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and

uG(k − 1) = xM (k) (4)

We can now define the two additional outputs of our
closed-loop system

uG(k) = yC(k) + uf (k)
δuG(k) = uG(k) − uG(k − 1)

(5)

Furthermore, we define the input vector u(k) ∈ R
(m+p)×1,

the output vector y(k) ∈ R
(m+2p)×1 and the state space

vector x(k) ∈ R
(nC+nG+p)×1 as

u(k) =

(
ur

uf

)

, y(k) =

(
yG

uG

δuG

)

, x(k) =

(
xC

xG

xM

)

(6)

Here, ur(k) and uf (k) are the computed reference signals.

Using (1)-(6) we can define the state space system of the
closed loop system as

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) (7)

where the state space matrices are calculated by

A =

[
AC − BCMDGCC −BCMCG 0

BGCC − BGDCMDGCC AG − BGDCMCG 0
CC − DCMDGCC −DCMCG 0

]

B =

[
BC − BCMDGDC −BCMDG

BGDC − BGDCMDGDC BG − BGDCMDG

DC − DCMDGDC −DCMDG + I

]

C =

[
MDGCC MCG 0

CC − DCMDGCC −DCMCG 0
CC − DCMDGCC −DCMCG −I

]

D =

[
MDGDC MDG

DC − DCMDGDC I − DCMDG

DC − DCMDGDC I − DCMDG

]

(8)

In (8), M is defined as

M = (I + DGDC)−1 (9)

The inverse in (9) can be calculated for a well-defined
closed-loop system with DGDC 6= −I. In practical ap-
plications most plants will have at least one sample time
delay with DG = 0 making M = I.

2.2 Explicit solution of the closed-loop system

The output y combines the plant output yG, the plant
input uG and its rate of change δuG on which constraints
will be imposed. For writing the linear constraints we
use (7) and follow Goodwin et al. (2005) (but including
the feed-through term D) to write the output equations
recursively as

y(0) = Cx(0) + Du(0)
y(1) = CAx(0) + CBu(0) + Du(1)
y(2) = CA2x(0) + CABu(0) + CBu(1) + Du(2)

...

y(M) = CAMx(0) +

M∑

i=1

CAM−iBu(i − 1)

+Dus

y(M + 1) = CAM+1x(0) +

M∑

i=1

CAM+1−iBu(i − 1)

+Dus + CBus

...

y(N − 1) = CAN−1x(0) +

M∑

i=1

CAN−i−1Bu(i − 1)+

+Dus +
N−M−1∑

i=1

CAi−1Bus

(10)

where M is the control horizon and N is the optimization
horizon. Here, us defines the residual reference signal after
the control horizon which needs to be set to a constant
value. An obvious choice is ur = ytarget and uf = 0 for
k ≥ M . We can now rewrite (10) conveniently in matrix
notation by defining Ψ as

Ψ =


















D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAM−2B CAM−3B · · · D

CAM−1B CAM−2B · · · CB

CAMB CAM−1B · · · CAB
...

...
. . .

...
CAN−2B CAN−3B · · · CAN−M−1B


















(11)

Furthermore, we define Ω, y and ∆ as

Ω =









C
CA

CA2

...
CAN−1









,y =









y(0)
y(1)
y(2)

...
y(N − 1)









∆ =

















0
...
0

Dus

Dus + CBus

...

Dus +

N−M−1∑

i=1

CAi−1Bus

















(12)

Now, we can rewrite (10) as

y = Ψu + Ωx(0) + ∆
︸ ︷ ︷ ︸

q

(13)

where the vector u contains the input signals

u = [ u(0), · · · , u(M − 1) ]
T

(14)
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Fig. 2. Definition of the output constraints

and the vector y contains the output signals for each
time step k. Each element itself will be a vector of size
(m+ p)× 1, respectively. In (13) the explicit input-output
relation is linear in u. We shall now proceed to specify the
constraints and the optimization routine for input shaping.

3. C O NVEX O PTIMIZ ATIO N

For a comprehensive overview of convex optimization tech-
niques the reader is referred to B oyd and Vandenberghe
(2004). In this paper a specific solution to the closed-loop
problem will be given for constraining the signals in (6).

3 .1 C onstraints on the closed-loop signals

As indicated in Fig. 1, the output y captures all of the
relevant closed-loop signals. It contains not only the out-
put of the plant yG but also the plant input uG and its
rate of change δuG. In defining constraints on closed-loop
signals we refer to the constraints on the output y =

(yG, uG, δuG)
T

in which we distinguish between diff erent
signals. The plant output yG is subject to two diff erent am-
plitude constraints as indicated in Fig. 2. O ne constraint
is a large amplitude constraint during the targeting stage.
We define this constraint by y1,m ax and y1,m in , respectively.
O nce the target is reached, a tolerance ε of the output from
the desired target is specified by

y2,m in = ytarget − ε ≤ y ≤ y2,m ax = ytarget + ε (15)

creating a tight amplitude constraint during the settling
stage. In Fig. 2, k∗ denotes the number of samples to reach
the target. For all sample numbers k < k∗ the targeting
output constraints apply, while for all sample numbers
k ≥ k∗ the settling stage (and finally steady state) output
constraints apply. C hoosing a minimal value for k∗ would
amount to finding a minimal time solution. We will later
use a line search over k∗ to find the minimal time solution.
For now, k∗ is assumed to be given.

Furthermore, we specify constraints on the plant input
uG. We consider amplitude constraints on the input. In
addition, the maximum rate of change of the input signal
is limited which is commonly introduced through rate
limitations in digital-to-analog conversion. In summary, we
define amplitude and rate constraints as

uG ≤ uG,ma x δuG ≤ δuG,ma x (16)

and similarly

uG ≥ uG,min ⇔ −uG ≤ −uG,min

−δuG ≤ −δuG,min
(17)

In matrix notation the output constraints can be written
as

ym in (k∗) ≤ Ψu + q ≤ ym a x (k∗) (18)

where ym a x and ym in are defined by

ym a x (k∗) =













y1,ma x

uG,ma x

δuG,ma x

...
y2,ma x

uG,ma x

δuG,ma x













, ym in (k∗) =













y1,min

uG,min

δuG,min

...
y2,min

uG,min

δuG,min













(19)

3 .2 C onstraints on reference signals

The reference signals ur and uf in Fig. 1 are captured in
the input signal u in (7) and (14). B y imposing constraints
on u we are now referring to the constraints on the
reference inputs ur and uf . The reference signals are
limited by an amplitude constraint

um in ≤ u ≤ um a x (20)

whereas a rate constraint

δum in ≤ δu ≤ δum a x (21)

can also be included in our approach, where

um a x = [ uma x , · · · , uma x ]
T

(22)

δum a x = [ δuma x , · · · , δuma x ]
T

(23)

We note that um in and δum in are defined similarly.

A reference change is defined by

δu(k) = u(k) − u(k − 1) (24)

for each k ∈ [0, · · · , M−1]. In matrix notation we calculate
δu by

δu = Eu (25)

where E is given by

E =







Im+p 0 · · · 0
−Im+p Im+p · · · 0

. . .
. . .

0 · · · −Im+p Im+p







(26)

and Im+p represents a (m + p) × (m + p) identity matrix.

3 .3 C ombined C onstraint in Linear Form

All the constraints in (18), (20), (21) and (25) can be
combined in one single linear matrix inequality (LMI):









I
−I
E

−E
Ψ

−Ψ















u(0)
...

u(M − 1)




 ≤










um a x

−um in

δum a x

−δum in

ym a x (k∗)
−ym in (k∗)










−










0
0
0
0
q

−q










(27)

or short

L u ≤ W(k∗) − Q (28)

In (27), I is an (m + p)M × (m + p)M identity matrix,
and Ψ is given in (11). In (27) and (28) the term Q
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Fig. 5. Amplitude plot of closed-loop transfer function and
sensitivity function for both controllers

using zero order hold (Z O H) with a sampling frequency of
40 kHz.

A simple PID controller with high frequency roll-off was
designed in discrete-time. The amplitude plots of closed-
loop transfer function from reference input to output
and the sensitivity function (error rejection function) are
shown in Fig. 5. The discrete-time controller is given by

C =
3.3496(z − 0.9925)2

(z − 1)(z − 0.9252)(z − 0.7623)
(33)

In this simulation example the feed through-terms of both
the controller and the plant are zero, and we consider zero
initial conditions (x(0) = 0). Three interesting situations
that will be explained in the following subsections are
investigated:

(1) S mall step on desired actuator position
(2) Large step on desired actuator position and ” rela-

tively loose bounds” on yG

(3) Large step on desired actuator position and ” rela-
tively tight bounds” on yG

In all three cases we only assume constraints on uG

and δuG in addition to the constraints on yG. We solve
the Q P according to (30) with P1 and P2 being the
identity matrix, respectively. When only using feedback
and a step-wise change of ur, the small step on the
desired actuator position does not use the full range
available within actuator saturation that can be exploited
by input shaping. The large steps on the desired actuator
position will saturate the actuator input. Input shaping
can alleviate this problem. The values of the constraints
are: uG,ma x = 10V, δuG,ma x = 5V, y1,ma x = 2ytarget

and uG,min = −uG,ma x , δuG,min = −δuG,ma x , y1,min =
−y1,ma x . All other values are specific to the particular case
and summarized in Tab. 1.

4 .2 C ase 1 : S mall step (no actuator saturation)

We simulated a short-distance seek of 1 track using our
designed controller C. The constraints were set to be
within 10% of the track-pitch which is usually the allowed
margin in order to avoid read/ write errors. The results
are shown in Fig. 6 (gray dashed line). The response is
relatively slow and has a considerably high overshoot. This
is expected after looking at Fig. 5 that suggests that the
closed-loop bandwidth is arround 300 Hz. The plant input
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Fig. 6. C ase 1: S mall step on desired actuator position
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Fig. 7. C ase 2: Large step on desired actuator position with
actuator saturation

signal uG is well below the constraint of 10 V. Using the
input shaping technique described in sections 2 and 3 we
compute the time-minimal input signal with minimized
control eff ort given the constraints defined in 4 .1 and
Tab. 1. The dash-dotted line in Fig. 6 denotes the case
where only ur is used and the solid line shows the case
where full degree-of-freedom (DO F) control is applied (ur

and uf ). B elow, we will refer to those three situations
as the 0 DO F, 1DO F and 2 DO F case, respectively. The
diff erence between 1 DO F and 2DO F is not very large
(1 sample); however, they are both much faster than the
0 DO F case as they use uG to full capacity. The vibrations
(within the specified constraints) observed in the output
signal correspond to the 2nd resonance mode at 2 kHz and
could be lowerd by tightening the constraints on uG at the
expense of a potentially longer seek time.

4 .3 C ase 2: Large step (actuator saturation)

We now look at a larger step of 200 tracks (Fig. 7) which in
general leads to the saturation of uG. The 0 DO F case (no
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Fig. 8. C ase 3: Large step on desired actuator position with
tight bounds on yG

input shaping) has a considerably larger seek time than the
1 DO F and 2 DO F case. The diff erence in terms of speed
between 1DO F and 2 DO F is slightly larger (5 samples)
than in the previous case but is still comparably small. We
note that in this simulation ε was adjusted according to
the increase in yta rge t . Intuitively, this is expected for many
positioning systems: The operating range determines the
positioning precision. Unfortunately, this is not the case
for HDDs as the positioning accuracy needs to be within
the same bounds regardless of the size of the step. Thus,
ε is set back to its nominal value of 0.1.

4 .4 C ase 3 : Large step (actuator saturation) revisited

In Fig. 8 we see the simulation results for case 3 which
is the same as case 2 except for a decrease of ε by two
orders of magnitude. The figure shows only the 2DO F case
where the target was reached after 173 samples. Using only
ur, there was no feasible solution found for any k∗ ≤ M .
The computed signal uG incorporates mainly ” bang-bang”
control which has been proven to be the time-optimal
solution for a perfect double integrator.

Table 1. S imulation parameters

case 1 case 2 case 3

ytarget 1 20 0 20 0
M 8 0 320 320
N 24 0 9 6 0 9 6 0
ε 0 .1 10 0 .1

k∗

min
(1 D O F )/ (2 D O F ) 14 / 13 15 0 / 14 5 17 3/ (> M)

5. C O NC LUS IO NS

An input shaping algorithm for closed-loop discrete-time
LTI systems has been described in this paper. It was shown
that input shaping significantly reduces targeting time
and residual vibrations compared to outputs responses
obtained by standard reference signals such as steps. It
was also shown that input shaping improves the response
of systems whether or not plant saturation is present.
Furthermore, it has been seen that 2 DO F versus 1 DO F
reference input signal shaping is only beneficial when
the output constraints are chosen to be tight during the
settling phase.

To draw more detailed conclusions about a practical im-
plementation, further theoretical and experimental studies
are necessary. The system was simulated without consider-
ing noise. It is anticipated that by assuming a suffi ciently
high S NR , the noise could be included by simply adjusting
(loosening) the constraints as the feedback controller will
remove the steady-state error in most cases. O ther points
to address would be for instance to include parameter
variations of the plant and controller models to ensure
robustness of the computed time-optimal input reference
profiles. Experimental work to further validate the eff ec-
tiveness of the proposed method of reference signal input
shaping is currently under way.
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