−1
c Ñc of the initial

controller C and the (right) coprime factorization G x = NxD−1
x

of the nominal model we can define

Λ0 = D̃cDx + ÑcNx

and Λ0,Λ
−1
0 ∈ RH∞ as the initial controller C internally stabi-

lizes the nominal model Gx. By defining η(t,ψ) as

η(t,ψ) = Λ−1
o Dxe(t,ψ)+ Λ−1

o Nxyc(t,ψ), (5)

where yc(t,ψ) = C∆(q)(r(t)− y(t)) is the output signal of the
adapted feedback controller as defined by (3) and (4), the error
signal e(t,ψ) can be rewritten as

e(t,ψ) = (Dc −Nx∆C(ψ))η(t,ψ) (6)

showing the (quasi) affine relation of the error signal e(t,ψ) as
a function of the linearly parameterized ∆C(ψ) in (4) and the
signal η(t,ψ). Due to the (quasi) affine relationship, minimiz-
ing of the two-norm of e(t,ψ) over ψ would require a nonlinear
optimization and would limit real-time implementation due to
computational resources.

Instead, we simplify the computation by temporarily fixing the
parameter ψ for the signal η(t,ψ). We now define ε(t,θ,ψ) as

ε(t,θ,ψ) = (Dc −Nx∆C(θ))η(t,ψ) (7)

that separates the currently adapted controller C(ψ) imple-
mented on the plant and generating the signal η(t,ψ) in (5)
from the newly adapted controller C(θ) to be computed. It is
clear that ε(t,ψ,ψ) = e(t,ψ) and small changes between ψ
and θ during adaptation maintain this relation. For the actual
computation of θ we employ a minimization of the two-norm of
ε(t,θ,ψ) as function of the linearly paramterized ∆C(θ) similar
to (4) and is an affine optimization for which we can formulate
recursive solutions as the data η(t,ψ) in (5) becomes available.

3.1 LMS updates

The two-norm of ε(t,θ,ψ) in (7) as a function of the linearly
parametrized ∆C(θ) is formulated as

min
θ∈RNθ

V (θ,ψ) =
|ε(t,θ,ψ)|2

2
+ λ

θT θ

2

where the second (regularization) term with weighting λ can be
used to limit the change in the parameter θ. The regularization
is useful in light of the error term ε(t,θ,ψ) in (7) that will
resemble e(t,ψ) in (6) for small changes between the currently
implemented controller and the newly updated controller. The
gradient of V (θ,ψ) with respect to θ is given by

∂V (θ)

∂θ
= ε(t,θ,ψ)

∂ε(t,θ,ψ)

∂θ
+ λθ

= −ε(t,θ,ψ)X f (t)+ λθ,

where X f (t)= [x f (t−1) . . . x f (t−Nθ)]
T and x f (t)= Nxη(t,ψ).

To formulate a recursive solution for each time step t, consider
the update equation for θ given by

θt = θt−1 −µ
∂V(θ)

∂θ
= θt−1(1−µλ)+ µε(t,θ,ψ)X f (t) ,

where µ denotes the step size and boils down to a filtered
reference leaky Least Mean Squares (LMS) algorithm (Haykin,
2002). Additionally, normalizing the algorithm is possible with

θt = θt−1(1−µλ)+
µ

δ+ X f (t)T X f (t)
ε(t,θ,ψ)X f (t) ,

which gives a filtered reference Leaky-NLMS algorithm to
update θ (Haykin, 2002).

3.2 RLS updates

Next to the LMS updates, we can recursively minimize the
two-norm of ε(t,θ,ψ) in (7) as a function of the linearly
parametrized ∆C(θ) via Recursive Least Squares minimization.
RLS estimation gives in general a faster rate of convergence and
the algorithm can be considered as a special case of Kalman
filtering where the variance σ of the measurement noise is
normalized to σ = 1 and the state covariance noise matrix Q = 0
(Haykin, 2002).

Using the general formulation of the Kalman filter to update the
parameter estimate θ at each time step t we find

θt = θt−1 + ε(t,θ,ψ)G(t)

where ε(t,θ,ψ) is updated via

ε(t,θ,ψ) = Dcη(t,ψ)− ε(t −1,θ)T R

in which

G(t) =
P(t −1)R

σ+ RT P(t −1)R
R = [R(t −1) R(t −2) · · · R(t −Nθ)]

R(t) = Nxη(t,ψ)

and P(t) is found via an iterative update of the state covariance
matrix

P(t) = P(t −1)− P(t −1)RRT P(t −1)

σ+ RT P(t −1)R
+ qINθ×Nθ .

The equivalent measurement noise variance σ and equivalent
state covariance noise matrix Q = qINθ×Nθ in the above algo-
rithm can be adjusted to modify the convergence rate of the
RLS algorithm (Haykin, 2002).

3.3 Bounding and Filtering of Parameter Estimate

Once a parameter estimate θ is found by recursive LMS or
RLS updates θt at each time step, implementation of a newly
adapted controller C(θ) is done by first bounding and filtering
the recursive parameter estimate θt . Direct implementation
of ∆C(θt ) at each time step might invalidate the small gain
condition ‖∆C(θt )‖∞ ≤ γ, whereas fast time fluctuations of
C(θt) might cause instabilities due to the (fast) time varying
nature of the feedback loop. Instead, we will implement C(ψ t),
where ψt will be a bounded and filtered version of θ t .

Before implementing the controller parameters ψ t , a bound on
∆C(ψ) must be enforced to maintain stability robustness. It was
shown in (Kinney and de Callafon, 2009; Kinney, 2009) that if

‖ψ‖2 ≤
γ√
Nθ

(8)

then

‖∆C(ψ)‖∞ ≤ γ (9)

for any fixed value ψ = ψt . Based on this result, we will
constrain the parameters ψ to the set

S =

{

ψ : ‖ψ‖2 ≤
γ√
Nθ

}

.

It was also shown in (Kinney and de Callafon, 2009; Kinney,
2009) that low-pass filtering will improve the convergence of
the adaptive algorithm. Specifically, if we use the bound on
‖ψ‖2 in (8) then the fluctuations in ψt may be fast, while still
maintaining robust stability. If we use the bound on ‖∆C‖∞ in
(9), then the fluctuations in ψt must be slow to ensure stability.
This is because the bound (8) is more conservative than (9).
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However, in both cases low-pass filtering is needed to ensure
that θt converges to the correct value, whereas low-pass filtering
is not needed when ∆G = 0. With

θ̄t =
γ√
Nθ

· θt

‖θt‖2

and using simple first order filtering on the parameter estimates
θt , the algorithm for updating the actual controller parameter ψ t

via the Youla parametrization

C∆(ψt) = (Nc + Dx∆C(ψt))(Dc −Nx∆C(ψt))
−1

∆C(ψt) =
Nθ

∑
k=1

ψt(k)q
−k, ψt(k) ∈ R

(10)

can now be written as

ψt =

{

ψt−1 − ε(ψt−1 −θt) if ‖θt‖2 <
γ√
Nθ

ψk−1 − ε(ψk−1 − θ̄) otherwise

in which ε is a pole location for parameter filtering.

4. APPLICATION TO VIBRATION ISOLATION

To demonstrate the REACT algorithm, it will applied to a
mechanical test bed of an active suspension system located at
the GIPSA-lab in Grenoble, France.

Fig. 1. Overview of mechanical test bed for vibration isolation

The test bed has two actuators that can generate forces and
vibrations that are measured by a residual force sensor, as in-
dicated in Fig. 1. The primary actuator is a conventional shaker
that allows the creation of the (artificial) vibration disturbances
d(t) in (11), whereas the secondary actuator is an inertial actua-
tor that allows the creation of controlled forces via a Voice Coil
Motor to actively suppress vibration disturbances. The require-
ment would be to suppress unknown harmonic disturbances in
the frequency range between 50 and 100Hz at different levels
of complexity (multiple simultaneous harmonic disturbances).
Frequency response data from the mechanical test bed is used to
create a nominal model Gx of the secondary path (secondary ac-
tuator to residual force sensor), an initial stabilizing controller
C and a quantification of the model uncertainty ∆G to formulate
the set of model Π in (1) to quantify the incomplete knowledge
of the ‘true’ plant Go to be controlled.

4.1 Nominal model estimation

Based on the requirement of being able to suppress unknown
harmonic disturbances in the frequency range between 50 and
100Hz at different levels of complexity (multiple simultaneous
harmonic disturbances), we anticipate controller perturbations
∆C(ψt) in (10) during tuning in the same frequency range.
Furthermore, the requirement of stability robustness based on

the model uncertainty ∆G in (1) bounded by ‖WG∆G‖∞ <

1 requires ‖W−1
G ∆C‖∞ ≤ 1 putting immediate restrictions on

the size of the model uncertainty ∆G in the frequency range
between 50 and 100Hz.
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Fig. 2. Amplitude (top) and phase (bottom) Bode response
of frequency domain data of secondary path (solid) and
estimated sixth order discrete-time model Gx.

Given a frequency response Go(ω) of the plant Go, a nominal
model Gx and an initial controller C that stabilizes both Go

and Gx, the model perturbation ∆G(ω) in (1) can be computed
frequency point wise via

∆G(ω) = D−1
c (ω)(1+ Go(ω)C(ω))−1(Go(ω)−Gx(ω))Dx(ω)

where Dc and Dx are found from the right coprime factor-
ization of C and Gx respectively. From the above expression
it can be observed that the model uncertainty is shaped by
the additive difference between Go and Gx, weighted by the
closed-loop sensitivity function (1 + GoC)−1 and the (inverse)
of the coprime factors Dc and Dx. Since the dynamics Go of
the mechanical test bed and the model Gx are both inherently
stable, the initial controller is simply chosen as C = 0 and
Nc = 0, Dc = 1. Furthermore, with Gx a stable model, we can
simply choose Nx = Gx and Dx = 1 reducing the closed-loop
weighted uncertainty ∆G to a straightforward additive uncer-
tainty ∆G(ω) = (Go(ω) − Gx(ω)). It should be noted that a
more carefully chosen initial controller C can reduce the effect
of the uncertainty ∆G(ω) in the frequency range for adaptive
regulation.

To obtain a nominal model Gx, we use standard (iterative) least-
squares curve fitting on the frequency response data G o(ω),
stressing the need to find a low complexity model Gx with a
small additive error in the frequency range between 50 and
100Hz. The Bode response of the resulting model has been
depicted in Fig. 2 and in the frequency range of interested we
find a model error bound 1/γ ≈ 0.2232, requiring us choose
γ≈ 4.5 to bound the controller parameter estimates to guarantee
stability robustness during adaptive regulation.

4.2 Simulation Results

The adaptive regulation capabilities of REACT for harmonic
disturbances is first demonstrated via a simulation study in
which different levels of complexity (multiple simultaneous

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

5404



harmonic disturbances) are used. The different levels of com-
plexity used in our simulation study are summarized in Table 1
and involves the application of a harmonic disturbance

dn(t) =
n

∑
k=1

Ak sin(2π fkt + φk) (11)

where the number n of harmonics is equivalent to the com-
plexity level n. In our simulation results, the disturbance d n(t)
in (11) starts at t = 5 sec and the frequencies f k in Herz un-
dergo step wise changes every 3 seconds by cyclically rotating
through the numerical values of f k, k = 1, . . . ,n listed in the
columns of Table 1.

level frequencies [Hz]

n = 1 f1 = 75 f1 = 85 f1 = 65

n = 2
f1 = 75 f1 = 85 f1 = 65

f2 = 105 f2 = 100 f2 = 90

n = 3

f1 = 75 f1 = 85 f1 = 65

f2 = 105 f2 = 100 f2 = 90

f3 = 85 f3 = 80 f3 = 70

Table 1. Frequency of harmonic disturbances for
different level n of complexity. Sequence of step-
wise changes in the frequency follow the numeri-

cal values listed in column 1, 2, 1, 3 and 1.

The harmonic disturbance dn(t) in (11) is passed through the
primary path of the active vibration control system. To limit
the real-time computations, a model of the primary path is not
used in our algorithm and the amplitude A k, frequency fk and
phase φk are unknown to the adaptation algorithm. Obviously,
using a model of the primary path could further improve the
results summarized here. For the recursive estimation of the
parameters θt of the Youla parameter ∆C(θt ) we use Nθ = 26
tapped delays in the FIR filter and the Kalman filter-based
RLS algorithm explained in Section 3.2 using an equivalent
measurement noise variance σ = 1000 and an equivalent state
covariance noise matrix Q = 0.1 · I26×26 for relative fast con-
vergence results. The number Nθ = 26 of FIR filter coefficients
is chosen as a trade-off between handling multiple harmonics
in adaptive regulation, computational complexity and variance
of the parameter estimates. For the bounding and filtering of
the recursive parameter estimate θt as explained in Section 3.3
we choose a norm γ = 4 to satisfy the robust stability require-
ment and a first order filter coefficient ε = 0.4 to smoothen the
recursive parameter estimate θt .

An overview of the REACT simulation results based on the
above mentioned numerical values is plotted in Fig. 3. For
each level n indicated in Table 1, the output of the vibration
control system (residual force) without control is plotted in a
dotted (green) line for comparison purposes. It can be observed
that the REACT algorithm based on RLS estimation of the
controller parameters converges relatively fast whenever step
changes in the frequency of the disturbance d n(t) occur. Con-
vergence depends on the size of the step in the frequency, the
actual frequency and number of frequencies (n = 1,2 or 3) in
the disturbance, but in most cases the output of the vibration
control system is brought back down to the noise level of the
force sensor.

4.3 Experimental Results

For the experimental verification of the REACT algorithm on
the actual mechanical test bed of an active suspension, only the
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Fig. 3. Overview of level 1 (top), level 2 (middle) and level
3 (bottom) REACT simulation results for the mechanical
test bed of an active suspension system using step-wise
changes in multi-harmonic disturbance with frequencies
listed in Table 1. The light (green) dotted lines indicate
without control, and the (red) solid line indicate the situa-
tion with the REACT controller for adaptive regulation.

level 1 (single harmonic disturbance) was tested. Experimental
results consisted of step-wise application of single harmonic
disturbances with a frequency ranging from 45 Hz to 105 Hz
in steps of 5 Hz. The REACT adaptation algorithm was able
to control all harmonic disturbances in this frequency range
with a typical converge ranging from 0.1 second to 1 second.
Due to the space limitations of this paper, some of the typical
results at the extremes of 50 Hz and 100 Hz and an interesting
(temporary) burst phenomena for an 85 Hz has been depicted
in Fig. 4. The temporary burst phenomena is most likely caused
by the limited resolution of the small residual force sensor
after adaptation and/or stick and friction effects of the active
suspension system.
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Fig. 4. Experimental results for 50 Hz (top), 85 Hz (middle)
and 100 Hz disturbance (bottom). The light (green) dotted
lines indicate without control, and the (red) solid lines
indicate the situation with the REACT controller.
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Adaptation and convergence for consecutive step changes in
the frequencies of the single harmonic disturbances proved to
be harder for the REACT algorithm than originally anticipated
from the simulation results in Fig. 3. Nevertheless, the algo-
rithm was able to maintain stability robustness and adaptively
regulate all step-wise changes in the frequencies of the distur-
bance to an acceptable level, as indicated by the results in Fig. 5.
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Fig. 5. Experimental results for cyclical step wise changes in
the frequency of the single harmonic disturbance. Top: 55,
65 and 45 Hz, middle: 75, 85 and 65 Hz and bottom: 95,
105 and 85 Hz.

5. CONCLUSIONS

The REACT algorithm for Robust Estimation for Automatic
Controller Tuning is successfully demonstrated for a vibration
control problem in a mechanical test bed of an active suspen-
sion system. Periodic disturbances with unknown and varying
frequencies have been regulated adaptively by REACT. With
model uncertainty and controller perturbations described in
(dual) Youla parametrizations and a Recursive Least Squares
estimation algorithm with a bound on the parameter size deter-
mined by the model uncertainty, the REACT algorithm allows
tuning of a feedback controller in the presence of model uncer-
tainty to minimize the variance of control performance related
signal. With simulations and experimental results it is shown
how stability of the feedback is maintained during adaptive
regulation and how REACT is able to reduce the harmonic
vibrations for different levels of complexity.
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