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Abstract: An input shaping algorithm based on convex optimization techniques is presented
for closed-loop discrete-time linear time-invariant (L'TI) systems where closed-loop signals are
subject to linear constraints. As an illustrative example the seeking process in a Hard Disk
Drive is investigated. The closed-loop system responses to both shaped and non-shaped inputs

are compared.

1. INTRODUCTION

For linear time-invariant (L'TT) systems that are subject to
a change from an initial state to a target state, input shap-
ing is a powerful technique to reduce residual vibrations
in those systems as shown by Singer and Seering (1990).
The targeting trajectory can be further optimized (e.g.
minimize targeting time or energy consumption) through
convex optimization techniques. Those techniques have
been widely applied to these problems since they guaranty
the convergence to a global optimum. In addition, the
recent increase in computational power in control systems
justifies their increasing complexity. A broad overview of
real-time or nearly real-time applications has been given
by Mattingley and Boyd (2010).
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Fig. 1. Closed loop LTI system

Input shaping is usually formulated as an open-loop prob-
lem where linear constraints on input and output signals
are imposed to formulate a convex optimization problem
to find optimal and possible minimal time input profiles.
Commonly, finite impulse response (FIR) filters are used
to pre-filter input signals as e.g. shown by Pao (1999) for
MIMO systems in continuous time and for discrete time
systems by Baumgart and Pao (2007).

Some closed-loop approaches are given by Kapila et al.
(2000) where input shaping based on FIR filters is also ap-
plied to closed-loop systems. Another approach to closed-
loop input shaping is the shaped time-optimal servomech-
anism (STOS) that has been developed by Pao and La-
orpacharapan (2004) for continuous time systems. Here,
mode switching control turns off the feedback during the
targeting stage. Kogiso and Hirata (2009) show the refer-
ence signal generation for constrained closed-loop systems
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based on piecewise affine functions of state and reference
vector. In (Sugie and Yamamoto (2001)) and (Suzuki and
Sugie (2008)), the reference signal generation is shown for
a closed-loop system although time-minimal control is not
addressed.

Limited results are available on performing input shaping
on closed-loop systems where reference and feedforward
signals are computed in the presence of constraints on
control and output signals. The computation of optimal
reference profiles in closed-loop systems has direct appli-
cation in high performance servo systems where short-time
tracking of set-point values is required.

In this paper, we show an input shaping technique for
closed-loop multi-input multi-output (MIMO) LTT sys-
tems that use full degree-of-freedom control such as the one
shown in Fig. 1. The developed algorithm computes the
optimal reference signals u, and u; given linear constraints
on the output signal ys, the plant control signal ug and
the reference signals u, and wuy.

2. DEFINING THE SYSTEM
2.1 Specifications of closed-loop signals

We consider an LTI model of the plant G in Fig.1 with p
inputs and m outputs of order ng and an LTI model of
the controller C' with p outputs and m inputs of order n¢.
The state space model of G is given by

za(k +1) = Az (k) + Balur(k) +yc(k) )
ya(k) = Coza(k) + Da(up(k) + yo(k))

and the feedback connection is given by

ze(k + 1) = Acac(k) + Bo(ur (k) —ya(R) o)
yo(k) = Cozo(k) + De(ur(k) — ya (k)

In order to specify constraints to the plant input, ug and
the rate of change dug must be available as outputs of
the closed-loop state-space system as indicated in Fig. 1.
Therefore, we add p states to the closed-loop model and
define a measurement state vector s

ey (k+1) = ug(k) = yo (k) +ur (k) (3)

Copyright © 2010 IFAC



Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

and

ug(k —1) =z (k) (4)

We can now define the two additional outputs of our
closed-loop system

UG(]{?)
duc(k)

yo (k) +us(k)
ug(k) —ug(k —1)

(5)

Furthermore, we define the input vector u(k) € R(m+p)x1,
the output vector y(k) € R(™+2P)*1 and the state space
vector z(k) € R(retnetp)xl a4

u yG e
u(k) = (uf) » y(k) = ((;;GG) » a(k) = (i;) (6)

Here, u, (k) and us(k) are the computed reference signals.

Using (1)-(6) we can define the state space system of the
closed loop system as

z(k+1) = Az(k) + Bu(k)
y(k) = Calk) + Dulk) (7)

where the state space matrices are calculated by

A¢ — BeMDgCe —BcMCe 0
A= |BeCo — BeDecMDgCo A — BeDeMCq 0
Co — DeMDaCo —DcMCq 0
Be — BeMDgDe —BeMDg
B = | BeD¢ — BaDeMDeDe Be — BaDoMDg

Dec — DcMDgDe —DecMDeg + 1

(8)

MDgCo MCq 0

C= |:CC — DecMDgCe —DecMCq 0
Coc —DecMDgCe —DecMCq —1

MD¢De MD¢
D= [Dc — DeMDgDe I — DCMDG}
D¢ — DeMDgDe I — DeMDe

In (8), M is defined as

M = (I + DgDc) ™ (9)
The inverse in (9) can be calculated for a well-defined
closed-loop system with DgDeo # —I. In practical ap-

plications most plants will have at least one sample time
delay with Dg = 0 making M = I.

2.2 FExplicit solution of the closed-loop system

The output y combines the plant output yg, the plant
input ug and its rate of change dug on which constraints
will be imposed. For writing the linear constraints we
use (7) and follow Goodwin et al. (2005) (but including
the feed-through term D) to write the output equations
recursively as
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y(0) = Cz(0) + Du(0)
y(1) = CAz(0) + CBu(0) + Du(1)
y(2) = CA%2(0) + CABu(0) + CBu(1) + Du(2)

M
y(M) = CAMz(0) + > CAM'Bu(i — 1)

=1

+Dus
M
y(M +1) = CAMH2(0) + > CAMP = Bu(i—1)  (10)
i=1
+Dug + CBug
M
y(N —1) = CAN'2(0) + > CAN ="' Bu(i — 1)+
NfMj‘l:1

+Du,+ » CA™'Bu,

i=1

where M is the control horizon and N is the optimization
horizon. Here, u, defines the residual reference signal after
the control horizon which needs to be set to a constant
value. An obvious choice is 4, = Yarget and uy = 0 for
kE > M. We can now rewrite (10) conveniently in matrix
notation by defining ¥ as

r D 0 0 - 0 7
CB D 0 - 0
CAB CB D ... 0
v = |CcAM2p cAM=3B ... D (11)
CAM~'B cAM—?B CB
cAMB cAM'B CAB
LCAN?B cANPB ... CANTMIB
Furthermore, we define Q, y and A as
¢ y(0)
52142 y(1)
CANT! y(N—1)
- 0 -
: (12)
0
Dug
A= Dug + CBug
N-M-1 ‘
Dug + Z CA'" ! Bu,
L =1 J
Now, we can rewrite (10) as
y=%u+ Qz(0)+ A (13)
—_————
q
where the vector u contains the input signals
u=[u(0), - u(M - 1) (14)
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Fig. 2. Definition of the output constraints

and the vector y contains the output signals for each
time step k. Each element itself will be a vector of size
(m+p) x 1, respectively. In (13) the explicit input-output
relation is linear in u. We shall now proceed to specify the
constraints and the optimization routine for input shaping.

3. CONVEX OPTIMIZATION

For a comprehensive overview of convex optimization tech-
niques the reader is referred to Boyd and Vandenberghe
(2004). In this paper a specific solution to the closed-loop
problem will be given for constraining the signals in (6).

3.1 Constraints on the closed-loop signals

As indicated in Fig.1, the output y captures all of the
relevant closed-loop signals. It contains not only the out-
put of the plant yg but also the plant input ug and its
rate of change duq. In defining constraints on closed-loop
signals we refer to the constraints on the output y =
(ye,ug, 6uG)T in which we distinguish between different
signals. The plant output y¢ is subject to two different am-
plitude constraints as indicated in Fig.2. One constraint
is a large amplitude constraint during the targeting stage.
We define this constraint by ¥1 max and y1 min, respectively.
Once the target is reached, a tolerance € of the output from
the desired target is specified by

Y2,min = Ytarget — € < Yy < Y2, max = Ytarget + € (15)

creating a tight amplitude constraint during the settling
stage. In Fig. 2, k* denotes the number of samples to reach
the target. For all sample numbers k < k* the targeting
output constraints apply, while for all sample numbers
k > k* the settling stage (and finally steady state) output
constraints apply. Choosing a minimal value for £* would
amount to finding a minimal time solution. We will later
use a line search over k£* to find the minimal time solution.
For now, £* is assumed to be given.

In matrix notation the output constraints can be written
as

Ymin(k*) < Yu + q < Ymax(k*) (18)
where Ymax and ymin are defined by
[ Y1,max | [ Y1,min |
UG, max UG, min
5quLax 6UG,min
ymax(k*) = ) len(k*) = (19)
y2,mam y2,min
UG, mazx UG, min
L 6“G,maz i L 5UG,min ]

3.2 Constraints on reference signals

The reference signals u, and us in Fig.1 are captured in
the input signal v in (7) and (14). By imposing constraints
on u we are now referring to the constraints on the
reference inputs w, and wuy. The reference signals are
limited by an amplitude constraint

Umin S u < Umax (20)
whereas a rate constraint
6umin < du S 5umax (21)
can also be included in our approach, where
Umax = [umawa sy Umag ]T (22)
5umax = [éu’mazv e aéumaw ]T (23)
We note that umin and dumin are defined similarly.
A reference change is defined by
ou(k) = u(k) — u(k — 1) (24)
for each k € [0, - - -, M —1]. In matrix notation we calculate
éu by
ou=Eu (25)
where E is given by
Inip O . 0
_ I . 0
m+ m-+
E= pom (26)
0 o T imap Im+p

and 1,4, represents a (m + p) x (m + p) identity matrix.
3.3 Combined Constraint in Linear Form

All the constraints in (18), (20), (21) and (25) can be
combined in one single linear matrix inequality (LMI):

I Umax 0
Furthermore, we specify constraints on the plant input I e 0
. . . . u(O) Umin
ug. We consider amplitude constraints on the input. In E o 0
addition, the maximum rate of change of the input signal _E < Ui | 0 (27)
is limited which is commonly introduced through rate T u(M —1) Vimax (k) q
limitations in digital-to-analog conversion. In summary, we v ~Vmin (5 _
. . min q
define amplitude and rate constraints as
ug S UG, mazx 6UG < éuG,mam (16) or short
L. Lu<W(k*)—-Q (28)
and similarly
ug 2 UG, min = —ug S —UQG,min 17 In (27)7 Tis an (m + p)M X (m + p)M ldentlty matriX7
—oug < —0uU@,min A7) and @ i given in (11). In (27) and (28) the term Q
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Find k* i, using
feasibility check (LP) and bisection

g <

additional
optimization QP

(e.8. min”uGHz ) E> compute u, and ug

based on k* ..

compute u, and ug
*
based on k* ..

time-optimal
solution {not unique)

=

unique time-optimal
solution

Fig. 3. Optimization algorithm

with ¢ = Qx(0) + A represents the effect of initial and
residual conditions. It should be noted that W depends
on the choice of £* in Fig. 2. The additional freedom in k*
will be used to check for a feasible solution of the input
shaping problem and to formulate a minimal time solution
for settling.

3.4 Feasibility check for time-optimal solution

We can check whether or not the constraints are feasible
for a given k* by solving the following linear program (LP)
(Nocedal and Wright (1999); Stamnes and de Callafon
(2007)):
min 17z
U3
Lu—-z<W(k")—Q
z >0

subject to 9)

If z = 0 is the optimal solution then the inequality (28) is

feasible, otherwise infeasible. In (29) 1 = [1,---, 1]T
column vector of ones.

is a

In order to obtain the time-optimal solution we solve the
LP in (29) several times for different values of k*. We
use a bisection method (Boyd and Vandenberghe (2004))
that results in quadratic convergence to find the minimum
sample number k. (where 1 <k . < M) for a feasible
set of constraints. This represents a time-optimal solution
to the problem which is not unique. Further optimization
in the form of quadratic programming (QP) as indicated
in Fig. 3 and described in the next subsection is needed to
obtain a unique solution.

3.5 Quadratic programming

The time-optimal (or better time-minimal) trajectory is
not always desired. Depending on the application, other
parameters might be more important such as e.g. energy
consumption. To further improve the energy properties of
the signals in the input shaping problem one can pose
a quadratic criterion involving both y and u given the
constraints in (27) and (28). Knowing that a particular
value for k* is able to give a feasible solution from the
LP problem in (29), a further refinement of this solution
can be found by solving the Quadratic Programming (QP)
problem

min y'TPly’ + uTqu

w,y
subject to

Lu < W(k') - Q (30)

y' =8 (%u+q)

where Py and P2 are semi-positive definite matrices with
dimensions of y’ and u, respectively. With Py > 0 and
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slider and read/write head

Fig. 4. Main components of a hard disk drive

P5 > 0, the QP problem is convex. The QP in (30) consists
of a quadratic cost function, an inequality constraint linear
in u and and equality constraint linear in u and y’.

The introduction of the additional variable y’ and the
equality constraint is necessary in order to define con-
straints on ug. This increases the complexity of the prob-
lem. To keep the variable size of y’ at a minimum, we
reduce the original size of y € R™20)x1 to y/ ¢ RPX1
under the assumption that we want to minimize ug. This
is done by multiplying the equality constraint in (30) by
the selection matrix S.

For our particular arrangement defined in (6), we can
define the elements of S as
lforr=kp+i, c=k(m+2p)+m+i
{ kel0,---,N—-1], i€[l,---,p]
0 elsewhere

(31)

Sr,c =

where r and c¢ are referred as row and column index of S,
respectively. The QP in (30) represents only one possible
optimization objective, although a very relevant one but
there are many other possible objectives. We will now show
the effectiveness of the proposed optimization routine by
means of an illustrative example.

4. SIMULATION EXAMPLE
4.1 Problem description

We consider the seeking process in a Hard Disk Drive
(HDD) as an example. Figure 4 shows the main compo-
nents of a HDD. The data are stored in circumferential
tracks on the disk and the slider with the read/write
element is positioned in the radial direction (yg) to
read/write from different tracks. This process is referred as
”seeking” . The servo actuator in a HDD is a voice coil mo-
tor (VCM) that incorporates a double integrator behavior
with a low frequency spring (due to pivot-friction) and a
set of high frequency resonance modes. For simplification
we only assume one main resonance mode at 2kHz and a
well damped low frequency resonance mode at 1 Hz. The
transfer function of the actuator is given in continuous
time by

2
K,w?
G = —_t 32
}:11 s2 +25iwis+wf (923
= 2711

with K1 = 1, Ky = 10%, w; L wy = 2720001,
01 =1, 82 = 0.01. The system is converted to discrete time
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Fig. 5. Amplitude plot of closed-loop transfer function and
sensitivity function for both controllers

using zero order hold (ZOH) with a sampling frequency of
40 kHz.

A simple PID controller with high frequency roll-off was
designed in discrete-time. The amplitude plots of closed-
loop transfer function from reference input to output
and the sensitivity function (error rejection function) are
shown in Fig. 5. The discrete-time controller is given by

3.3496(z — 0.9925)2

¢= (z— 1)(z — 0.9252)(z — 0.7623)

(33)

In this simulation example the feed through-terms of both
the controller and the plant are zero, and we consider zero
initial conditions (x(0) = 0). Three interesting situations
that will be explained in the following subsections are
investigated:

(1) Small step on desired actuator position

(2) Large step on desired actuator position and "rela-
tively loose bounds” on yg

(3) Large step on desired actuator position and "rela-
tively tight bounds” on yg

In all three cases we only assume constraints on ug
and dug in addition to the constraints on yg. We solve
the QP according to (30) with P; and Py being the
identity matrix, respectively. When only using feedback
and a step-wise change of wu,, the small step on the
desired actuator position does not use the full range
available within actuator saturation that can be exploited
by input shaping. The large steps on the desired actuator
position will saturate the actuator input. Input shaping
can alleviate this problem. The values of the constraints
are: UG mazx = 10V7 5uG,maz = 5V7 Yi,mazx = 2ytarget
and UG,min = —UG,maz> §UG,min = _&UG,maza Y1,min =
—Y1,maz- All other values are specific to the particular case
and summarized in Tab. 1.

4.2 Case 1: Small step (no actuator saturation)

We simulated a short-distance seek of 1 track using our
designed controller C. The constraints were set to be
within 10% of the track-pitch which is usually the allowed
margin in order to avoid read/write errors. The results
are shown in Fig.6 (gray dashed line). The response is
relatively slow and has a considerably high overshoot. This
is expected after looking at Fig.5 that suggests that the
closed-loop bandwidth is arround 300 Hz. The plant input

204

10 T T T —u, and U shaped [
= 0 S ey shaped and ui=0 L
o u=target and u'=0
-10 Il Il Il 1 L
0

r

u_[track]
o
?V
|
1
1
1
1
1
1
1
1
1
]
1
]
]
1
1
1
1
1
1
1
1
1
1
1
]
1
]
1
1
1

time [ms]

Fig. 6. Case 1: Small step on desired actuator position
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Fig. 7. Case 2: Large step on desired actuator position with
actuator saturation

signal ug is well below the constraint of 10 V. Using the
input shaping technique described in sections 2 and 3 we
compute the time-minimal input signal with minimized
control effort given the constraints defined in 4.7 and
Tab.1. The dash-dotted line in Fig.6 denotes the case
where only u, is used and the solid line shows the case
where full degree-of-freedom (DOF) control is applied (u,.
and uy). Below, we will refer to those three situations
as the 0DOF, 1DOF and 2DOF case, respectively. The
difference between 1DOF and 2DOF is not very large
(1 sample); however, they are both much faster than the
0DOF case as they use ug to full capacity. The vibrations
(within the specified constraints) observed in the output
signal correspond to the 2nd resonance mode at 2 kHz and
could be lowerd by tightening the constraints on ug at the
expense of a potentially longer seek time.

4.8 Case 2: Large step (actuator saturation)

We now look at a larger step of 200 tracks (Fig. 7) which in
general leads to the saturation of ug. The 0 DOF case (no
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Fig. 8. Case 3: Large step on desired actuator position with
tight bounds on yg

input shaping) has a considerably larger seek time than the
1DOF and 2DOF case. The difference in terms of speed
between 1 DOF and 2DOF is slightly larger (5 samples)
than in the previous case but is still comparably small. We
note that in this simulation € was adjusted according to
the increase in yiqrger. Intuitively, this is expected for many
positioning systems: The operating range determines the
positioning precision. Unfortunately, this is not the case
for HDDs as the positioning accuracy needs to be within
the same bounds regardless of the size of the step. Thus,
€ is set back to its nominal value of 0.1.

4.4 Case 3: Large step (actuator saturation) revisited

In Fig.8 we see the simulation results for case 3 which
is the same as case 2 except for a decrease of € by two
orders of magnitude. The figure shows only the 2 DOF case
where the target was reached after 173 samples. Using only
u,, there was no feasible solution found for any k* < M.
The computed signal ug incorporates mainly ”bang-bang”
control which has been proven to be the time-optimal
solution for a perfect double integrator.

Table 1. Simulation parameters

‘ case 1 case 2 case 3
Ytarget 1 200 200
M 80 320 320
N 240 960 960
€ 0.1 10 0.1
kY ., (1DOF)/(2DOF) | 14/13 150/145 173/(> M)

5. CONCLUSIONS

An input shaping algorithm for closed-loop discrete-time
LTI systems has been described in this paper. It was shown
that input shaping significantly reduces targeting time
and residual vibrations compared to outputs responses
obtained by standard reference signals such as steps. It
was also shown that input shaping improves the response
of systems whether or not plant saturation is present.
Furthermore, it has been seen that 2 DOF versus 1 DOF
reference input signal shaping is only beneficial when
the output constraints are chosen to be tight during the
settling phase.
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To draw more detailed conclusions about a practical im-
plementation, further theoretical and experimental studies
are necessary. The system was simulated without consider-
ing noise. It is anticipated that by assuming a sufficiently
high SNR, the noise could be included by simply adjusting
(loosening) the constraints as the feedback controller will
remove the steady-state error in most cases. Other points
to address would be for instance to include parameter
variations of the plant and controller models to ensure
robustness of the computed time-optimal input reference
profiles. Experimental work to further validate the effec-
tiveness of the proposed method of reference signal input
shaping is currently under way.
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